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Quantitative systems pharmacology modeling of HER2-
positive metastatic breast cancer for translational efficacy
evaluation and combination assessment across therapeutic
modalities
Ya-ting Zhou1, Jia-hui Chu1, Shu-han Zhao2, Ge-li Li3,4, Zi-yi Fu5, Su-jie Zhang4, Xue-hu Gao4,6, Wen Ma4, Kai Shen6, Yuan Gao7, Wei Li1,
Yong-mei Yin1✉ and Chen Zhao1,4✉

HER2-positive (HER2+) metastatic breast cancer (mBC) is highly aggressive and a major threat to human health. Despite the
significant improvement in patients’ prognosis given the drug development efforts during the past several decades, many clinical
questions still remain to be addressed such as efficacy when combining different therapeutic modalities, best treatment sequences,
interindividual variability as well as resistance and potential coping strategies. To better answer these questions, we developed a
mechanistic quantitative systems pharmacology model of the pathophysiology of HER2+ mBC that was extensively calibrated and
validated against multiscale data to quantitatively predict and characterize the signal transduction and preclinical tumor growth
kinetics under different therapeutic interventions. Focusing on the second-line treatment for HER2+ mBC, e.g., antibody-drug
conjugates (ADC), small molecule inhibitors/TKI and chemotherapy, the model accurately predicted the efficacy of various drug
combinations and dosing regimens at the in vitro and in vivo levels. Sensitivity analyses and subsequent heterogeneous phenotype
simulations revealed important insights into the design of new drug combinations to effectively overcome various resistance
scenarios in HER2+ mBC treatments. In addition, the model predicted a better efficacy of the new TKI plus ADC combination which
can potentially reduce drug dosage and toxicity, while it also shed light on the optimal treatment ordering of ADC versus TKI plus
capecitabine regimens, and these findings were validated by new in vivo experiments. Our model is the first that mechanistically
integrates multiple key drug modalities in HER2+ mBC research and it can serve as a high-throughput computational platform to
guide future model-informed drug development and clinical translation.
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INTRODUCTION
Approximately 15% to 20% of breast cancer patients have
significant overexpression of human epidermal growth factor
receptor 2 (HER2), and these patients are reported to be associated
with aggressive tumor growth and poor prognosis [1, 2]. Over the
past 25 years, advances in HER2-targeted therapies have dramati-
cally improved the outcomes of patients with HER2+ metastatic
breast cancer [1]. Among these, monoclonal antibodies (mAb) such
as trastuzumab and pertuzumab, small molecule tyrosine kinase
inhibitors (TKI) such as lapatinib and pyrotinib, and antibody-drug
conjugates (ADC) such as trastuzumab emtansine (T-DM1) and
trastuzumab deruxtecan (T-DXd), are the three main therapeutic
modalities for HER2+ mBC. The current first-line treatment
according to NCCN is dual HER2 blockade with trastuzumab and

pertuzumab combined with chemotherapy [3], followed by HER2
ADCs (T-DXd or T-DM1) as second-line based on the results of the
DB-03 [4] and EMILIA studies [5]. In China, pyrotinib (an irreversible
pan-ErbB TKI) in combination with capecitabine is currently
recommended as a preferred option for second-line treatment
according to the PHOEBE study [6]. Despite these achievements,
there are still many issues to be addressed in treating HER2+ mBC,
such as the potential of new drug combinations, feasibility of new
dosing regimens, various mechanisms of resistance, as well as
clinical value of new emerging drug targets. Therefore, drug
research and development are still in full swing in this field as
evidenced by the large number of clinical trials actively going on [7].
HER2 is a receptor tyrosine kinase that belongs to the epidermal

growth factor receptor family (ErbB family). This family comprises
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four members, including EGFR (HER1/ErbB1), HER2 (ErbB2/neu),
HER3 (ErbB3) and HER4 (ErbB4). They each consist of an
extracellular ligand-binding domain, a transmembrane domain
and an intracellular tyrosine kinase catalytic domain [8]. The
ligands for ErbB receptors include epidermal growth factor (EGF),
amphiregulin (AR) and betacellulin (BTC) which mainly bind to
EGFR, and neuregulin1 (NRG1, also called heregulin), which mainly
binds to HER3 and HER4 [9]. Ligand binding to the extracellular
domain induces a conformational change that allows homo- or
heterodimerization and subsequent transphosphorylation [10].
Notably, HER2 has no known ligand [11], whereas HER3 is
defective in tyrosine kinase activity [12] so that HER3 homodimer
is nonfunctional. Phosphorylated receptors then activate down-
stream signaling pathways such as Ras/MAPK, PI3K/AKT, PLC-γ and
STAT [10], which regulate cellular processes under normal
conditions but are associated with uncontrolled cellular activities
due to aberrant ErbB signaling when receptors are overexpressed,
ultimately leading to tumorigenesis and tumor growth [13].
HER2+ BC is one such example. Overexpression of HER2 biases
dimer formation toward HER2-containing homo- and heterodi-
mers (particularly HER2/HER2 and HER2/HER3 complexes) [14],
resulting in constitutive activation of downstream pathways in a
ligand-independent manner [15, 16]. In addition, HER2 hetero-
dimers can also be activated in ligand-dependent manners during
EGF and NRG1 stimulation [13]. In the two major downstream
pathways PI3K/AKT and Ras/MAPK, multiple feedback regulatory
mechanisms are also implicated in dynamically driving the pro-
tumorigenic ErbB network. For example, in the HER2-HER3 axis,
inhibition of HER2 results in decreased AKT activation which can
upregulate HER3 production through enhanced FOXO3a tran-
scriptional activity, and this may compensate pro-survival signal-
ing and is a reason for the failure of HER2-targeted therapies
[17, 18]. Due to the complexity of ErbB network and multifaceted
features of HER2+ BC, exploring combination therapy is an
important direction of current research. Therapeutic potential of
combinations between HER2-targered therapies (e.g., ADC and
TKI) [19, 20] or with agents of other mechanisms of action such as
inhibitors of PI3K [21], ERK [22], and immunotherapy [23] is being
actively investigated with many combinations already in clinical
trials.
Since the ErbB signaling system is a highly complex dynamic

network and plays an important role in breast cancer, mechanistic
modeling will help us better understand the system and guide
more effective therapeutic designs. Birtwistle et al. developed a
model describing the short-term activation of ERK and AKT in
MCF-7 breast cancer cells and used the model to explain
differential effects of ERK inhibition [24]. Another work by
Schoeberl et al. contains a pool of ErbB ligands and through
model sensitivity analysis they identified HER3 as the most critical
node affecting AKT signaling [25]. Vaidya et al. constructed a PK/
PD model focusing on the PI3K/AKT pathway to evaluate the
cytotoxicity of a specific triple combination therapy against JIMT-1,
a HER2-therapy-resistant cell line [26]. The above works uniquely
demonstrated the advantage of using computational models in
deciphering disease-driving mechanism and drug targets; how-
ever, regarding the treatments for HER2+ mBC, the latest
therapeutics (e.g., HER2-ADC, pyrotinib) have not been considered
nor their mechanisms included, which means that a gap still exists
for model-informed translation. Thus, we here developed a new
mechanistic quantitative systems pharmacology model that
integrates ErbB signaling networks in HER2+ BC cells, pharmaco-
kinetics of different state-of-the-art drug modalities, as well as
mechanisms of drug-induced cellular perturbations and tumor
growth to facilitate drug development and translation. This model
accurately reproduces a large set of in vitro cell signaling and
dose-viability data as well as in vivo antitumor efficacy data when
different drug modalities are administered in mouse xenografts.
The model predicted that compared to classic TKI plus

capecitabine, a novel combination of TKI plus ADC was more
effective in inducing tumor regression even at significantly lower
doses, and it also suggested that sequential administration of
HER2-ADC followed by TKI plus capecitabine would prolong
response duration compared to direct TKI plus capecitabine alone,
and both findings were validated by in vivo data. Through model
analysis we further identified NRG1-driven signaling compensa-
tion as a mechanism of TKI resistance, and the addition of HER3
antibodies could effectively reverse it. This model provides a
unique platform to simulate the potential therapeutic effects of
different drug combinations and regimens as well as identify
mechanisms of drug resistance and possible solutions, which lay
the foundation for subsequent virtual patient development and
clinical trial simulations in HER2+ mBC.

