Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Beneficial role of CD8+ T-cell reconstitution after HLA-haploidentical stem cell transplantation for high-risk acute leukaemias: results from a clinico-biological EBMT registry study mostly in the T-cell-depleted setting

Abstract

HLA-haploidentical haematopoietic stem cell transplantation (haplo-HSCT) is increasingly offered to patients with high-risk acute leukaemia. Unfortunately, haplo-HSCT is followed by a delayed immunoreconstitution. The aim of this EBMT registry study was to explore the clinical impact of lymphocyte subset counts after haplo-HSCT. We considered 144 leukaemic patients transplanted in the period 2001–2012. Pre-transplantation clinical variables and differential immune-cell counts (CD3, CD4, CD8 T cells, NK and B cells) measured before day 100 were evaluated for their capacity to predict overall survival, relapse mortality or non-relapse mortality (NRM). Negative prognostic factors for overall survival were advanced disease state at transplantation, host age and CMV seropositivity. Higher CD3, CD4 and CD8 counts were associated with a better overall survival and a lower NRM. Strikingly, when tested in multivariable analysis, higher CD3 and CD8 counts were still significantly associated with a lower NRM. These results indicate that an accelerated T-cell reconstitution correlates with less transplantation mortality, likely due to the protective role of T cells against viral infections. This observation suggests that CD8+ T-cell counts should be investigated as surrogate biomarkers of outcome in prospective haplo-HSCT trials.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Horowitz MM, Gale RP, Sondel PM, Goldman JM, Kersey J, Kolb HJ, et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood. 1990;75:555–62.

    CAS  PubMed  Google Scholar 

  2. Aversa F, Reisner Y, Martelli MF. Hematopoietic stem cell transplantation from alternative sources in adults with high-risk acute leukemia. Blood Cells Mol Dis. 2004;33:294–302. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15528148.

    Article  Google Scholar 

  3. Lown RN, Shaw BE. Beating the odds: factors implicated in the speed and availability of unrelated haematopoietic cell donor provision. Bone Marrow Transplant. 2013;48:210–9. https://doi.org/10.1038/bmt.2012.54

    Article  CAS  Google Scholar 

  4. Brunstein CG, Fuchs EJ, Carter SL, Karanes C, Costa LJ, Wu J, et al. Alternative donor transplantation after reduced intensity conditioning: results of parallel phase 2 trials using partially HLA-mismatched related bone marrow or unrelated double umbilical cord blood grafts. Blood. 2011;118:282–8. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21527516.

    Article  CAS  Google Scholar 

  5. Aversa F, Tabilio A, Terenzi A, Velardi A, Falzetti F, Giannoni C, et al. Successful engraftment of T-cell-depleted haploidentical “three-loci” incompatible transplants in leukemia patients by addition of recombinant human granulocyte colony-stimulating factor-mobilized peripheral blood progenitor cells to bone marrow inoculum. Blood. 1994;84:3948–55. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7524753.

    CAS  PubMed  Google Scholar 

  6. Ciceri F, Labopin M, Aversa F, Rowe JM, Bunjes D, Lewalle P, et al. A survey of fully haploidentical hematopoietic stem cell transplantation in adults with high-risk acute leukemia: a risk factor analysis of outcomes for patients in remission at transplantation. Blood. 2008;112:3574–81.

    Article  CAS  Google Scholar 

  7. Locatelli F, Merli P, Pagliara D, Li Pira G, Falco M, Pende D, et al. Outcome of children with acute leukemia given HLA-haploidentical HSCT after αβ T-cell and B-cell depletion. Blood. 2017;130:677–85. http://www.bloodjournal.org/lookup/doi/10.1182/blood-2017-04-779769.

    Article  CAS  Google Scholar 

  8. Lewalle P, Triffet a, Delforge a, Crombez P, Selleslag D, De Muynck H, et al. Donor lymphocyte infusions in adult haploidentical transplant: a dose finding study. Bone Marrow Transplant. 2003;31:39–44.

    Article  CAS  Google Scholar 

  9. Ciceri F, Bonini C, Stanghellini MTL, Bondanza A, Traversari C, Salomoni M, et al. Infusion of suicide-gene-engineered donor lymphocytes after family haploidentical haemopoietic stem-cell transplantation for leukaemia (the TK007 trial): a non-randomised phase I–II study. Lancet Oncol. 2009;10:489–500. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19345145.

    Article  Google Scholar 

  10. Di Stasi A, Tey S, Dotti G, Fujita Y, Kennedy-Nasser A, Martinez C, et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med. 2011;365:1673–83. http://www.nejm.org/doi/abs/10.1056/NEJMoa1106152.

