Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bortezomib is safe in and stabilizes pulmonary function in patients with allo-HSCT-associated pulmonary CGVHD

Abstract

Pulmonary chronic graft-versus-host disease (p-CGVHD) following allogeneic HSCT is devastating with limited proven treatments. Although sporadically associated with pulmonary toxicity, the proteasome inhibitor bortezomib may be efficacious in p-CGVHD. We sought to establish safety and tolerability of bortezomib in pilot, open-label trial of patients with p-CGVHD. The primary endpoint was adverse events. Efficacy was assessed by comparing FEV1 decline prior to p-CGVHD diagnosis to during the bortezomib treatment period. The impact on pulmonary function testing of prior long-term bortezomib treatment in multiple myeloma (MM) patients was also assessed as a safety analysis. Seventeen patients enrolled in the pilot study with a mean time to p-CGVHD diagnosis of 3.36 years (±1.88 years). Bortezomib was well tolerated without early dropouts. The median FEV1 decline prior to the diagnosis of p-CGVHD was −1.06%/month (−5.36, −0.33) and during treatment was −0.25%/month (−9.42, 3.52). In the safety study, there was no significant difference in any PFT parameter between 73 patients who received bortezomib and 68 patients who did not for MM. Thus, we conclude that bortezomib has acceptable safety and tolerability in patients with compromised pulmonary function. The efficacy of proteosomal inhibition should be assessed in a large trial of chronic p-CGVHD patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Soubani AO, Uberti JP. Bronchiolitis obliterans following haematopoietic stem cell transplantation. Eur Respir J. 2007;29:1007–19. doi: 29/5/1007 [pii]10.1183/09031936.00052806.

    Article  CAS  Google Scholar 

  2. Chien JW, Martin PJ, Gooley TA, Flowers ME, Heckbert SR, Nichols WG, et al. Airflow obstruction after myeloablative allogeneic hematopoietic stem cell transplantation. Am J Respir Crit Care Med. 2003;168:208–14. https://doi.org/10.1164/rccm.200212-1468OC.

    Article  PubMed  Google Scholar 

  3. Yousem SA. The histological spectrum of pulmonary graft-versus-host disease in bone marrow transplant recipients. Hum Pathol. 1995;26:668–75.

    Article  CAS  Google Scholar 

  4. Williams KM, Chien JW, Gladwin MT, Pavletic SZ. Bronchiolitis obliterans after allogeneic hematopoietic stem cell transplantation. JAMA. 2009;302:306–14. https://doi.org/10.1001/jama.2009.1018.

    Article  CAS  PubMed  Google Scholar 

  5. Mattsson J, Remberger M, Andersson O, Sundberg B, Nord M. Decreased serum levels of clara cell secretory protein (CC16) are associated with bronchiolitis obliterans and may permit early diagnosis in patients after allogeneic stem-cell transplantation. Transplantation. 2005;79:1411–6. doi: 00007890-200505270-00025 [pii].

    Article  CAS  Google Scholar 

  6. Nakane T, Nakamae H, Kamoi H, Koh H, Takeoka Y, Sakamoto E, et al. Prognostic value of serum surfactant protein D level prior to transplant for the development of bronchiolitis obliterans syndrome and idiopathic pneumonia syndrome following allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2008;42:43–49. doi: bmt200873 [pii] 10.1038/bmt.2008.73.

    Article  CAS  Google Scholar 

  7. Martin PJ. Biology of chronic graft-versus-host disease: implications for a future therapeutic approach. Keio J Med. 2008;57:177–83.

    Article  Google Scholar 

  8. Banovic T, MacDonald KP, Morris ES, Rowe V, Kuns R, Don A, et al. TGF-beta in allogeneic stem cell transplantation: friend or foe? Blood. 2005;106:2206–14. doi: 2005-01-0062 [pii] 10.1182/blood-2005-01-0062.