MATERIALS AND METHODS
Model formulation, parameter estimation and in silico
pathophysiological simulation
The model was constructed based on ordinary differential
equations (ODEs) using mass-action laws and Hill-type functions.
A total of up to sixty species and eighty reactions were included in
the system (including all PK components). Cellular biological
behaviors of the ErbB system were described mainly by mass-
action laws, from receptor-ligand binding to receptor dimeriza-
tion, phosphorylation and degradation, then to activation of
downstream signaling pathways, while signal transduction, feed-
back loop, and tumor growth were described by Hill functions.
Five clinically approved therapeutics including T-DM1, T-DXd,
lapatinib, pyrotinib and capecitabine were incorporated into the
model and their PK profiles were characterized using standard
ODE-based compartment models [27–29]. To characterize the
concentrations of drugs entering the tumor microenvironment,
we made a simplified assumption that drug exposures in the
tumor are proportional to that in the blood, as described by tumor
partition coefficients for TKIs and capecitabine. For the two ADCs,
we assumed that they could enter tumor microenvironment at a
constant rate from central compartment. Mechanisms of action of
two TKIs were modeled as inhibiting phosphorylation of their
target receptors and inducing receptor degradation, whereas T-
DM1, T-DXd and capecitabine were modeled as inducing
tumor death.
For model calibration at the cell level, we primarily used

experimental data from the SKBR3 breast cancer cell line. The
number of EGFR, HER2, HER3 and HER4 receptors per cell in SKBR3
is 150,000, 1,500,000, 40,000 and 2000 respectively as derived
from quantitative literature measurements [30–32]. Since HER2
can form homodimers or heterodimers with HER3 spontaneously
in the absence of any ligands, the model species will reach a
steady state and we use the steady-state concentrations as the
new initial condition. To evidence the generality of the model,
calibration procedures were also performed in other three cell
lines (BT-474, NCI-N87 and ZR-75-1 with HER2 IHC levels of 3+ , 2+
and 1+ , respectively [33–35]) by varying the initial amount of
HER2, the steady-state concentrations of the model species, and
parameters related to tumor cell growth (n13, km13) and death
(w15, km10, w14, n14 and km14), with the assumption that there
are 1.5 million HER2 receptors per cell in IHC 3+ , 0.5 million in 2+
and 0.1 million in 1+ cell lines as measured by previous in vitro
studies [30, 36]. Initial conditions of model species and parameter
values in different cell lines along with their descriptions are
summarized in Supplementary Table S1.
For in vivo translation of the model, tumor growth kinetics data

in SKBR3-derived mouse xenografts were primarily used. Baseline
in vivo tumor proliferation and death rates (umax and dmax) were
re-estimated using experimental data from lapatinib- and
pyrotinib-treated SKBR3 xenografts. For drug-induced in vivo cell
death, considering data availability, we used published data from
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KPL4 (a HER2+ BC cell line with IHC 3+ as well) xenografts whose
tumor growth curve in the control arm was consistent with that in
lapatinib- and pyrotinib-treated SKBR3 models (e.g., with the same
umax and dmax) to further estimate the parameter of
capecitabine-induced max stimulation of tumor cell death (w15).
T-DM1-treated tumor growth kinetics were also obtained from
KPL4 xenografts yet showing a slightly different growth trend in
the control group. Therefore, for this we recalibrated the basal
tumor proliferation and death rates (umax and dmax), estimated
the T-DM1-mediated max stimulation of tumor death parameter
(w14) on this basis and took this value for subsequent model
simulations. Similarly, tumor growth kinetics upon T-DXd treat-
ment in a HER2-overexpressing PDX model were used to estimate
T-DXd-induced max stimulation of tumor death parameter (w14).
Also, to evidence the generality of the model, we performed the
same in vitro to in vivo translation strategy in BT-474 (another
HER2 3+ BC cell line) xenografts. By correspondingly adjusting the
proliferation and death rates (umax and dmax) and parameters
related to drug-induced tumor cell death (w14, n14 and km14),
the model successfully and quantitatively captured all the time-
dependent tumor growth kinetics under lapatinib, pyrotinib and
T-DM1 treatments measured in BT-474 CDX mice. It should be
noted that the aforementioned parameters were simultaneously
fitted in the control and treatment groups. When comparing our
model simulations to in-house data obtained from mouse
experiments, we only adjusted umax to match the tumor growth
in the control group, and then tumor growth kinetics in all the
drug treatment groups were simulated without any further
parameter changes for model validation purposes.
The Bliss independence principle was applied to determine the

combination effect of two drugs using the equation Yab= Ya+
Yb− Ya * Yb, where Yab is the Bliss predicted combination effect
of drugs A and B at given doses and Ya/Yb denote the effects of
drug A/B alone at dose a/b respectively [37]. If the model
simulated effect at a certain dose pair of drug A and drug B is
greater than the Bliss predicted effect Yab, the drug combination
is regarded as having synergistic effects at that specific dose
combination.
ImageJ software (NIH, Bethesda, MD, USA) was used for Western

blot densitometry band quantification. For signal transduction and
drug intervention fittings, all values are relative protein expression
levels, either normalized to their respective maximum values or
normalized to their respective control condition. For cell viability
fittings, we added different concentrations of drugs to the model
for a certain period of time to simulate changes in total cell
amount, and then we normalized the resulting cell amount values
to the untreated conditions undergoing the same period of time
to obtain the simulated cell viability curves. All model reactions
were implemented in MATLAB Simbiology Toolbox (MathWorks,
Natick, MA, USA), and simulations and analyses were performed
using the ode15s solver. Parameter values were determined from
the experimental data and published models (e.g., association/
dissociation rates, receptor half-lives) as well as from data fitting.
For parameter estimation and optimization, the patternsearch
function in global optimization toolbox was used. A summary of
all model species, parameters, reactions, and their descriptions,
along with a spreadsheet summarizing the data used for
calibration versus validation is provided in Supplementary
Table S1.

Global sensitivity analyses
The Partial rank correlation coefficient (PRCC) algorithm was
performed according to the methodology introduced by Marino
et al. [38]. For the algorithm settings, we used 5000 iterations with
Latin Hypercube Sampling for each input condition and parameter
value ranges were set to one-half to two-fold of their baseline in
the PRCC calculations. Tumor volume at day 20 (from day 0) was
the output of interest for all PRCC calculations. A total of six

different input conditions were analyzed, including no external
stimuli, NRG1 overexpression, lapatinib plus capecitabine, pyroti-
nib plus capecitabine, single agent T-DM1 and single agent T-DXd.
Parameters significantly correlated with the model output under
each condition (e.g., PRCC value greater than 0.05 or less than
−0.05 with statistical significance) were presented separately. To
verify the PRCC results, Sobol sensitivity analysis [39] was further
conducted under the conditions of no external stimuli, NRG1
overexpression, lapatinib plus capecitabine, and single T-DM1,
with the same set of parameters and model output as for PRCC.
Total-order Sobol indices of each parameter at the end of
simulation were computed and analyzed.

