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Ferroptosis in viral infection: the unexplored possibility
Mao-peng Wang1, Banda Joshua1, Ning-yi Jin2, Shou-wen Du3 and Chang Li2

Virus-induced cell death has long been thought of as a double-edged sword in the inhibition or exacerbation of viral infections. The
vital role of iron, an essential element for various enzymes in the maintenance of cellular physiology and efficient viral replication,
places it at the crossroads and makes it a micronutrient of competition between the viruses and the host. Viruses can interrupt iron
uptake and the antioxidant response system, while others can utilize iron transporter proteins as receptors. Interestingly, the
unavailability of iron facilitates certain viral infections and causes cell death characterized by lipid peroxide accumulation and
malfunction of the antioxidant system. In this review, we discuss how iron uptake, regulation and metabolism, including the
redistribution of iron in the host defense system during viral infection, can induce ferroptosis. Fenton reactions, a central
characteristic of ferroptosis, are caused by the increased iron content in the cell. Therefore, viral infections that increase cellular iron
content or intestinal iron absorption are likely to cause ferroptosis. In addition, we discuss the hijacking of the iron regulatoy
pathway and the antioxidant response, both of which are typical in viral infections. Understanding the potential signaling
mechanisms of ferroptosis in viral infections will aid in the development of new therapeutic agents.
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INTRODUCTION
The incidences of emerging and re-emerging viral infections have
surged despite the tremendous progress in preventing and
controlling infectious diseases and the biomedical field for the
past two decades. The occurrence of epidemics and pandemics,
such as the Ebola virus [1], Influenza virus [2], middle east
respiratory syndrome coronavirus (MERS-CoV) [3], severe acute
respiratory syndrome coronavirus (SARS-CoV) [4], and SARS-CoV-2
[5] has posed a significant threat to humans. Several animal
viruses, such as african swine fever virus [6], inflict significant
economic loss. Virus infections have been shown to trigger cell
death via various mechanisms, depending on the viral species,
however elucidating the causes and effects can be difficult [7–9].
Cell death can be a double-edged sword during pathogenic
infections [10, 11]. On the one hand, virus-associated cell death
can help to prevent additional infection, while on the other hand,
it contributes to the progression of many infections [10, 12–14].
On another facet, viral infection can lead to cell death due to viral
activities within infected cells [15, 16], and the escape of viral
progeny can cause cell death [15, 17]. It is noteworthy that some
viruses encode proteins to inhibit cell death and facilitate their
proliferation [7, 8].
Iron is an essential element for many enzymes in the cell. These

enzymes include but are not limited to DNA primase, DNA helicases,
ribonucleotide reductase, and ATPase [18], which are necessary for
DNA expression. The unavailability of iron compromises multiple
cellular functions, including genome replications [19]. The vital role
of iron in cellular physiology maintenance and efficient viral genome

replication places iron at the crossroads and makes it a competing
chemical between the pathogen and the host [20, 21]. During
infections, the immune response fortifies its defense in which iron is
withheld from pathogens [22, 23]. However, various viral species
have been found to interrupt iron uptake and the antioxidant
response system [21], while others utilize iron transporter proteins as
receptors (see Table 1). Interestingly, an increase in iron concentra-
tion facilitates ferroptosis.
Ferroptosis is a regulated cell death pathway that heavily

depends on iron-mediated lipid free radical formation and
accumulation [24, 25]. These actions can be inhibited by the
enzyme glutathione peroxidase 4 (GPX4) and the antioxidant
glutathione (GSH). Interruption of the cellular process that leads to
ferroptosis can inhibit its occurrence [24–26]. Therefore, this
interruption can serve as a therapeutic method to manipulate cells
by either increasing their survivability or inducing death in
infection conditions. Here, we review how iron uptake, regulations,
and metabolism, including the redistribution of iron in the host
defense system during viral infection, can induce ferroptosis.
Described herein also is the inhibition of the antioxidant response
during infections, emphasizing GSH and GPX4 as these are
identified major inhibitors of ferroptosis.