    Article  CAS  Google Scholar 

  9. Ramirez AM, Shen Z, Ritzenthaler JD, Roman J. Myofibroblast transdifferentiation in obliterative bronchiolitis: tgf-beta signaling through smad3-dependent and -independent pathways. Am J Transplant. 2006;6:2080–8. doi: AJT1430 [pii] 10.1111/j.1600-6143.2006.01430.x.

    Article  CAS  Google Scholar 

  10. Baron C, Somogyi R, Greller LD, Rineau V, Wilkinson P, Cho CR, et al. Prediction of graft-versus-host disease in humans by donor gene-expression profiling. PLoS Med. 2007;4:e23. doi: 06-PLME-RA-0347R3 [pii] 10.1371/journal.pmed.0040023.

    Article  Google Scholar 

  11. Elssner A, Jaumann F, Dobmann S, Behr J, Schwaiblmair M, Reichenspurner H, et al. Elevated levels of interleukin-8 and transforming growth factor-beta in bronchoalveolar lavage fluid from patients with bronchiolitis obliterans syndrome: proinflammatory role of bronchial epithelial cells. Munich Lung Transplant Group. Transplantation. 2000;70:362–7.

    Article  CAS  Google Scholar 

  12. Mutlu GM, Budinger GR, Wu M, Lam AP, Zirk A, Rivera S, et al. Proteasomal inhibition after injury prevents fibrosis by modulating TGF-beta1 signalling. Thorax. 2012;67:139–46. doi: 10.1136/thoraxjnl-2011-200717.

    Article  Google Scholar 

  13. Liu FY, Li XZ, Peng YM, Liu H, Liu YH. Arkadia-Smad7-mediated positive regulation of TGF-beta signaling in a rat model of tubulointerstitial fibrosis. Am J Nephrol. 2007;27:176–83.

    Article  Google Scholar 

  14. Pan X, Hussain FN, Iqbal J, Feuerman MH, Hussain MM. Inhibiting proteasomal degradation of microsomal triglyceride transfer protein prevents CCl4-induced steatosis. J Biol Chem. 2007;282:17078–89.

    Article  CAS  Google Scholar 

  15. Mateos-Mazon J, Perez-Simon JA, Lopez O, Hernandez E, Etxebarria J, San Miguel JF. Use of bortezomib in the management of chronic graft-versus-host disease among multiple myeloma patients relapsing after allogeneic transplantation. Haematologica. 2007;92:1295–6.

    Article  CAS  Google Scholar 

  16. El-Cheikh J, Michallet M, Nagler A, de Lavallade H, Nicolini FE, Shimoni A, et al. High response rate and improved graft-versus-host disease following bortezomib as salvage therapy after reduced intensity conditioning allogeneic stem cell transplantation for multiple myeloma. Haematologica. 2008;93:455–8. doi: haematol.12184 [pii] 10.3324/haematol.12184.

    Article  CAS  Google Scholar 

  17. Miyakoshi S, Kami M, Yuji K, Matsumura T, Takatoku M, Sasaki M, et al. Severe pulmonary complications in Japanese patients after bortezomib treatment for refractory multiple myeloma. Blood. 2006;107:3492–4. doi: 2005-11-4541 [pii] 10.1182/blood-2005-11-4541.

    Article  CAS  Google Scholar 

  18. Ohri A, Arena FP. Severe pulmonary complications in African-American patient after bortezomib therapy. Am J Ther. 2006;13:553–5. doi: 10.1097/01.mjt.0000245224.20913.0d 00045391-200611000-00016 [pii].

    Article  Google Scholar 

  19. Boyer JE, Batra RB, Ascensao JL, Schechter GP. Severe pulmonary complication after bortezomib treatment for multiple myeloma. Blood. 2006;108:1113. doi: 108/3/1113 [pii] 10.1182/blood-2006-03-011494.

    Article  CAS  Google Scholar 

  20. Cheng GS, Storer B, Chien JW, Jagasia M, Hubbard JJ, Burns L, et al. Lung function trajectory in bronchiolitis Obliterans syndrome after allogeneic hematopoietic cell transplant. Ann Am Thorac Soc. 2016;13:1932–9. doi: 10.1513/AnnalsATS.201604-262OC.