Uncertainty analysis
We selected a total of 20 top-ranked parameters from six runs of
sensitivity analyses mentioned above to perform parameter
uncertainty analysis. For that, the optimization datasets were
resampled 50 times based on numerical ranges defined by the
corresponding datapoint mean values and standard deviations or
standard errors that we collected (for datapoints with only mean
values available, we assumed that their standard deviations
equaled 10% of the mean values). The optimization algorithm
(as described above) was then performed using the 50 resampled
datasets to obtain 50 sets of new parameter estimates for the 20
parameters, and the parameter values were allowed to vary from
one-tenth to ten-fold of their baseline during bootstrapping. The
final readout of the uncertainty analysis is the relative value
distribution of the 20 selected parameters.

Cell line and chemical reagents
Human breast cancer cell line SKBR3 was obtained from American
Type Culture Collection (ATCC, Manassas, VA, USA) and cultured in
high-glucose Dulbecco’s modified Eagle’s medium (KGL1206-500,
KeyGEN, Nanjing, China) supplemented with 0.1 mg/mL strepto-
mycin, 100 IU/mL penicillin, and 10% fetal bovine serum (C04001-
500, Vivacell, Shanghai, China) at 37 °C and 5% CO2 humidified
environment. All the chemical reagents and antibodies used in
this study are listed in Table 1.

Western blot
SKBR3 cells were seeded in 12-well plates at a density of 3 × 105

cells per well, and allowed for attachment for 24 h. For dose
response, SKBR3 cells were treated with EGF protein (100 ng/mL)
and pyrotinib at different doses (0, 5, 10, 20, 40, 80 nmol/L)
simultaneously for 60 min. For NRG1 plus pyrotinib treatments,
cells were exposed to NRG1 protein (50 ng/mL) and pyrotinib (0, 5,
10, 20, 40, 80 nmol/L) at the same time for 60 min. For time course
analyses, cells were treated with pyrotinib (20 nmol/L) for 0, 1, 3, 6,
12, 24 h. Then, cells were washed with pre-cold PBS buffer
(KGL2206-500, KeyGEN, Nanjing, China) for three times, and then
lysed and harvested in RIPA lysis buffer (KGB5205-100, KeyGEN,
Nanjing, China) containing 50× protease and phosphatase
inhibitor cocktail (P1046, Beyotime, Shanghai, China). The super-
natants were collected after centrifugation at 12,000 × g at 4 °C for
10min. Protein concentration was determined using a BCA
protein quantification kit (E112-01, Vazyme, Nanjing, China).
Protein samples were mixed with 5× SDS loading buffer (G2013,
Servicebio, Wuhan, China) and heated at 100 °C for 10 min, and
then separated by 8% or 10% SDS-PAGE gel (E302, E303, Vazyme,
Nanjing, China) and transferred onto a pre-wetted polyvinylidene
fluoride membrane (Immobilon-P PVDF-Membrane, IPVH00010,
Merck Millipore, MA, USA) at low current overnight. The
membrane was sealed by 4% bovine serum albumin (BSA,
BS114, Biosharp, Hefei, China) at room temperature for 1 h and
incubated with primary antibodies at 4 °C overnight followed by
1 h incubation with secondary anti-rabbit IgG antibody. Signals
were detected with enhanced ECL reagents (E412, Vazyme,
Nanjing, China). GAPDH served as a loading control.
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Animal studies
A total of 1 × 107 SKBR3 cells in 100 μL PBS were injected
subcutaneously into the right mammary fat pads of the BALB/c
nude mice, respectively. When the tumor volume reached nearly 80
mm3, mice were randomly assigned into 5 treatment groups (n= 5
each): PBS (100 μL, oral gavage, d1–d14 and 100 μL, intravenous
injection, d1, d8), lapatinib (100mg/kg, oral gavage,
d1–d14)+ capecitabine (200mg/kg, oral gavage, d1–d14), T-DM1
(10mg/kg, intravenous injection, d1)+ pyrotinib (10mg/kg, oral
gavage, d1–d14), T-DM1 (10mg/kg, intravenous injection, d1)
followed by lapatinib (100mg/kg, oral gavage,
d8–d14)+ capecitabine (200mg/kg, oral gavage, d8–d14), lapatinib
(100mg/kg, oral gavage, d1–d7)+ capecitabine (200mg/kg, oral
gavage, d1–d7) followed by T-DM1 (10mg/kg, intravenous injec-
tion, d8). Tumor volumes were measured every three days with a
caliper and calculated using the formula [width2 × length]/2. At the
termination of the experiment (on d15), the mice were sacrificed
and the tumors were removed. The weight of each tumor was
recorded. The animal experiments were approved by the Scientific
and Ethical Committee of the Institute of Nanjing Medical University
(approval number IACUC-2311019). BALB/c nude mice (female, 4–5
weeks old) were bought from Zhejiang Vital River Laboratory
Animal Technology Co., Ltd (Zhejiang, China) and raised in Animal
Core Facility of Nanjing Medical University under specific pathogen-
free conditions (Temperature, 20–26 ˚C; humidity, 40%–60%; 12/12-
h light/dark cycle; free access to food and water). Animal studies
were performed strictly following the Guide for Care and Use of
Laboratory Animals of Nanjing Medical University.

RESULTS
Overview of the cancer cell model structure
The entire model comprises two parts, including a tumor cell
module and multiple pharmacokinetic (PK) modules for drugs
(Fig. 1). Based on current knowledge and understanding of
HER2+ BC proliferation and survival, we constructed a mathema-
tical model of intracellular signaling in HER2+ BC cells to
mechanistically explore its relationship with tumor growth. The
model incorporates all four ErbB receptors and their respective
ligands, with EGF for EGFR and NRG1 for HER3 and HER4. Ligand-
bound EGFR, HER3 and HER4 tend to form heterodimers with
HER2, as HER2 is the preferred dimerization partner when
overexpressed. HER2 can form homodimers in a ligand-
independent manner, and we also consider ligand-independent

formation of HER2/HER3 heterodimers [16]. Dimerized receptors
then undergo transphosphorylation, activating the downstream
PI3K/AKT and Raf/MAPK cascades. These signals are ultimately
integrated to regulate the growth of tumor cells. Other
compensatory pathways can also contribute to tumor growth in
certain contexts, for example BTK-C was identified as a survival
factor and was involved in NRG1-mediated drug resistance in
HER2+ BC cells [40]. Besides, feedback of HER3 which can further
attenuate the efficacy of pathway inhibitors, was also taken into
account [17].
T-DM1, T-DXd, lapatinib, pyrotinib and capecitabine are five

representative therapeutic agents (for ADC, TKI and chemotherapy)
in HER2+ mBC treatment, and their distinct mechanisms of action
are physically incorporated into the model. For T-DM1 and T-DXd,
when they reach a cell overexpressing HER2, they bind to HER2
and then undergo receptor-mediated endocytosis. After endocy-
tosis and lysosomal processing, the active payloads (DM1 and DXd,
respectively) are released into the cytosol where they exert
cytotoxic effects and lead to cell death [41]. Besides, the released
DM1 can be excreted from the cytosol since it is a substrate for
drug efflux pumps such as MDR1 but it cannot re-enter into the cell
[42], whereas the released DXd is highly membrane permeable and
it can penetrate across the cell freely [43]. For lapatinib and
pyrotinib, in addition to the classical mechanisms of inhibiting
receptor phosphorylation and thus downstream pathway activa-
tion [44], they can also promote receptor ubiquitination and
degradation [45]. The difference is that lapatinib mainly targets
EGFR and HER2, while pyrotinib can target EGFR, HER2 and HER4.
For capecitabine, it must be first metabolized to 5-FU to be
tumoricidal. Details of model mechanisms and reactions are
available in the Supplementary files.