FERROPTOSIS
Ferroptosis, as proposed by the Nomenclature Committee on Cell
Death (NCCD), is a mechanism of cell death resulting from oxidative
perturbations of the intracellular microenvironment, which is under
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constitutive regulation by GPX4 [25], which is heavily marked by iron
driven lipid peroxidation (Fig. 1) and lipotoxicity accumulation due
to Fenton reactions and failure of the antioxidant defense to inhibit
or terminate the pathway. Dixon et al. [24] observed that ferroptosis
is distinct from other forms of cell death in many facets.
Morphologically, it is marked by small mitochondria with a higher
membrane density, reduced or absent mitochondrial crista, and
raptured out membranes [24, 27]. These changes may be controlled
by the BH3-interacting domain death antagonist (BID) and BCL2-
binding component 3 (PUMA) [28, 29]. Reportedly, the cell nucleus
during ferroptosis does not change in size [30] but can be electron-
lucent [31]. The integrity of the nuclear membrane is jeopardized,
causing the release of High Mobility Group-Box 1 (HMGB1).
Suggestively, the nucleus membrane damage may be caused by

lipid peroxides, and the damage may extend as far as the inner
membrane [31]. Biochemically, ferroptosis is marked by the
depletion of GSH and reduced GPX4 activity and lipotoxicity [27].
Genetical changes that may alter iron homeostasis and facilitate lipid
peroxidation, the two main features of ferroptosis, are also involved.
However, it is worth noting that the process is regulated by multiple
genes associated with iron uptake, lipotoxicity, and antioxidation
responses. (Further reading on genes that regulate ferroptosis
[24, 32–37]).

IRON UPTAKE
Stable iron ion homeostasis is vital for cell function and survival.
Iron in the body can be acquired by absorption in the intestine or

Table 1. Effects of viruses on iron metabolism and the possible contribution to ferroptosis.

Effect Virus Reference

Iron transport during viral infection

Increases serum and cellular iron uptake and suppresses hepcidin
expression

Hepatitis C virus (HCV) [66, 67, 72, 150]

Hepatitis B virus (HBV) [72, 80, 150]

Potentially causes cellular iron overload and iron scavenging Severe acute respiratory syndrome-coronavirus-2 (SARS-
CoV-2)

[76, 151, 152]

Reduces serum iron, upregulates the expression of hepcidin Human immunodeficiency virus (HIV) [72, 153]

Increases cellular iron via hepcidin mediated degradation of
ferroportin

[63]

Induces the expression NRAMP (DMT) and increases cellular
iron uptake

Coxsackievirus B3 (CB3) [81]

West Nile virus (WNV) [154]

Increases the expression of 12/15-LOX and mitochondrial iron
content

Respiratory syncytial virus (RSV) [155]

Iron metabolism and viral infection

Viral genome amplification and viral replication is inhibited by iron Influenza A virus (H1N1) [156]

Enterovirus 71 (EV-71) [89, 157]

Increases serum ferritin concentration Hepatitis C virus (HCV) [158]

Severe acute respiratory syndrome-coronavirus-2 (SARS-
CoV-2)

[76]

Various viruses on redox state and antioxidants

Reduces the cellular concentration of GSH and/or affects GPX4
activity

Coronaviruses (CoVs) [159]

Dengue virus [160]

Human immunodeficiency virus (HIV) [134, 161, 162]

Herpes simplex virus (HSV) [163, 164]

Influenza virus [165, 166]

Japanese encephalitis virus (JEV) [167, 168]

Kaposi sarcoma-associated herpesvirus (KSHV) [128]

Zika virus [169]

Produces lipid peroxide free radicals (L-ROS) Japanese encephalitis virus (JEV) [170]

Upregulates the expression of system xc- Human immunodeficiency virus (HIV) [161]

Japanese encephalitis virus (JEV) [127]

Interrupts system xc- function Kaposi sarcoma-associated herpesvirus (KSHV) [128]

Lysosomal disruption

Causes lysosomal damage using viral protein Avian Influenza A virus (H5N1) [45]

Severe acute respiratory syndrome-coronavirus (SARS-CoV) [171]

Receptors mediating viral entry

Uses TfR1 as a cellular receptor Hepatitis C virus (HCV) [172]

New world hemorrhagic fever viruses (NWHFVs) [91, 173]

New world arenaviruses (NWAVs), e.g., Machupo and Junin [174–178]

Gastroenteritis virus (GEV) [179]

Mouse mammary tumor virus (MMTV) [180]

Uses NRAMP as a cellular receptor Sindbis virus [181]
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from the degradation of erythrocytes. Intestinal iron uptake
involves haem iron transporter HEPH, DMT1, FPN1, and TfR1.
Intestines are a major source of iron. Iron uptake in the intestine is
heavily influenced by the microbiota and is absorbed in Fe2+.
Ferrous is transported into the cell via the TfR1 receptor protein.