    Article  Google Scholar 

  21. Zhang J, Yu C, Holgate ST, Reiss TF. Variability and lack of predictive ability of asthma end-points in clinical trials. Eur Respir J. 2002;20:1102–9.

    Article  CAS  Google Scholar 

  22. Yanik GA, Mineishi S, Levine JE, Kitko CL, White ES, Vander Lugt MT, et al. Soluble tumor necrosis factor receptor: enbrel (etanercept) for subacute pulmonary dysfunction following allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 2012;18:1044–54. https://doi.org/10.1016/j.bbmt.2011.11.031.

    Article  CAS  PubMed  Google Scholar 

  23. Williams KM, Cheng GS, Pusic I, Jagasia M, Burns L, Ho VT, et al. Fluticasone, azithromycin, and Montelukast treatment for new-onset bronchiolitis Obliterans syndrome after hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2016;22:710–6. https://doi.org/10.1016/j.bbmt.2015.10.009.

    Article  CAS  PubMed  Google Scholar 

  24. Bergeron A, Chevret S, Chagnon K, Godet C, Bergot E, Peffault de Latour R, et al. Budesonide/formoterol for bronchiolitis obliterans after hematopoietic stem cell transplantation. Am J Respir Crit Care Med. 2015;191:1242–9. https://doi.org/10.1164/rccm.201410-1818OC.

    Article  CAS  PubMed  Google Scholar 

  25. Fineschi S, Reith W, Guerne PA, Dayer JM, Chizzolini C. Proteasome blockade exerts an antifibrotic activity by coordinately down-regulating type I collagen and tissue inhibitor of metalloproteinase-1 and up-regulating metalloproteinase-1 production in human dermal fibroblasts. Faseb J. 2006;20:562–4.

    Article  CAS  Google Scholar 

  26. Mutlu GM, Budinger GR, Wu M, Lam AP, Zirk A, Rivera S, et al. Proteasomal inhibition after injury prevents fibrosis by modulating TGF-{beta}1 signalling. Thorax. 2011;67:139–46. https://doi.org/10.1136/thoraxjnl-2011-200717.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wagner-Ballon O, Pisani DF, Gastinne T, Tulliez M, Chaligne R, Lacout C, et al. Proteasome inhibitor bortezomib impairs both myelofibrosis and osteosclerosis induced by high thrombopoietin levels in mice. Blood. 2007;110:345–53.

    Article  CAS  Google Scholar 

  28. Pellom ST Jr., Dudimah DF, Thounaojam MC, Sayers TJ, Shanker A. Modulatory effects of bortezomib on host immune cell functions. Immunotherapy. 2015;7:1011–22. doi: 10.2217/imt.15.66.

    Article  CAS  Google Scholar 

  29. Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin D, et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med. 2003;348:2609–17. doi: 10.1056/NEJMoa030288 348/26/2609 [pii].

    Article  CAS  Google Scholar 

  30. Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T, et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med. 2005;352:2487–98. doi: 352/24/2487 [pii] 10.1056/NEJMoa043445.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Manu Jain takes responsibility for the content of the manuscript including the data analysis.

Author contributions

MJ and JM had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis, including and especially any adverse effects. BJ provided the data analysis for the study and contributed to the writing of the manuscript. JD and SD contributed substantially to the interpretation and the writing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manu Jain.

Ethics declarations

Conflict of interest

JM reports having received honoraria from Millennium Pharmaceuticals, the manufacturer of bortezomib, for speaking on the use of bortezomib in myeloma. The remaining authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, M., Budinger, G., Jovanovic, B. et al. Bortezomib is safe in and stabilizes pulmonary function in patients with allo-HSCT-associated pulmonary CGVHD. Bone Marrow Transplant 53, 1124–1130 (2018). https://doi.org/10.1038/s41409-018-0134-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-018-0134-4

Search

Quick links