Extensive model calibration/validation using cellular signaling and
viability data
Model calibration was performed using experimental data
measured in SKBR3, a HER2-overexpressing BC cell line with an
immunohistochemistry (IHC) level of 3+ [46]. Initial amounts of
four ErbB receptors were determined based on the quantitative
measurements in SKBR3 cells from literature [30–32]. Since HER2
can form homodimers or heterodimers with HER3 spontaneously
in the absence of ligands, the model species will reach a steady
state with baseline proliferative signaling on even when no
external stimuli are present. On this basis, different stimulus
conditions were then used as model inputs to generate a large

Table 1. Chemicals and antibodies used in this study.

List Chemical/antibodies Dilution Vendors (District) Catalog No.

Chemical EGF 100 ng/mL MCE (Shanghai, China) HY-P7109

(in vitro) Pyrotinib 5, 10, 20, 40, 80 nmol/L MCE (Shanghai, China) HY-104065

NRG1 50 ng/mL Cell Signaling (Danvers, MA, USA) 26941

Chemical Lapatinib as directed MCE (Shanghai, China) HY-50898

(in vivo) Capecitabine as directed MCE (Shanghai, China) HY-B0016

Pyrotinib as directed MCE (Shanghai, China) HY-104065

T-DM1 as directed MCE (Shanghai, China) HY-P9921

Antibodies HER2 1:1000 Abcam (Cambridge, UK) ab237715

HER3 1:1000 Proteintech (Wuhan, China) 10369-1-AP

pHER3 1:10,000 Abcam (Cambridge, UK) ab133443

pHER4 1:10,000 Abcam (Cambridge, UK) ab109273

pEGFR 1:400 Abcam (Cambridge, UK) ab223499

pERK 1:10,000 Abcam (Cambridge, UK) ab278538

Goat anti-rabbit IgG H&L (HRP) 1:50,000 Abcam (Cambridge, UK) ab205718

GAPDH 1:40,000 Proteintech (Wuhan, China) 10494-1-AP
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number of simulations that can describe all respective experi-
mental data simultaneously (a total of approximately 674
datapoints).
The first level of model calibration was to ensure that our model

can accurately reproduce cell signaling data under different ligand
stimulation (EGF and NRG1) and drug treatments (lapatinib and
pyrotinib) (Figs. 2, 3 and Supplementary Fig. S1). Simulations show
that EGF and NRG1 can induce time-dependent activation of
EGFR, HER3 and HER4 [47–49] (Fig. 2a–c), respectively, which in
turn induces activation of Raf/MAPK and PI3K/AKT pathways
[50–52] (Fig. 2d–h and Supplementary Fig. S1a, b, e, f). Lapatinib,
as an inhibitor of EGFR and HER2, can induce both time-
dependent and dose-dependent inhibition of EGFR, HER2 and

HER3 [48] (Fig. 2i–p), thus inhibiting the signaling of both
pathways [48] (Fig. 2q–v and Supplementary Fig. S1c, d, g, h).
Specifically, our model successfully reproduced the dose-response
profiles of phosphorylated receptors and key proteins under three
different lapatinib treatment conditions: simultaneous addition of
lapatinib and ligands, addition of ligands then followed by
lapatinib, and addition of lapatinib followed by ligands. When
treated alone, 100 nM of lapatinib was sufficient to inhibit the
entire pathway completely [48] (Fig. 2s, v). However, when
lapatinib was added simultaneously with or after NRG1, the
pathway network was still able to transmit signals even at a high
lapatinib concentration of 1000 nM [48] (Fig. 2r, u and Supple-
mentary Fig. S1g), suggesting that NRG1 is a factor that confers

Fig. 1 Diagram of the mechanistic model structure. a Tumor cell module. At the input level are four ErbB receptors and their respective
ligands. Ligand-receptor binding induces dimerization of receptors, activating downstream pathways and regulating cell growth.
Transcription factors such as FOXO mediate negative feedback of HER3. Five drugs with unique mechanisms of action are presented and
will lead to cell death through different cellular interactions within the system. The model can also simulate drugs for other targets, such as
HER3 antibodies, PI3K inhibitors, etc. b Pharmacokinetic modules of lapatinib, pyrotinib, T-DM1, T-DXd and capecitabine. Vc and Vp are central
and peripheral compartments for TKI (lapatinib, pyrotinib) or ADC (T-DM1, T-DXd). Vc* and Vp* are central and peripheral compartments for
payloads of ADC (DM1, DXd). V_cap and V_met are compartments for capecitabine and its metabolites (5’DFCR, 5’DFUR and 5-FU). The overall
figure is created by Figdraw and a more detailed model diagram with specific model species and reaction fluxes is shown in Supplementary
Fig. S9.
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resistance to HER2-targeted therapies via reactivation of down-
stream signaling [53]. In addition, we showed that NRG1 through
ligand-mediated receptor internalization and degradation can
downregulate total HER3 level [48] (Fig. 2w) while lapatinib can
upregulate total HER3 due to AKT-mediated feedback [48] (Fig. 2x).

For pyrotinib which is less studied, we conducted in vitro
experiments in SKBR3 cells to investigate its effect on cellular
signaling (Fig. 3). Our experimental results, which were also
quantitative reproduced by model simulations, suggest that
pyrotinib can mediate dose-dependent inhibition of the ErbB
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network at both the receptor (Fig. 3a–c and Supplementary
Fig. S1i) and intracellular levels (Fig. 3d, e and Supplementary
Fig. S1j). In addition, pyrotinib treatment induces significant
downregulation of total HER2 (Fig. 3f) but slightly induces HER3
(Fig. 3g), potentially due to the AKT-FOXO axis.
Next, we explored the effects of T-DM1, T-DXd, lapatinib,

pyrotinib and capecitabine on cell viability by linking signaling
pathways to tumor cell growth (Fig. 4). Based on their mechanisms
of action, lapatinib and pyrotinib indirectly regulate cell prolifera-
tion by reducing the pro-growth signals, while T-DM1, T-DXd and
capecitabine (5-FU in in vitro assays) play direct roles in driving
cell death. The model successfully captures all dose-response
curves of the cell viability experimental data for the five drugs
when treated alone [42, 48, 53–59] (Fig. 4a–e). Notably, growth/
death parameters were estimated using only signaling and
viability data from lapatinib (Fig. 4a), capecitabine/5-FU (Fig. 4c),
T-DM1 (Fig. 4d) and T-DXd (Fig. 4e) groups, and still the model-
predicted pyrotinib cell viability profile matches well with the
observed experimental data (Fig. 4b) which provides a strong
validation. Besides, both simulation and data show that the
addition of NRG1 can significantly rescue the lapatinib-induced
inhibition of SKBR3 cell viability [48, 53] (Fig. 4f), further confirming
that NRG1 could be a cause of resistance to HER2-targeted
therapies. We also performed the calibration procedure using data
from other cell lines with different HER2 expression levels
(medium and low, Supplementary Fig. S2). Model simulations
also captured the experimental data quite well in another three
cell lines (Supplementary Fig. S2a–k), indicating that our mechan-
istic cancer cell model framework can be generalized to study
other HER2 expressing cells. From the dose-response profiles in
these cell lines with lower HER2 expression, we also observe that
HER2-targeted therapies are generally less potent.
In terms of model validation at the cell level, dose-response

data for different drug combination regimens in SKBR3 were used
(Fig. 4). These include lapatinib in combination with capecitabine
[58] (Fig. 4g), pyrotinib in combination with capecitabine [55]
(Fig. 4h), and lapatinib in combination with T-DM1 [60] (Fig. 4i, j),
together with over 20 different dose combinations. Comparison
between the quantitative experimental results and corresponding
model simulations indicated that our model successfully predicts
the synergistic effects of different drug combinations and different
dose combinations on cell viability. Moreover, in another HER2
high expression cell line BT-474, the model was also successful in
predicting the dose-response curves of lapatinib combined with
T-DM1 (Supplementary Fig. S2l, m), again demonstrating the
predictive power of our model.