    Article  Google Scholar 

  11. Amrolia PJ, Muccioli-Casadei G, Huls H, Adams S, Durett A, Gee A, et al. Adoptive immunotherapy with allodepleted donor T-cells improves immune reconstitution after haploidentical stem cell transplantation. Blood. 2006;108:1797–808. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16741253.

    Article  CAS  Google Scholar 

  12. Perruccio K. Transferring functional immune responses to pathogens after haploidentical hematopoietic transplantation. Blood. 2005;106:4397–406. http://www.ncbi.nlm.nih.gov/pubmed/16123217.

    Article  CAS  Google Scholar 

  13. Li CR, Greenberg PD, Gilbert MJ, Goodrich JM, Riddell SR. Recovery of HLA-restricted cytomegalovirus (CMV)-specific T-cell responses after allogeneic bone marrow transplant: correlation with CMV disease and effect of ganciclovir prophylaxis. Blood. 1994;83:1971–9.

    CAS  PubMed  Google Scholar 

  14. Di Ianni M, Falzetti F, Carotti A, Terenzi A, Castellino F, Bonifacio E, et al. Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood. 2011;117:3921–8. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21292771.

    Article  Google Scholar 

  15. Di Bartolomeo P, Santarone S, De Angelis G, Picardi A, Cudillo L, Cerretti R, et al. Haploidentical, unmanipulated, G-CSF-primed bone marrow transplantation for patients with high-risk hematologic malignancies. Blood. 2013;121:849–57. http://www.bloodjournal.org/cgi/doi/10.1182/blood-2012-08-453399.

    Article  Google Scholar 

  16. Peccatori J, Forcina A, Clerici D, Crocchiolo R, Vago L, Stanghellini MTL, et al. Sirolimus-based graft-versus-host disease prophylaxis promotes the in vivo expansion of regulatory T cells and permits peripheral blood stem cell transplantation from haploidentical donors. Leukemia. 2015;29:396–405. http://www.nature.com/doifinder/10.1038/leu.2014.180.

    Article  CAS  Google Scholar 

  17. McCurdy SR, Kasamon YL, Kanakry CG, Bolaños-Meade J, Tsai HL, Showel MM, et al. Comparable composite endpoints after HLA-matched and HLA-haploidentical transplantation with post-transplantation cyclophosphamide. Haematologica. 2017;102:391–400.

    Article  CAS  Google Scholar 

  18. Forcina A, Noviello M, Carbone MR, Bonini C, Bondanza A. Predicting the clinical outcome of allogeneic hematopoietic stem cell transplantation: the long and winding road toward validated immune biomarkers. Front Immunol. 2013;4:1–6.

    Article  CAS  Google Scholar 

  19. Powles R, Singhal S, Treleaven J, Kulkarni S, Horton C, Mehta J. Identification of patients who may benefit from prophylactic immunotherapy after bone marrow transplantation for acute myeloid leukemia on the basis of lymphocyte recovery early after transplantation. Blood [Internet]. 1998;91:3481–6. http://www.ncbi.nlm.nih.gov/pubmed/9558408.

    CAS  Google Scholar 

  20. Kim HT, Armand P, Frederick D, Andler E, Cutler C, Koreth J, et al. Absolute lymphocyte count recovery after allogeneic hematopoietic stem cell transplantation predicts clinical outcome. Biol Blood Marrow Transplant. 2015;21:873–80. http://dx.doi.org/10.1016/j.bbmt.2015.01.019.

    Article  Google Scholar 

  21. Bayraktar UD, Milton DR, Guindani M, Rondon G, Chen J, Al-Atrash G, et al. Optimal threshold and time of absolute lymphocyte count assessment for outcome prediction after bone marrow transplantation. Biol Blood Marrow Transplant. 2016;22:505–13. http://dx.doi.org/10.1016/j.bbmt.2015.10.020.

    Article  Google Scholar 

  22. Kim DH, Sohn SK, Won DI, Lee NY, Suh JS, Lee KB. Rapid helper T-cell recovery above 200 × 106/l at 3 months correlates to successful transplant outcomes after allogeneic stem cell transplantation. Bone Marrow Transplant. 2006;37:1119–28. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16699530.

    Article  CAS  Google Scholar 

  23. Berger M, Figari O, Bruno B, Raiola A, Dominietto A, Fiorone M, et al. Lymphocyte subsets recovery following allogeneic bone marrow transplantation (BMT): CD4 + cell count and transplant-related mortality. Bone Marrow Transplant. 2008;41:55–62. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17934532.

