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Abstract
Polycythemia vera (PV) and essential thrombocythemia (ET) are Philadelphia-negative myeloproliferative neoplasms
(MPNs) characterized by erythrocytosis and thrombocytosis, respectively. Approximately 95% of PV and 50–70% of ET
patients harbor the V617F mutation in the exon 14 of JAK2 gene, while about 20–30% of ET patients carry CALRins5 or
CALRdel52 mutations. These ET CALR-mutated subjects show higher platelet count and lower thrombotic risk
compared to JAK2-mutated patients. Here, we showed that CALR-mutated and JAK2V617F-positive CD34+ cells
display different gene and miRNA expression profiles. Indeed, we highlighted several pathways differentially activated
between JAK2V617F- and CALR-mutated progenitors, i.e., mTOR, MAPK/PI3K, and MYC pathways. Furthermore, we
unveiled that the expression of several genes involved in DNA repair, chromatin remodeling, splicing, and chromatid
cohesion are decreased in CALR-mutated cells. According to the low risk of thrombosis in CALR-mutated patients, we
also found the downregulation of several genes involved in thrombin signaling and platelet activation. As a whole,
these data support the model that CALR-mutated ET could be considered as a distinct disease entity from JAK2V617F-
positive MPNs and may provide the molecular basis supporting the different clinical features of these patients.

Introduction
Philadelphia-negative myeloproliferative neoplasms

(MPNs) are a heterogeneous group of clonal hemato-
poietic stem cell disorders with common molecular and
clinical characteristics, and include polycythemia vera
(PV), essential thrombocythemia (ET), and primary

myelofibrosis (PMF)1,2. PV is characterized by ery-
throcytosis, while abnormal megakaryocytopoiesis and
alterations in platelet count are distinctive features of
PMF and ET3,4. Almost all PV patients harbor the JAK2
mutation (mostly the V617F mutation in exon 14 and,
more rarely, deletions/insertion in exon 12), while
approximately 60% of PMF and ET subjects carry the
JAK2V617F mutation5,6. In addition, mutations in exon
10 of thrombopoietin receptor (MPL) gene are present in
about 5% of cases with ET or PMF7.
In 2013, somatic mutations in Calreticulin (CALR) gene

have been reported in 50–70% of JAK2 and MPL-negative
MPNs8,9. The clinical course of CALR-mutated subjects
appears to be more indolent than that of JAK2-mutated
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patients10–12. Moreover, as described by several authors,
CALR-mutated ET patients show relevant differences in
terms of clinical and hematologic parameters (thrombotic
risk, platelet (PLT) count, white blood cell (WBC) count,
hemoglobin (Hb) level) compared with JAK2V617F-
positive patients10,13,14.
CALR is a multi-functional Ca2+-binding protein with

chaperone activity mainly localized in the endoplasmic
reticulum (ER). Somatic mutations of CALR frequently
consist of deletions/insertions in exon 9, and generate a
frameshift to a unique alternative reading frame resulting
in a novel amino-acid sequence of C-terminal domain.
Moreover, the mutated protein lacks the KDEL signal,
which results in partial dislocation of CALR from the ER8.
Recently, two different groups demonstrated that mutant
CALR activates the JAK2 pathway through its association
with MPL15,16 and induces thrombocytosis in a retroviral
mouse model17. Unlike JAK2V617F transformed hema-
topoietic cells, PI3-K signaling seems to be less activated
in CALR-mutated cells15, suggesting that a different
activation of accessory signaling pathways could justify
the differences in clinical features observed in CALR
mutated patients.
In order to identify pathways deregulated by mutant

CALR proteins in hematopoietic progenitors and unveil
the molecular basis underlying the different clinical fea-
tures of CALR-mutated ET patients, in this study we
assessed gene (GEP) and miRNA expression profiles
(miEP) in CD34+ cells from CALR-mutated ET patients
and JAK2V617F-positive PV and ET subjects. Moreover,
in order to predict deregulated mRNA–miRNA interac-
tions involved in the disease pathogenesis and potentially
affecting the clinical phenotype, we performed GEP and
miEP integrative analysis.
Data analysis showed the differential activation of sev-

eral signaling pathways, which could at least in part justify
the distinct clinical features and outcomes of CALR-
mutated and JAK2V617F-positive patients.