In vivo translation of the model enables accurate prediction of
therapy-induced tumor growth inhibition
Now that the model was able to quantitatively describe the
biological behavior occurring within cells and predict drug effects
on cell viability in vitro, we then further expand the cell-level
model to describe and predict drug activity and tumor growth
in vivo (Fig. 5). To achieve this translation, we assumed that all
parameters related to signal transduction, drug-target inhibition
and intracellular drug processing were held constant, while certain

parameters controlling cell proliferation and death (e.g., umax,
dmax, w14, w15) can differ between in vivo and in vitro scenarios
given the significant changes of the cellular microenvironment. In
addition, we formulated compartmental pharmacokinetic models
for lapatinib, pyrotinib, capecitabine, T-DM1 and T-DXd, respec-
tively [27–29] and we calibrated PK parameters using experimental
data collected in mice. The PK modules accurately predicts plasma
drug concentrations for all five therapeutics in mice [61–65]
(Fig. 5a–e). Then, tumor growth kinetics in breast cancer xenografts
treated with clinically relevant dosing regimens of lapatinib,
pyrotinib, capecitabine, T-DM1 and T-DXd were used for model
optimization and performance checking. Model-simulated tumor
growth curves under lapatinib and pyrotinib treatment can
simultaneously match the experimental data from HER2+ cell
line-derived mouse xenografts (CDX) [66, 67] (Fig. 5f, g and
Supplementary Fig. S3a, b). Similarly, for capecitabine and T-DM1,
we used the control and lower dose drug-treated tumor growth
curves as optimization datasets and then simulated in vivo tumor
growth inhibition at the higher doses to evaluate the predictive
capacity of the model. Resulting model simulations accurately
characterized the dose-dependent and time-dependent inhibition
of HER2+ tumors in CDX mice [68, 69] (Fig. 5h, i and Supplementary
Fig. S3c), with T-DM1 being administered in two different regimens
and five different doses in total. For T-DXd, we fitted the tumor
growth kinetics in a breast cancer patient-derived xenograft (PDX)
model with HER2 overexpression treated with T-DXd [42] (Fig. 5j).
In this data, the T-DM1-treated tumor kinetics were also success-
fully reproduced at the same time using its respective parameters.
To further validate the model in vivo, we measured tumor growth
kinetics in mice under combination regimen of lapatinib plus
capecitabine (experimental protocols are described in Methods).
Compared to the control group, lapatinib plus capecitabine
significantly slowed down tumor growth in mice bearing SKBR3-
derived tumors (Supplementary Fig. S8a–c), as predicted by our
model simulations (Fig. 5k). These results again demonstrate the
important translational potential of our novel multiscale mechan-
istic model as an efficient computational platform for preclinical
target evaluation and efficacy prediction.

Sensitivity analyses enable identification of parameters that most
significantly influences tumor growth and in silico generation of
heterogeneous tumor response phenotypes
We then performed global sensitivity analyses using the PRCC
method to identify parameters that most significantly affect model
output (cell number or tumor volume) under different conditions
(no external stimuli, NRG1 overexpression, lapatinib plus capeci-
tabine, pyrotinib plus capecitabine, single agent T-DM1 and T-
DXd). The overall trends in different scenarios were generally
similar (Fig. 6a–c and Supplementary Fig. S4). As expected, the
proliferation and death rates of tumor (umax and dmax) were the
most critical parameters positively and negatively related to tumor
volume, respectively. The activity of Raf/MAPK pathway (with
relevant parameters including kon_Raf, koff_Raf, kon_ERK, kof-
f_ERK, w7, w8 and w11) was another important factor affecting
model output under all conditions. In the case of NRG1
overexpression, the binding rate of NRG1 to HER3 (k8on) was

Fig. 2 Model calibration of phospho-receptors and downstream PI3K/AKT, Ras/MAPK signal transduction at the cell level. a EGF (100 ng/
mL) induces activation of EGFR. NRG1 (b 50 ng/mL, c 200 ng/mL) induces activation of HER3 and HER4. d EGF (20 ng/mL) induces activation of
downstream AKT. e NRG1 (10 ng/mL) induces activation of downstream AKT. EGF (f 100 ng/mL, g 50 ng/mL) induces activation of downstream
Raf and ERK axis. h NRG1 (10 ng/mL) induces activation of downstream ERK. Lapatinib induces time-dependent and dose-dependent
inhibition of (i–l) HER2, (m–p) HER3 and downstream (q–s) AKT, (t–v) ERK. w NRG1 (50 ng/mL) reduces HER3 expression. x Lapatinib induces
HER3 expression. a–x All data are from experiments in the SKBR3 cell line, except in (c) (MCF7, HER2 0–1+) and (f) (BT20 transfected with
ErbB2). Y axes are relative expression levels (normalized to their respective maximum values). Lap condition 1, simultaneous addition of
lapatinib and NRG1 (50 ng/mL) for 15min; Lap condition 2, lapatinib alone for 15 min; Lap condition 3, NRG1 (50 ng/mL) for 15 min followed
by lapatinib for 15 min; S, simulation; D, experimental data; Ctr, control/untreated condition.
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Fig. 3 Effect of pyrotinib treatment on ErbB signaling in SKBR3 cells and corresponding model calibration. a Dose-dependent inhibition
of EGFR after pyrotinib and EGF treatment for 60min. b Dose-dependent inhibition of HER3 after pyrotinib and NRG1 treatment for 60min.
c Dose-dependent inhibition of HER4 after pyrotinib and NRG1 treatment for 60 min. d Dose-dependent inhibition of ERK after pyrotinib and
EGF treatment for 60 min. e Dose-dependent inhibition of ERK after pyrotinib and NRG1 treatment for 60min. f HER2 expression in response
to pyrotinib treatment. g HER3 expression in response to pyrotinib treatment. a–g Contains immunoblots showing differential regulation of
ErbB signaling proteins under various treatment conditions and the immunoblot data (n= 3) were quantified and used as calibration data;
GAPDH levels were used as controls. Y axes are relative expression levels, with (a–e) normalized to their respective control condition (e.g.,
pyrotinib 0 nM) and (f, g) normalized to their respective maximum values. S, simulation; D, experimental data.
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Fig. 4 Model calibration of cell viability with single drug treatment data and validation with drug combinations. Dose-dependent
inhibition of cell viability after exposure to (a) lapatinib for 72, 120, or 168 h, respectively, (b) pyrotinib for 72 h, (c) 5-FU for 48 or 120 h,
respectively, (d) T-DM1 for 72 h and (e) T-DXd for 144 h. f Proliferation of cells treated with various concentrations of lapatinib for 72 h in the
presence of NRG1 (left). The addition of NRG1 promotes cell proliferation and confers resistance to lapatinib dose-dependently (right). Dose-
dependent inhibition of cell viability after combination treatments of (g) lapatinib with 5-FU for 120 h, (h) pyrotinib with 5-FU for 72 h and (i, j)
lapatinib with T-DM1 for 72 h. All data are from experiments in the SKBR3 cell line. Y axes are relative viability levels (normalized to their
respective DMSO controls, e.g., untreated conditions). S, simulation; D, experimental data.

Translational QSP modeling of HER2 breast cancer
YT Zhou et al.