    Article  CAS  Google Scholar 

  24. Bühlmann L, Buser AS, Cantoni N, Gerull S, Tichelli A, Gratwohl A, et al. Lymphocyte subset recovery and outcome after T-cell replete allogeneic hematopoietic SCT. Bone Marrow Transplant. 2011;46:1357–62. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21113185.

    Article  Google Scholar 

  25. Koehl U, Bochennek K, Zimmermann SY, Lehrnbecher T, Sörensen J, Esser R, et al. Immune recovery in children undergoing allogeneic stem cell transplantation: absolute CD8 + CD3 + count reconstitution is associated with survival. Bone Marrow Transplant. 2007;39:269–78. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17311085.

    Article  CAS  Google Scholar 

  26. Savani BN, Mielke S, Adams S, Uribe M, Rezvani K, Yong ASM, et al. Rapid natural killer cell recovery determines outcome after T-cell-depleted HLA-identical stem cell transplantation in patients with myeloid leukemias but not with acute lymphoblastic leukemia. Leuk [Internet]. 2007;21:2145–52. http://www.nature.com/doifinder/10.1038/sj.leu.2404892.

    Article  CAS  Google Scholar 

  27. Pical-Izard C, Crocchiolo R, Granjeaud S, Kochbati E, Just-Landi S, Chabannon C, et al. Reconstitution of natural killer cells in HLA-matched HSCT after reduced-intensity conditioning: impact on clinical outcome. Biol Blood Marrow Transplant. 2015;21:429–39.

    Article  CAS  Google Scholar 

  28. Scrucca L, Santucci A, Aversa F. Competing risk analysis using R: an easy guide for clinicians. Bone Marrow Transplant [Internet]. 2007;40:381–7. http://www.ncbi.nlm.nih.gov/pubmed/17563735.

    Article  CAS  Google Scholar 

  29. Fine JP, Grey RJ. A proportional hazards model for subdistribution of a competing risk. J Am Stat Assoc. 1999;94:496–509.

  30. Aversa F, Tabilio A, Velardi A, Cunningham I, Terenzi A, Falzetti F, et al. Treatment of high-risk acute leukemia with T-cell–depleted stem cells from related donors with one fully mismatched HLA haplotype. N Engl J Med. 1998;339:1186–93. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9780338.

    Article  CAS  Google Scholar 

  31. Luznik L, O’Donnell PV, Symons HJ, Chen AR, Leffell MS, Zahurak M, et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transplant. 2008;14:641–50. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18489989.

    Article  CAS  Google Scholar 

  32. Piemontese S, Ciceri F, Labopin M, Bacigalupo A, Huang H, Santarone S, et al. A survey on unmanipulated haploidentical hematopoietic stem cell transplantation in adults with acute leukemia. Leukemia. 2015;29:1069–75. http://www.nature.com/doifinder/10.1038/leu.2014.336.

    Article  CAS  Google Scholar 

  33. Sorror ML. Hematopoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk assessment before allogeneic HCT. Blood. 2005;106:2912–9. http://www.bloodjournal.org/cgi/doi/10.1182/blood-2005-05-2004.

    Article  CAS  Google Scholar 

  34. Armand P, Gibson CJ, Cutler C, Ho VT, Koreth J, Alyea EP, et al. A disease risk index for patients undergoing allogeneic stem cell transplantation. Blood. 2012;120:905–13. http://www.bloodjournal.org/cgi/doi/10.1182/blood-2012-03-418202.

    Article  CAS  Google Scholar 

  35. Gratwohl A, Stern M, Brand R, Apperley J, Baldomero H, de Witte T, et al. Risk score for outcome after allogeneic hematopoietic stem cell transplantation. Cancer. 2009;115:4715-–26. http://doi.wiley.com/10.1002/cncr.24531.

    Article  Google Scholar 

  36. Parimon T, Au DH, Martin PJ, Chien JW. Article a risk score for mortality after allogeneic hematopoietic. Ann Intern Med. 2006;144:407–14.

    Article  Google Scholar 

  37. Wang H, Chang Y, Xu L, Liu D, Wang Y, Liu K, et al. EBMT risk score can predict the outcome of leukaemia after unmanipulated haploidentical blood and marrow transplantation. Bone Marrow Transplant. 2014;49:927–33. http://www.nature.com/doifinder/10.1038/bmt.2014.80.

    Article  Google Scholar 

  38. Armand P, Kim HT, Logan BR, Wang Z, Alyea EP, Kalaycio ME, et al. Validation and refinement of the Disease Risk Index for allogeneic stem cell transplantation. Blood. 2014;123:3664–71.