Subjects and methods
Patients and samples
Analysis was performed in a cohort of 50 patients

diagnosed with PV (n= 26), or ET (n= 24) according to
the World Health Organization (WHO)2,18. Their char-
acteristics are reported in Table 1. PV and ET CD34+
cells were obtained from bone marrow (BM), as well as 15
controls from healthy donors (BM CTRs). All subjects
provided informed written consent, and the study was
performed under the local Institutional Review Board’s
approved protocol. The study was conducted in accor-
dance with the Declaration of Helsinki.
The presence of the JAK2V617F mutation and the allele

burden were determined via quantitative reverse tran-
scription polymerase chain reaction (qRT-PCR), as pre-
viously described19. ET patients were further evaluated for
MPL exon 10 and CALR exon 9 mutations using the
Sanger technique14.

GEP and miEP profiles and microarray data analysis
GEP and miEP were performed on the same RNA

preparation using the Affymetrix technology (HG-U219
Array Strip and miRNA 2.0 array) as previously
described20.
Differentially expressed genes (DEGs) and miRNAs

(DEMs) were selected following a supervised approach by
means of the analysis of variance module included in the
Partek GS package. In particular, we considered as dif-
ferentially expressed all the transcripts with a fold change
contrast (FC) ≥1.5 and a false discovery rate (FDR)
(q-value) < .05 in the pairwise comparisons. Down-
regulated genes/miRNAs in CALR-mutated samples are
decreased vs. PV, JAK2V617F-positive ET and BM CTRs,
as well as upregulated genes/miRNAs in CALR-mutated
cells are increased vs. PV, JAK2V617F-positive ET and
BM CTRs.
Functional analysis on microarray data was performed

using ingenuity pathway analysis (IPA, version 01-08;

Table 1 Clinical characteristics of PV and ET patients

JAK2V617F CALR-mutated

PV ET ET

No. 26 17 7

Sex (male/female) 10/16 (38%/62%) 5/12 (29%/71%) 6/1 (86%/14%)

Age at onset, years, median (range) 57 (40–77) 61 (37–72) 37 (26–72)

Hemoglobin, g/dL, median (range) 18.4 (14.3–25.1) 14.6 (11.9–18.1) 13.7 (10.6–16.2)

PLT count, X109/L, median (range) 460 (210–902) 677 (481–1168) 979 (632–1400)

WBC count, X109/L, median (range) 9.7 (6.1–89.7) 8.7 (5.9–18.2) 8.1 (5.1–10.4)

Thrombosis at diagnosis, no. (%) 7 (27) 3 (18) 0 (0)
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Ingenuity Systems; Redwood City, CA, http://www.
ingenuity.com). In order to identify regulating genes
that could explain the gene expression changes in CALR-
mutated ET patients, we performed IPA’s upstream reg-
ulator analysis that is able to predict the activation state of
upstream transcriptional regulators based on expression
of their known targets. Moreover, in order to find reliable
miRNA-target interactions, we performed the integrative
analysis of GEP and miEP data by using IPA’s MicroRNA
Target Filter20.
In order to better compare GEP from PV and ET, gene

set enrichment analysis (GSEA) was performed21. The
detailed protocol for GSEA (v2.0.13; Broad Institute,
Cambridge, USA) is available on the Broad Institute Gene
Set Enrichment Analysis website (http://www.broad.mit.
edu/gsea). The number of permutations was set to 1000.