9

Acta Pharmacologica Sinica (2024) 0:1 – 18



Fig. 5 In vivo translation of the quantitative systems pharmacology model. Plasma pharmacokinetics of (a) lapatinib at 60mg/kg, (b)
pyrotinib at 80mg/kg, (c) capecitabine at 755mg/kg, (d) T-DM1 at 3mg/kg, (e, left) T-DXd at 3 mg/kg and (e, right) DXd at 1 mg/kg in mice. In
vivo antitumor activity of (f) lapatinib, (g) pyrotinib, (h) capecitabine, (i) T-DM1 and (j) T-DXd in breast cancer xenograft models. Tumor kinetics
in (f, g) are from experiments in SKBR3 xenografts, in (h, i) are from KPL4 xenografts and in (j) are from a breast cancer PDX model with HER2
overexpression. k Model-predicted and in-house experimentally measured tumor growth kinetics in SKBR3 xenograft mice that received
combination regimen of lapatinib plus capecitabine. In the simulations, tumors were allowed to grow to certain volumes before drug
administration according to the different studies referenced and the maximum tumor volume was fixed to 2000mm3. We assume that the
weight of a mouse is approximately 20 g. S, simulation; D, experimental data.
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identified as a significant parameter that impacts tumor growth
(Fig. 6a), indicating that this physiological process could be an
important therapeutic target for NRG1-overexpressing tumors. In
the presence of T-DM1 or T-DXd treatments, sensitivity analyses
demonstrated that parameters that have substantial impacts on
tumor volume are associated with the unique mechanism of
action of HER2-ADC, such as the internalization rate of ADC

(kint_ADC), the proteasomal degradation rate of ADC (kde-
g_ADC_2), and the efflux or permeation rate of payloads (kout_PL,
kper_PL) (Fig. 6c and Supplementary Fig. S4c). These parameters
mechanistically correspond to several T-DM1 resistance mechan-
isms, including defective internalization [70], impaired lysosomal
processing [71] and overexpression of drug efflux pumps [72, 73].
The above sensitivity results from PRCC also qualitatively agreed

Fig. 6 Sensitivity analysis and simulation of diverse treatment responses reflecting heterogeneous individual phenotypes. Partial rank
correlation coefficients (PRCC) indices for parameters that significantly impact tumor volume (with absolute PRCC values greater than 0.05)
under (a) NRG1 overexpression, (b) lapatinib plus capecitabine and (c) single agent T-DM1 conditions. The positive or negative signs of PRCC
values represent a positive or negative effect on the model output. d Model simulations of tumor growth inhibition (TGI) after one cycle of
treatment (e.g., TGI measured on day 20) using 13 different regimens for the four different response phenotypes, with blue representing a
phenotype sensitive to all treatments, red—resistant to single T-DM1, green—resistant to lapatinib plus capecitabine, and black—resistant to
all existing clinical standard therapies (lapatinib or pyrotinib plus capecitabine, single agent T-DM1 and T-DXd). The dosages are given as
follows: lapatinib 100mg/kg, qd; pyrotinib 30mg/kg, qd; capecitabine 400mg/kg, d1–d14 (e.g., days 1–14 of a 21-day cycle); T-DM1 30mg/kg,
q3w; T-DXd 10mg/kg, q3w.
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with those analyzed using the Sobol method (Supplementary
Fig. S5). In addition, we performed model identifiability analysis
using the bootstrapping method with a focus on the most
influential parameters, and the results suggested relatively robust
clustering of these parameters against our calibration datasets
(Supplementary Fig. S6).
Since patients with HER2+ BC may respond differently to HER2-

targeted therapies due to heterogeneity, we thus simulated four
phenotypes with distinct response patterns to treatments by
adjusting parameters based on the results of sensitivity analyses
(Fig. 6d). Initially, the basic version of the model (representing a
standard HER2+ CDX) was sensitive to all regimens (Fig. 6d, blue).
By increasing the efflux rate of DM1 catabolites (kout_PL), we
simulated the T-DM1-resistant phenotype (Fig. 6d, red), which
remained effective against T-DXd and therapies containing TKIs
probably because of their distinct mechanisms of action. By
increasing both the proliferation rate of tumor (umax) and the
activation rate of Raf (kon_Raf) thereby increasing tumor growth
and mimicking the aberrant transduction of Raf/MAPK signaling,
we modeled the lapatinib-resistant phenotype (Fig. 6d, green).
However, it was still sensitive to pyrotinib plus capecitabine and
new combination strategies such as TKI plus ADC, triple
combination of TKI, capecitabine and ADC, according to the
simulation results. We further increased the proliferation rate
(umax) and were able to simulate a phenotype that was refractory
to all clinically available treatments including lapatinib or pyrotinib
plus capecitabine as well as single T-DM1 or T-DXd (Fig. 6d, black).
We found that in this phenotype triple combinations of lapatinib,
capecitabine and ADC (10th and 11th columns) could partially
inhibit tumor growth, while double combinations of pyrotinib plus
ADC (8th and 9th columns) have significantly better efficacy.
These results suggested that with minimal physiological para-
meter tuning, the model was able to simulate heterogeneous
HER2+ breast cancer phenotypes with differential drug response
profiles, thus allowing explainable in silico exploration of different
drug combinations to deal with various resistance mechanisms
during HER2+ mBC treatments.

Simulations provide mechanistic insights into treatment
sequencing and new combination strategies for improving
efficacy and targeting resistance
Using our mechanistic QSP model, we then explored different
drug treatment strategies and predicted their preclinical efficacy
to provide insights for future clinical investigations. We were
primarily interested in the second-line treatments for HER2+ mBC
(e.g., TKI plus capecitabine, HER2-ADC) as well as the potential of
new targets, new regimens, and new combinations. Clinical trials
have been conducted to compare the efficacy of lapatinib plus
capecitabine versus pyrotinib plus capecitabine [6], and lapatinib
plus capecitabine versus T-DM1 [74]. However, prior studies have
not elucidated the comparative efficacy of pyrotinib plus
capecitabine versus T-DM1, so we investigated this question
using our model. Interestingly, the two above treatment strategies
induced very similar tumor regression at the preclinical level
according to our simulations (Fig. 7a), and the tumor inhibitory
potency of both strategies was superior than that of lapatinib plus
capecitabine which is consistent with clinical trial results [6, 74].
For TKIs, we further showed that the combination of lapatinib or
pyrotinib with T-DM1 or T-DXd (even at significantly lower doses)
appeared to be more efficacious than TKIs plus capecitabine
(Fig. 7b and Supplementary Fig. S7a). We systematically explored
the antitumor response to such new combinations at different
dose pairs, and the predicted dose-response surfaces indicate
synergistic effects of both TKIs in combination with T-DM1
according to the Bliss independence principle. Particularly for
pyrotinib, sufficient inhibition (~80%) of tumor growth can be
achieved at markedly reduced dosages of pyrotinib (6 mg/kg) plus
T-DM1 (6mg/kg), compared to the regular single-agent dosages.