    Article  CAS  Google Scholar 

  39. Sorror ML, Storb RF, Sandmaier BM, Maziarz RT, Pulsipher MA, Maris MB, et al. Comorbidity-age index: a clinical measure of biologic age before allogeneic hematopoietic cell transplantation. J Clin Oncol. 2014;32:3249–56. http://ascopubs.org/doi/10.1200/JCO.2013.53.8157.

    Article  Google Scholar 

  40. Noviello M, Forcina A, Veronica V, Crocchiolo R, Stanghellini MTL, Carrabba M, et al. Early recovery of CMV immunity after HLA-haploidentical hematopoietic stem cell transplantation as a surrogate biomarker for a reduced risk of severe infections overall. Bone Marrow Transplant. 2015;50:1262–4. http://www.nature.com/doifinder/10.1038/bmt.2015.132.

    Article  CAS  Google Scholar 

  41. Tian DM, Wang Y, Zhang XH, Liu KY, Huang XJ, Chang YJ. Rapid recovery of CD3 + CD8 + T cells on day 90 predicts superior survival after unmanipulated haploidentical blood and marrow transplantation. PLoS ONE. 2016;11:1–17.

    Google Scholar 

  42. Elsawy M, Sorror ML. Up-to-date tools for risk assessment before allogeneic hematopoietic cell transplantation. Bone Marrow Transplant. 2016;51:1283–300. https://doi.org/10.1038/bmt.2016.141.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dimitris Ziagkos for his contribution to the statistical analysis. This work was performed on behalf of the EBMT Cellular Therapy and Immunobiology Working Party. AB and AV have received specific funding from the Italian Ministry of Health through the Transcan Project Haplo-Immune. FL was supported by a specific grant from AIRC (‘Special grant 5 × 1.000’).

EBMT Cell Therapy and Immunobiology Working Party

Maria Ester Bernardo; IRCCS San Raffaele Scientific Institute, Milan, Italy. Francesco Dazzi; GKT School of Medicine, London, UK. Dirk-Jan Eikema; EBMT Dataoffice Leiden, Leiden, The Netherlands. Rose Ellard; King’s College, London, UK. Katharina Fleischhauer; University Hospital Essen, Essen, Germany. Rafaella Greco; IRCCS San Raffaele Scientific Institute, Milan, Italy. Michael Hudecek; University Hospital Würzburg, Würzburg, Germany. Ulrike Köhl; Hannover Medical School, Hannover, Germany. Jürgen Kuball; University Medical Centre Utrecht, Utrecht, The Netherlands. Florent Malard; Hospital Saint Antoine, Paris, France. Paolo Pedrazzoli; Fondazione IRCCS Policlinico San Matteo, Pavia, Italy. Vanderson Rocha; Hospital Sirio-Libanes, Sao Paulo, Brazil. Annalisa Ruggeri; IRRCS Ospedale Pediatrico Bambino Gesù, Rome, Italy. Álvaro Urbano-Ispizua; Hospital Clinic Barcelona, Barcelona, Spain. Junfeng Wang; EBMT Dataoffice Leiden, Leiden, The Netherlands. Lotte Wieten; Maastricht University Medical Centre, Maastricht, The Netherlands.

Author contributions

AB, LR and MN designed the study, analysed data and wrote the manuscript; CB designed the study, analysed data and revised the manuscript; LV, LC and FC provided data from San Raffaele University Hospital; MM and MSM provided data from Perugia University Hospital; HV provided data from Leiden University Medical Centre; YK provided data from Antalya Medical Hospital; PB provided data from Frankfurt University Hospital; BG provided data from Jena University Hospital; FL provided data from Ospedale Pediatrico Bambino Gesù and extensively reviewed the manuscript; SW and A van Biezen managed data; DJE and LdW performed statistical analysis and revised the manuscript; AT and CB revised the manuscript; AV designed the study, provided and analysed data and revised the manuscript.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Attilio Bondanza.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Members of the EBMT Cell Therapy and Immunobiology Working Party are listed below Acknowledgements.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondanza, A., Ruggeri, L., Noviello, M. et al. Beneficial role of CD8+ T-cell reconstitution after HLA-haploidentical stem cell transplantation for high-risk acute leukaemias: results from a clinico-biological EBMT registry study mostly in the T-cell-depleted setting. Bone Marrow Transplant 54, 867–876 (2019). https://doi.org/10.1038/s41409-018-0351-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-018-0351-x

This article is cited by

Search

Quick links