Results
Gene and miRNA expression profiles of CD34+ cells from
PV and ET patients according to CALR and JAK2 mutations
We performed gene and miRNA expression profiling in

CD34+ cells from 26 PV and 24 ET patients. The clinical
features of the 50 MPN patients enrolled in the study are
shown in Table 1. Among the 24 ET patients, CALR
mutations were detected in 7 (29%), JAK2V617F in 17
(71%), whereas all PV patients (100%) were JAK2V617F
positive. As a control, 15 BM samples from healthy
donors were included.
The unsupervised analysis of GEP and miEP data set

through the principal component analysis (PCA, Fig. 1a)
shows that that PV and ET samples cluster together and
are clearly separated from BM CTRs (Supplementary
Fig. 1A, B). According to PCA results, GSEA shows that
the most of DEGs in PV or ET samples vs. BM CTRs is
shared between the two diseases (Supplementary Fig. 1C,
F). Therefore, neither GEP nor miEP could distinguish
between PV and ET CD34+ samples.
Noteworthy, PCA performed on both GEP and miEP

data (Fig. 1a, b) shows that JAK2V617F-positive ET and
PV samples are grouped together, while the CALR-

mutated samples are clearly separated from PV,
JAK2V617F-positive ET and BM CTR clusters.
Therefore, in order to study the differences in gene

expression according to different driver mutations, we
compared GEP and miEP of CD34+ cells from CALR-
mutated vs. JAK2V617F-positive ET and PV patients. We
found 2040 coding transcripts and 488 miRNAs differ-
entially expressed between CALR-mutated vs.
JAK2V617F-positive ET CD34+ cells, which can distin-
guish ET patients based on their mutational status
(Fig. 1c, d, Supplementary Tables 1 and 2), while we were
unable to identify any modulated genes in the pairwise
comparison between PV and JAK2V617F-positive ET
samples. All microarray data were submitted to the Gene
Expression Omnibus repository (GEO; http://www.ncbi.
nlm.nih.gov/geo, series GSE103176 and GSE53482).

ET CALR-mutated CD34+ cells show a different expression
pattern of signal transducers involved in mTOR, MAPK, and
PI3K pathways
The IPA functional analysis of modulated transcripts

between ET CALR-mutated and JAK2V617F-positive
CD34+ cells unveiled differentially activated pathways,
such as “mTOR signaling”, “MAPK signaling”, “Role of
BRCA1 in DNA damage response”, “ATM signaling”,
“Endoplasmic Reticulum stress pathway”, “Protein ubi-
quitination pathway”, “RhoA signaling,” and “Thrombin
signaling” (Fig. 1e). Of note, mTOR signaling appears to
be inhibited in CALR-mutated ET patients, as demon-
strated by the downregulation of the mTOR2 complex
subunit RICTOR, and of several upstream and down-
stream factors (i.e., PDK1, PHIP, RHEB, PP2A, and
RPS6KB1) (Fig. 2a). Similarly, we discovered a reduced
expression of several signal transducers involved in
MAPK and PI3K/AKT pathways (i.e., KRAS, SOS1,
MAPK14, PI3KCA, PI3KR1, SHP2) in CALR-mutated ET
samples (Fig. 2b).
In order to predict potentially deregulated

mRNA–miRNA interactions, we performed integrative
analysis of GEP and miEP by IPA’s miRNA Target Filter.