To achieve this similar level of tumor inhibition, relatively higher
doses of combined lapatinib and T-DM1 were required (80%
inhibition under lapatinib 80 mg/kg plus T-DM1 8mg/kg) as
expected (Fig. 7c). We further validated the anti-tumor efficacy of
pyrotinib plus T-DM1 in SKBR3 xenograft mice: as quantitatively
predicted by our QSP model, such a combination already exhibits
a very strong eradicative effect on tumor growth in vivo (Fig. 7d
and Supplementary Fig. S8a–c), which is comparable or even
superior than single agents given at significantly higher doses. For
T-DXd, its combination with TKIs also showed more potent
efficacy and can achieve significant tumor growth inhibition at
reduced doses (Supplementary Fig. S7b). A comparison of model-
predicted TGI and Bliss-predicted TGI supporting the synergism of
these four combinations was provided in Supplementary Table S2.
Treatment sequencing is another heterogenous factor that can

impact individual clinical outcome. For HER2+ mBC, we applied
our model to investigate the potential impact of different second-
line treatment sequences, considering the TKI-containing regi-
mens and single agent T-DM1 or T-DXd. We simulated preclinical
tumor growth kinetics under the following two conditions: TKI
plus capecitabine for one cycle followed by ADC or ADC for one
cycle followed by TKI plus capecitabine. Our model simulations
suggest that lapatinib plus capecitabine followed by T-DM1 could
induce durable tumor regression, while T-DM1 followed by
lapatinib plus capecitabine appears to be more potent in the
short term and is equally effective in the long run; in terms of
tumor growth inhibition, both strategies are more effective than
the conventional regimen of lapatinib plus capecitabine alone
(Fig. 7e). This comparative phenomenon was also quantitatively
validated by our in-house experiments that tested the anti-tumor
effect of sequential dosing regimens in mice (Fig. 7g and
Supplementary Fig. S8d–f, experimental protocols are shown in
Fig. 7f), confirming the predictive capacity of our QSP model. For
pyrotinib, both therapy sequences (pyrotinib plus capecitabine
first then T-DM1 or T-DM1 first then pyrotinib plus capecitabine)
had similar and extraordinary effects in eliminating tumor growth
(Fig. 7e). For T-DXd, due to its strong tumoricidal potency,
treatment ordering of T-DXd versus both TKIs plus capecitabine
can always induce durable tumor regression regardless of
sequencing (Supplementary Fig. S7c).
Drug resistance in HER2+ mBC is also of significant clinical

importance. A potential factor for resistance identified from our
previous model analysis is the presence of high NRG1, while in
patients it is an oncogenic feature observed across multiple cancer
types [75, 76]. In the NRG1-high expression scenario, our model
predicts that it greatly diminishes the TKI-mediated tumor growth
inhibition (Fig. 7h). The simulated tumor growth trends were in
accordance with the experimental results by Nonagase et al. [53]
where they find significantly less tumor reduction in response to
lapatinib in a NRG1-expressing CDX model. To explore therapeutic
strategies targeting this resistance mechanism, our simulations
showed that blocking the binding between NRG1 and HER3
(mimicking the effect of HER3 antibodies, as suggested by the
sensitivity analysis) can overcome resistance and restore the
antitumor activity of TKI (Fig. 7h), suggesting a potentially new
route for translational research in HER2+ and NRG1+ /HER3+

patients. Another factor that confers lapatinib resistance is the
aberrant activation of PI3K/AKT pathway, which was represented
in our model as a much higher dependency on PI3K signaling for
tumor growth. Simulated results indicated continued tumor
growth under lapatinib alone but significantly reduced growth
when we decrease the activation rate of PI3K (mimicking the
effect of PI3K inhibitor) (Fig. 7i), and this is consistent with the
experimental findings from a HCC1954 cell xenograft model with
endogenous PIK3CA mutation [77]. In addition to these primary
resistance scenarios, our model framework can also be used to
simulate progressive acquired resistance, as demonstrated in
Supplementary Fig. S7d.
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DISCUSSION
HER2+ BC is known for its rapid progression and aggressiveness,
and patients are more prone to tumor metastasis and relapse [2].
Despite the availability of various HER2-targeting drugs,

optimizing treatment strategy and developing new agents for
patients with advanced disease (e.g., HER2+ mBC) are of
significant research and clinical values. Given the time and money
costs of clinical trials, developing new methods to accurately and
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prospectively assess the clinical translational value of different
candidate therapies is an essential challenge. In this work, we have
constructed a novel mechanistic quantitative systems pharmacol-
ogy model describing the underlying pathophysiological pro-
cesses of HER2+ BC, from ligand-receptor binding to downstream
signaling and finally to tumor growth, while incorporating the
distinct modalities and mechanisms of various state-of-the-art
therapeutics. We used a large variety of in vitro and in vivo
experimental data during model calibration and validation,
achieving a quantitative and accurate description of cellular
signaling, time-response, dose-response, and tumor growth
kinetics. This further allowed us to probe into the efficacy of
various therapeutic strategies at the preclinical level and
suggested important directions for future translational drug
research. When performing in vitro to in vivo translation, a
general assumption is that the biochemical network structure and
parameter values are largely conserved, while the microenviron-
ment could be different (so are the related parameters). This has
led to smaller values of growth and death parameters under
in vivo versus in vitro conditions, a pattern that is also suggested
by several other modeling studies [78, 79]. As HER2+ BC is a highly
complex and heterogenous disease, we envision our model could
serve as an evolving in silico platform that could be constantly
refined and expanded by adding new mechanistic details such as
new drug-acting pathways and resistance mechanisms. For
example, at the population level, double positive of HER2 and
estrogen receptors (ER) occurs in approximately 50% of HER2+ BC
patients [80], and 20% patients have cyclin E overexpression [80].
Future model expansions around these pathophysiological
features would help us better understand the tumorigenesis and
therapeutic outcome of such particular patient subgroups in order
to advance the practice of personalized medicine in HER2+ BC.
Using this model, we performed a series of efficacy analyses to

provide insights for clinical research. First, we compared the
efficacy of pyrotinib plus capecitabine with T-DM1 since no
published study (animal or human) has yet compared these two
regimens head-to-head. The model predicted that both regimens
were notably effective in inhibiting tumor growth in mouse, with
T-DM1 being slightly more potent than pyrotinib plus capecita-
bine (Fig. 7a). If we compare the PHOEBE study (pyrotinib plus
capecitabine) with the EMILIA study (T-DM1) as the control arms in
both studies received the same regimen (lapatinib plus capecita-
bine), we would see that for efficacy, T-DM1 in the EMILIA study
significantly prolonged overall survival (OS) in the Asian popula-
tion by nearly one year and reduced the risk of death by 57.2%
[81], whereas pyrotinib plus capecitabine in the PHOEBE study
also had an OS benefit but not as much as that of T-DM1 in Asians,
and there was no OS benefit in the trastuzumab-resistant
population [82]. Although authors of the PHOEBE study, through
preliminary cross-trial analyses, proposed that the efficacy of
pyrotinib plus capecitabine would be similar to T-DM1, more

reliable studies are still needed if one wants to make a direct
comparison between these two regimens [6]. Secondly, we tested
a novel combination of TKI plus ADC that has never been used in
clinical practice, since their mechanisms of action and resistance
differ from each other which theoretically provides an opportunity
for combination. The model predicted that such combinations
were able to induce durable tumor regression in mice even when
the doses were significantly reduced (Fig. 7b and Supplementary
Fig. S7a), which potentially suggests less toxicity issues. Model-
based dose-response analysis recommended pyrotinib plus ADC
as the preferred option compared with lapatinib plus ADC, as it
exhibited stronger synergism at lower doses (Fig. 7c and
Supplementary Fig. S7b). Supporting our predictions, a phase Ib
study testing T-DM1 plus lapatinib and nab-paclitaxel in HER2+

mBC has achieved excellent results: patients had relatively well
tolerability with a high objective response rate (ORR) of 85.7% (12/
14) [83]. Another study of T-DM1 plus neratinib (a multi-target TKI)
exhibited favorable antitumor activity as well: 12 of 19 (63%)
evaluable patients had an objective response [20] and this was
markedly higher than T-DM1 alone (44% in EMILIA). The third
clinically-relevant question we were interested in is the optimal
treatment sequence. Interesting, our model predicts that treating
mice with only one cycle of T-DM1 followed by daily lapatinib plus
capecitabine would still generate superior efficacy than direct
lapatinib plus capecitabine (Fig. 7e). This suggested that longer
disease stabilization and response duration may be achieved even
if limited cycles of T-DM1 is received prior to lapatinib regimen,
which has therapeutic implications for the portion of patients who
have to discontinue T-DM1 as a result of adverse events (e.g.,
thrombocytopenia) in the real-world setting (occurring in 10% of
490 patients in the EMILIA study [5]).
The model identified NRG1 as a cause of TKI resistance in