(see figure on next page)
Fig. 1 Gene and miRNA expression profiles of PV and ET CD34+ cells according to JAK2 and CALR mutational status. a, b Principal
component analysis (PCA) on gene and miRNA expression microarray data. The unsupervised PCA analysis on global gene expression a and miRNA
expression data b were computed using Partek GS, version 6.6. BM control samples are shown as red spheres; PV samples are shown in green;
JAK2V617F-positive ET samples are shown in blue; CALR-mutated ET samples are shown in orange; c, d The heat maps were computed on the gene
list of DEG c and DEM d (provided in Supplementary Tables 1 and 2, respectively) using the clustering algorithm included in the Partek GS package
by means of euclidean distance and average linkage. Gene coloring is based on normalized signals, as shown on the left; green indicates reduced
expression, red increased expression in the pairwise comparison CALR-mutated vs. JAK2V617F-positive ET. CALR-mutated ET groups clustered
separately in the dendrogram shown at the top of the heat map. e Ingenuity pathway analysis (IPA) of modulated genes in CALR-mutated ET vs.
JAK2V617F-positive ET. The graph shows the most highly represented canonical pathways in the list of DEG and their overlapping connections
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Fig. 1 (See legend on previous page.)
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Fig. 2 IPA canonical pathways and upstream regulator analysis of DEG in CALR-mutated vs. JAK2V617F-positive ET. a, b IPA canonical
pathways more represented in the list of DEG a mTOR signaling; b MAPK/PI3K signaling. The networks also show the predicted mRNA–miRNA
interactions identified by IPA’s miRNA Target Filter. Green and red colors indicate genes/miRNA down- and upregulated, respectively, in the pairwise
comparison CALR-mutated vs. JAK2V617F-positive ET c IPA upstream regulator analysis indicated the inhibition of MYC activity predicted by the
decreased expression of its targets. Green colors indicate genes downregulated in the pairwise comparison CALR-mutated vs. JAK2V617F-positive ET.
The blue lines display the inhibitory effect of proteins, which was confirmed by IPA Knowledge database. The gray lines indicate that the protein
interactions lacked literature support to predict the activation effect. Solid lines: direct interactions; dashed lines: indirect interactions; d The
histogram shows the differential expression of genes involved in cell cycle regulation and DNA replication between CALR-mutated vs. JAK2V617F-
positive samples. The green block indicates a decreased expression, while the red block indicates an increased expression in the pairwise comparison
CALR-mutated vs. JAK2V617F-positive ET
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In particular, we selected DEM-DEG pairs with an anti-
correlated expression pattern; among the modulated
probesets in CALR-mutated vs. JAK2V617F-positive
samples, we identified 34 DEMs that have at least one
anti-correlated target among DEGs, whereas 720 DEGs
have at least one targeting DEM showing an anti-
correlated expression. Therefore, 1387 anti-correlated
miRNA-target pairs were identified. Table 2 shows the
miRNAs with the highest number of predicted targets.
As shown in Fig. 2a, b, the upregulation of several

miRNAs (i.e., miR-326, miR-376c-3p, miR-19a-3p, miR-
30e-5p, miR-21-5p, miR-152-3p, miR-503-5p) in CALR-
mutated cells could cause the downregulation of mTOR/
MAPK/PI3K signaling by targeting some pathway trans-
ducers. Among those, miR-152-3p is described as tar-
geting mTOR, PI3K, and MAPK pathways in solid
tumors22–24, whereas miR-503-5p, and miR-29c-3p were
identified as PI3K signaling regulators in lung and bladder
cancer, respectively25,26. Of note, miR-326 has been
already described as regulator of MAPK pathway trans-
ducers in gliomas27. Moreover, the miR-326 upregulation
could be probably ascribed to PI3K inhibition, as already
reported in glioblastomas28.
Furthermore, several co-activators (i.e., ATAD2, NMI,

MYCBP2) and target genes of MYC are downregulated. In
fact, IPA upstream regulator analysis showed that MYC
activity is lower in CALR-mutated vs. JAK2V617F-
positive ET, based on the decreased expression of its
known targets (Fig. 2c). Accordingly, we highlighted a
decreased expression of cell cycle kinase CDK6 and of
several genes involved in cell proliferation and DNA
replication (i.e., MKI67, RFC1, BBX, DBF4, CDC7), as well
as the upregulation of the cell cycle inhibitor CDKN1C in
CALR-mutated patients (Fig. 2d).
Moreover, DNA repair process seems to be less acti-

vated in CALR-mutated cells. In fact, genes involved in
BRCA1-driven DNA damage response and ATM signal-
ing, as well as in DNA repair mechanisms (i.e., SMC,
MSH, and RAD genes, SFR1, RB1, MRE11A, FAM175) are
downregulated in CALR-mutated patients (Fig. 3). As
showed in Fig. 3a, b, the upregulation of miR-30e-5p,
miR-19a-3p, miR-224-5p, miR-503-5p, miR-301a, miR-
21-5p, and miR-4310 could justify the reduced expression
of DNA repair genes. Interestingly, miR-19a-3p has been
already described as regulator of BARD1 expression in
acute myeloid leukemia cells29.

CALR-mutated CD34+ cells show a different expression of
CSNK1A1, chromatin remodelers, sister chromatid
cohesins, and splicing factors
Among DEGs in CALR-mutated ET CD34+ cells, we

underlined the downregulation of CSNK1A1 (Fig. 4a) that
has been reported as favoring the clonal expansion of
CD34+ progenitors30. CSNK1A1 downregulation could

be ascribed to the increased expression of miR-939 and
miR-30e-5p in CALR-mutated cells.
Interestingly, CALR-mutated cells show the decreased

expression of several epigenetic regulators (i.e., EZH2,
SUZ12, DNMT1, SETD2, MLL3, ARID4A, ARID4B,
SETDB2), sister chromatid cohesins (i.e., SMC1A, SMC3,
RAD21, STAG2), and splicing factors (i.e., SF3B1, SRSF1,
ZFR), some of which were already described as mutated or
inactivated in myeloid malignancies (Fig. 4b–d)31–38. As
shown in Supplementary Fig. 2A, the IA identified miR-
30e-5p, miR-301a-3p, miR-376c-3p, miR-152-3p, miR-
19a-3p, miR-362-5p, and miR-29c-3p as key regulators of
chromatin remodeling factors. The decreased expression
of cohesins could be ascribed to miR-21-5p, miR-29c-3p,
and miR-501-3p overexpression, whereas miR-301a-3p,
miR-19a-3p, miR-30e-5p, miR-432-5p, and miR-433-3p
might modulate the expression of splicing factors (Sup-
plementary Fig. 2B, C).
Moreover, CALR-mutated cells exhibit the down-

regulation of several genes involved in protein ubiquiti-
nation (i.e., UBE2J1, UBE2V2, UBE3A, UCHL5, and USPs)
and in Endoplasmic Reticulum stress (i.e., PERK1, GRP94,
and EIF2S1) (data not shown).
As regards the expression of genes regulating cell dif-

ferentiation, we found a decreased expression of several
erythroid transcription factors (i.e., ZNF148, ZNF268,
TWSG1, PDCD4, BCL11A, MBNL1, UFL1) in CALR-
mutated cells (Fig. 5a). Of note, consistently with their
role in erythropoiesis, we highlighted a direct correlation
between TWSG1, ZNF148, or PDCD4 expression and Hb

Table 2 Differentially expressed miRNA with the highest
number of targets

miRNA Number of targets

miR-30e-5p 131

miR-19a-3p 119

miR-301a-3p 111

miR-152-3p 104

miR-29c-3p 79

miR-140-5p 61

miR-21-5p 59

miR-376c-3p 58

miR-433-3p 51

miR-503-5p 49

miR-134-5p 48

miR-4310 45

miR-362-5p 45

miR-24-2-5p 44

miR-501-3p 43
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level (r= 0.34, r= 0.31, r= 0.32, respectively) (Supple-
mentary Table 3).
Moreover, the upregulation of megakaryocyte (MK)

transcription factors and markers (i.e., MAF, PLK3,
WIPF1)39 as well as the downregulation of inhibitors of
MK commitment (i.e., IFNAR1, PTEN, SOCS6)40–42, could
suggest that CALR-mutated CD34+ cells display the

susceptibility to differentiate toward MK rather than
erythroid lineage (Fig. 5a). In this regard, a positive cor-
relation between PLK3 or WIPF1 expression levels and
PLT count (r= 0.48, r= 0.40, respectively) was found.
Consistently, we unveiled a negative correlation between
PTEN, IFNAR1, SOCS6, or ZNF148 expression and PLT
count (r=−0.41, r=−0.41, r=−0.39, r=−0.52,