HER2+ BC due to its ability to bind to HER3 and HER4 and
continuously activate downstream MAPK and AKT pathways.
Focusing on the microenvironmental signals, Watson et al.
identified NRG1 to reduce TKI efficacy in SKBR3 cell line and the
addition of pertuzumab could reverse it as it blocks ligand-
induced HER2/HER3 dimerization [84]. In fact, NRG1 fusions are
considered as oncogenic drivers, occurring in 0.2% of all solid
tumors and about 0.2% in breast cancers [75]. On the other hand,
the incidence of HER3 overexpression in patients is much higher
(30% in breast cancer [85]) and is associated with a poor prognosis
[86]. Sensitivity analysis under the condition of NRG1 over-
expression and our simulations suggested that HER3-targeted
agents or HER3-containing combination therapy may be a
promising direction in NRG1 fusion-driven or HER3-
overexpressed tumors. Many pharmaceutical companies have
already marched into the development of HER3-targeted drugs, of
which a representative first-generation therapeutic being the anti-
HER3 mAb seribantumab [87]. In a recent phase II study of
seribantumab in patients with NRG1 fusion-positive advanced

Fig. 7 Model evaluation and experimental validation of tumor response kinetics in mice under different drug treatment strategies.
a Simulated efficacy of different drug regimens used in clinical practice, including lapatinib plus capecitabine, pyrotinib plus capecitabine and
single T-DM1. b Simulated antitumor effects of the new combination regimen of lapatinib or pyrotinib plus T-DM1 versus classic lapatinib or
pyrotinib plus capecitabine. c Simulated tumor growth inhibition (TGI) in response to combinations of lapatinib or pyrotinib with T-DM1 over
a range of doses (lapatinib 20–100mg/kg qd, pyrotinib 6–30mg/kg qd, and T-DM1 2–10mg/kg q3w, respectively). Tumor volumes were
analyzed after three treatment cycles (e.g., on day 62). d QSP model prediction and in-house experimental validation of tumor growth kinetics
in vivo in response to combination regimen of pyrotinib (10 mg/kg) plus T-DM1 (10 mg/kg); S, simulation; D, experimental data. e Simulated
antitumor effects of sequential therapies of lapatinib or pyrotinib plus capecitabine followed by T-DM1 or T-DM1 followed by lapatinib or
pyrotinib plus capecitabine. f The drug administration protocol of the in vivo mouse xenograft experiments (L, lapatinib; C, capecitabine; P,
pyrotinib; see Methods section for details). g QSP model prediction and in-house experimental validation of tumor growth kinetics in vivo in
response to sequential regimen between T-DM1 and lapatinib plus capecitabine; S, simulation; D, experimental data. h Simulated tumor
growth trends under single lapatinib or pyrotinib, NRG1 (representing the overexpression-induced resistant scenario), and the combination as
well as in the presence of HER3 mAb. i Simulated tumor growth trends under single lapatinib, PI3K inhibitor and their combination when
tumor growth is highly dependent on the PI3K/AKT pathway. See the legends for the detailed dosage and frequency of administrations,
where a treatment cycle is 21 days and d1–d14 means capecitabine is administered on days 1–14 of each cycle.
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solid tumors (CRESTONE), preliminary results were presented with
an ORR of 33% and a disease control rate of 92% in cohort 1 [88].
Other drugs such as zenocutuzumab (a HER2/HER3 bispecific
antibody for NRG1 fusion-related tumors) and U3-1402 (a HER3-
ADC that primarily targets HER3-expressing cells) have also
announced encouraging results lately [89, 90]. In addition, a
preclinical study revealed that inhibition of HER3 expression
combined with lapatinib reduced MMTV-Neu mice tumor growth
to a greater extent than either HER3 inhibition or lapatinib alone
[91], suggesting the potential of HER3-containing combination
regimens in treating HER2-overexpressing breast cancers.
Our mechanistic model is a solid example of model-driven

in vitro to in vivo translation, particularly for efficacy evaluation
and combination assessment, and it can be further advanced to
the clinical level by enabling virtual patient generation and virtual
clinical trials to predict the clinical efficacy and outcome of new
therapies in breast cancer patients. A number of studies have
demonstrated the feasibility and value of such a mechanistic
model-based translational strategy in complex human diseases
[92–94]. In expediting preclinical to clinical translation, Qiao et al.
developed a QSP model of immuno-oncology to understand the
variability in tumor kinetics in syngenetic mice treated with anti-
CTLA4 antibody and proposed a combination regimen of anti-
CTLA4 with therapeutics that expand CD8+ T cells for non-
responding tumors [95]. Another case in point is a computational
model of the MAPK signaling network developed by Kirouac et al.
to predict the clinical outcomes of ERK inhibition in colorectal
cancer with the BRAF-V600E mutation [78], in which the authors
started from in vitro cell culture data to in vivo animal response to
clinical prediction using one general model framework. Another
recent example is Zhu et al. that constructed a translational PK/PD
model using data from in vitro tumor organoids and established
translational scaling of the model to predict the clinical response
of oxaliplatin and irinotecan in colorectal cancer [96]. Therefore, an
immediate next step is to extend our model to the clinical level
and make full use of the multimodal data from published trials on
HER2+ mBC (e.g., individual data from spider plots and waterfall
plots, population-level ORR, PFS of different regimens) as well as
original biomarker data from in-house patient samples to
collectively generate a plausible and accurate virtual patient
population. To better advance this modeling framework to the
clinical level, potential drug-induced toxicities can also be
incorporated through modeling methods. For example, for
HER2-ADC, mechanism-based models were developed to predict
platelet reduction after T-DM1 treatment [97, 98]; for TKIs which
may cause cardiotoxicity, a recent model relating drug-induced
perturbations of myocardial contractility to clinical ejection
fraction can serve as a modeling basis [99]. Furthermore, as we
(previously with Johns Hopkins collaborators) have already
developed a comprehensive quantitative systems pharmacology
platform for immuno-oncology (IO) [100, 101], adding an immune
module to our breast cancer model to enable the simulation of
various modalities of immunotherapy in combination with HER2-
targeted therapies is also of great importance, given the
competitive drug development landscape of HER2+ mBC and
many ongoing trials in this field [7].

Limitations of the study
As our model calibration and validation included data from
different literature studies, we did make a unifying assumption
that all data come from similar and comparable cell culture
conditions if the experiments used the same cell lines (different
doses were accounted explicitly and numerically), despite the
potential presence of other technical residuals that could differ
between labs. According to the results, the same model structure
and the same set of parameters performed well in describing all
the data from the SKBR3 cell line simultaneously, which confirmed

the accuracy and generality of the model. Still, future efforts
should pay attention to these experimental factors and protocol
details when modeling in vitro cell cultures. Another limitation
worth ongoing attention is possible drug-drug interactions (DDI)
at the PK level when simulating drug combinations. Within our
model scope, although no clear DDI evidence was found so far
regarding coadministration of TKI plus capecitabine or TKI plus
ADC in the literature [102, 103], it always remains an important
issue for the clinic as new molecular entities are continuously
being developed. Finally, in order to characterize drug resistance,
here we simulated primary resistance by enforcing NRG1 over-
expression or high PI3K dependency, and acquired resistance by
assuming that cumulative drug exposure could induce reduction
in drug potency. Other approaches may also be utilized here to
define resistance such as the evolution-based method, as
demonstrated in a recent modeling work where the authors
explicitly included a sensitive subclone and a cascade of resistant
subclones of tumor cells and allowed transition between
subclones to physically reflect the resistance acquiring process
[104]. Therefore, in the future new mechanisms and methodolo-
gies could be introduced into our model to better address
resistance from the molecular and spatiotemporal aspects.
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