Fig. 3 DNA repair pathways in CALR-mutated vs. JAK2V617F-positive ET. a, b IPA canonical pathways highly represented in the list of DEG
a BRCA1 in the DNA damage response; b ATM signaling. The networks also show the predicted mRNA–miRNA interactions identified by IPA’s miRNA
Target Filter. Green and red colors indicate genes/miRNA down- and upregulated, respectively, in the pairwise comparison CALR-mutated vs.
JAK2V617F-positive ET. c The histogram shows the differential expression between CALR-mutated vs. JAK2V617F-positive samples of genes involved
in DNA repair. The green block indicates a decreased expression, while the red block indicates an increased expression in the pairwise comparison
CALR-mutated vs. JAK2V617F-positive ET
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Fig. 4 Deregulated expression of CSNK1A1, chromatin remodeling, cohesin complex, and splicing factors in CALR-mutated ET. a Box plot
shows the decreased expression level of CSNK1A1 in CALR-mutated ET. The lower part of the panel shows the overexpression of two miRNAs
targeting CSNK1A1. Green and red colors indicate genes/miRNA down- and upregulated, respectively, in the pairwise comparison CALR-mutated vs.
JAK2V617F-positive ET. b–d The histograms show the differential expression between CALR-mutated vs. JAK2V617F-positive samples of genes
involved in b chromatin remodeling c cohesin complex d splicing factors. The green block indicates a decreased expression in the pairwise
comparison CALR-mutated vs. JAK2V617F-positive ET
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respectively) (Supplementary Table 3). As shown in
Fig. 5b, the upregulation of miR-21-5p, miR-19a-3p, miR-
301a-3p, miR-503-5p, miR-307-3p, and miR-134-5p
might lead to the downregulation of erythroid positive
regulators (PCDC4, MBNL1, ZNF268) and MK inhibitors
(SOCS6, PTEN, IFNAR1). Of note, the role of miR-503-5p
in erythrocyte lineage expansion has been already
described43.

CALR-mutated cells display a reduced expression of genes
related to platelet activation
Gene expression analysis highlighted the down-

modulation of several proteins involved in thrombin and
RhoA signaling (i.e., ROCK1, ROCK2, PPP1R12A,
IQGAP2, RAPGEF6, and PIP5K), which regulate the pla-
telet activation and aggregation (i.e., WASF2, ACTR2,
RDX), in CALR-mutated patients (Fig. 6a). Moreover, we
observed the reduced expression of some regulators of
platelet storage and degranulation (i.e., DNML1, RAB27A,
and BLOC1S6). Among the miRNAs predicted as mod-
ulators of thrombin and RhoA signaling, we underlined
the upregulation of miR-376c-3p, which has been already
described as involved in platelet activation44. Of note,
mir-19a-3p was previously described as decreased in
peripheral blood cells following acute ischemic stroke45.
Finally, CALR-mutated CD34+ cells showed higher

expression level of thrombomodulin (THBD), an anti-
thrombotic factor expressed by endothelial and hemato-
poietic stem/progenitor cells (Fig. 6b)46.

Discussion
Somatic mutations in the CALR gene have been found

in 50–70% of JAK2 and MPL wild-type MPN patients8,9.
Recently, the molecular mechanisms underlying the
pathogenetic role of CALR mutated proteins have been
unveiled, demonstrating that CALR mutants activates
MPL receptor, thus inducing the JAK-STAT activation as
well as in JAK2- and MPL-mutated cells15–17.
However, as already suggested13, CALR-mutated ET

show clinical features different from JAKV617F-positive
ET and might be considered as a distinct disease entity
from JAK2V617F-positive ET; in fact, CALR-mutated ET
patients present a higher PLT count coupled with a lower
thrombotic risk if compared to JAK2V617F-positive ET
patients10,13,14.
According to these observations, unsupervised analysis

performed on GEP and miEP data shows that CALR-
mutated ET samples are clearly separated from both
JAK2V617F-positive ET and PV groups, which instead
cluster together. Supervised data analysis shows the dif-
ferential expression of 2040 genes and 488 miRNAs dis-
tinguishing ET patients based on their mutational status;
on the contrary, we were unable to identify any modulated
genes or miRNAs in the pairwise comparison between PV

Fig. 5 Differential expression of erythroid and megakaryocyte
regulators in CALR-mutated vs. JAK2V617F-positive ET. a The
histogram shows the differential expression between CALR-mutated
vs. JAK2V617F-positive samples of erythroid and megakaryocyte
regulators and markers. The green block indicates a decreased
expression, while the red block indicates an increased expression in
the pairwise comparison CALR-mutated vs. JAK2V617F-positive ET. b
Regulatory networks showing the predicted mRNA–miRNA
interactions identified by IPA’s miRNA Target Filter. Green and red
colors indicate genes/miRNA down- and upregulated, respectively, in
the pairwise comparison CALR-mutated vs. JAK2V617F-positive ET
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and JAK2V617F-positive ET samples. This evidence
supports the hypothesis suggested by Campbell et al.47

that ET and PV JAK2V617F-positive are distinct phases of
the same disease that exhibits two different phenotypes.
The functional analysis of modulated transcripts

unveiled several pathways differentially activated between
JAK2V617F- and CALR-mutated progenitor cells. For
instance, the expression of mTOR transducers (e.g.,
RICTOR) is decreased in CALR-mutated samples. RIC-
TOR is a key component of mTORC2 complex, which
plays a relevant role in leukemic cell proliferation48.

Interestingly, RICTOR deletion prevents leukemogenesis
in (PTEN)-deficient mouse model showing prolonged
lifespan, suggesting that mTORC2 downregulation might
partly explain the more indolent phenotype of CALR-
mutated ET patients49.
Similarly, MAPK and PI3K pathways seem to be less

activated in CALR-mutated ET: these data are consistent
with the results obtained by Chachoua et al.15, which have
shown that there is a strong synergy between JAK2 and
PI3-K inhibitors in restraining the cytokine-independent
proliferation of JAK2V617F-positive cells, unlike what

Fig. 6 Differential expression of genes involved in platelet activation in CALR-mutated vs. JAK2V617F-positive ET. a Thrombin and RhoA signaling in
CALR-mutated vs. JAK2V617F-positive ET. The network also shows the predicted mRNA–miRNA interactions identified by IPA’s miRNA Target Filter.
Green and red colors indicate genes/miRNA down- and upregulated, respectively, in the pairwise comparison CALR-mutated vs. JAK2V617F-positive
ET. b Box plot shows the increased expression level of THBD in CALR-mutated ET samples
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occurs in the CALR-mutated cells. According to MAPK
and PI3K signaling inhibition, MYC activity appears
decreased as demonstrated by the huge downregulation of
its transcriptional targets. In addition, we observed a
strong downregulation of several proteins involved in cell
cycle control and DNA replication. These evidences
suggest that CALR-mutated progenitors are less pro-
liferating compared to their JAK2V617F-positive
counterparts.
Our result show that CALR mutant protein could affect

signaling pathways other than JAK-STAT; for instance,
the decreased expression of CSNK1A1 in CALR-mutated
samples might favor the initial clonal expansion of
CD34+ progenitors in ET patients30. Moreover, the
downregulation of DNA repair pathways mediated by
BRCA1 and ATM could suggest the impairment of DNA
damage response as new pathogenetic mechanism of
CALR-mutant proteins.
Similarly, the downregulation of epigenetic reg-

ulators31–36, cohesins37, and splicing factors38, which are
frequently mutated or inactivated in several myeloid
malignancies, could be involved in the pathogenesis of
CALR-mutated disease. Furthermore, CALR mutations
seem to impair essential cellular function as protein ubi-
quitination and ER stress response. The downregulation
of genes related to “ER stress response” coupled to partial
dislocation from the ER of mutant CALR lacking the
KDEL signal8, suggests an inefficient response to
unfolded protein accumulation in CALR-mutated cells as
an additional pathogenetic mechanism (Salati S. et al.,
submitted).
The recent discovery of physical interaction between

CALR-mutated protein and MPL receptor16 has definitely
explained the link concerning CALR mutations and
megakaryocytopoiesis. However, the increased of MK
commitment regulator as MAF39 coupled to decreased of
MK differentiation inhibitors, like IFNAR1, PTEN and
SOCS640–42 could favor the higher PLT count in CALR-
mutated subjects compared to JAK2V617F-positive ET
patients. According to this hypothesis, our data disclosed
a negative correlation between PTEN, IFNAR1, or SOCS6
expression levels and PLT count. In particular, as
described by Zhang et al.41, the simultaneous down-
regulation of PTEN and MYC signaling in CALR-mutated
MPN patients might favor the switch from granulocyte-
to MK- commitment. Moreover, we highlighted the
increased level of PLK3 that was already described as
having a pivotal role in megakaryocyte polyploidization
and differentiation and that might justify the higher
number of PLT in CALR-mutated patients50. Con-
sistently, a positive correlation between PLK3 expression
level and PLT count was found.
We also unveiled a direct correlation between the

hemoglobin level and the expression of some erythroid

positive regulators, which are decreased in CALR-
mutated patients. Therefore, CALR mutant proteins
could affect the expression of several erythroid and MK
differentiation-related genes, then contributing to lineage
fate decision of CALR-mutated CD34+ cells.
As for reduced thrombotic risk in ET CALR-mutated

patients, we uncovered the down-modulation of several
proteins involved in thrombin and RhoA signaling.
Moreover, several genes involved in platelet activation,
aggregation, and degranulation are decreased in CALR-
mutated progenitors, while the anti-thrombotic factor
THBD is upregulated. These data are consistent with the
results obtained by Torregrosa et al.51, showing a reduced
platelet activation in CALR-mutated ET patients com-
pared to JAK2V617F-positive ET subjects. Overall, these
observations could explain the low thrombotic risk in
CALR-mutated patients, even though they have a higher
PLT count as compared to JAK2V617F-positive patients.
Finally, by means of integrated analysis of GEP and

miEP, we identified several miRNA–mRNA interactions,
which could represent novel pathogenetic mechanisms
mediated by CALR mutations and could affect the
patient’s clinical phenotype. In particular, we unveiled the
upregulation of several miRNAs (e.g., miR-30e-5p, miR-
19a-3p, miR-301a-3p, miR-152-3p, miR-29c-3p, miR-21-
5p, miR-503-5p, miR-376c-3p), which are involved in the
inhibition of mTOR/MAPK/PI3K signaling, DNA damage
response, chromatin remodeling, alternative spicing, and
PLT activation.
As a whole, this study suggests that the molecular

characterization of CD34+ cells from CALR-mutated and
JAK2V617F-positive ET patients, could shed light on the
signaling pathways deregulated in CALR-mutated
patients and elucidate their contribution to typical fea-
tures of these patients, such as high platelet count and low
thrombotic risk.
Overall, this study supports the pathogenetic model in

which JAK2V617F-positive ET and PV could be con-
sidered as different phenotypes or phases of a single MPN
characterized by JAK2 mutation47, whereas CALR-
mutated ET seems to be a distinct entity both at clin-
ical13 and at molecular level.
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