ZRT/IRT-like proteins have also been identified as transporters of
Fe2+ that are not bound to transferrin [38, 39]. While inside the
cell, Fe3+ is encapsulated in the acidic endosome, where it is
reduced back to Fe2+ by the six-transmembrane epithelial antigen
of the prostate 3 (STEAP3), which also facilitates TfR1 dependent
iron uptake [40] or stored in ferritin [41]. From here, the iron is
then released into the cytoplasm with the help of divalent metal
transporter 1 (DMT1) (DMT1 is also present on the plasma and
organelle membranes) for usage or balancing iron deficiency. Iron
is exported out of the cell via ferroportin (FPT), an iron efflux pump
that can oxidize Fe2+ to Fe3+ [42].
The inhibition of iron export and/or the increase in uptake

promotes ferroptosis. Processes that increase free iron content in
the cell, such as ferritinophagy, which is the degradation of ferritin
leading to the release of iron into the cytosolic labile iron pool,
promote iron accumulation and is reported to induce ferroptosis
[43] (Fig. 1). Ras mutation also causes ferroptosis by increasing the
expression of TfR1 while reducing the expression of ferritin [44].
The degradation of organelles that have high deposits of iron,
such as lysosome [45] and mitochondria [46], can also cause
cytosolic iron increase and thereby leading to ferroptosis (Box 1).
The accumulated iron can react with lipids forming lipid reactive
species while inhibition of iron accumulation in the cell attenuates
ferroptosis [24, 47, 48].

LIPID PEROXIDATION
Iron-mediated lipid peroxidation occurs mainly using the poly-
unsaturated fatty acids (PUFA), which are susceptible to peroxida-
tion due to their acyl tail. PUFA phospholipids can be generated
by the enzymes Acyl-CoA synthetase long-chain family member 4
(ACSL4) and lysophosphatidylcholine acyltransferase 3 (LPCAT).
LPCAT is also responsible for PUFA activation and remodeling into
transmembrane lipid [49, 50]. Aside from this, PUFAs can also be
obtained from dietary sources or synthesized by the enzyme
acetyl CoA carboxylase. These phospholipids require esterification

Fig. 1 Ferroptosis inducing pathways. Iron enters the cell via TfR1 or DMT1 and is exported by FPT. DMT1 uptakes Fe2+ and requires CYDRB1
to reduce Fe3+. When inside the cell, iron binds to ferritin, which can be degraded by a lysosomal activity known as ferritinophagy. Non-ferritin
iron can then react with O2 molecule, e.g., H2O2 the by-products of this reaction then reacts with PUFAs forming lipid peroxides. System-xc-

imports cysteine and exports glutamate. Cysteine is used in the synthesis of GSH, which, together with GPX4, reduces lipotoxicity. Glutamate
participates in glutaminolysis. GSH can be inhibited by downstream metabolites of glutaminolysis. An increase of iron or inhibition of GSH/
GPX4 results in ferroptosis. TfR1 Transferrin receptor protein 1, DMT1 divalent metal transporter, FPT ferroportin, CYDRB1 Cytochrome B
Reductase 1, PUFAs short for polyunsaturated fats, GSH Glutathione, GSSG Glutathione disulfide, GPX4 Glutathione Peroxidase 4, LOX Lysyl
Oxidase.

Box 1 The emerging role of organelles and signaling pathways
in ferroptosis

Lack or depletion of functional mitochondria disrupts cellular sensitivity to
cysteine depletion or deprivation [56]. The hyperpolarization of the mitochon-
drial outer membrane potential can cause the depletion of GSH via deprivation
of cysteine [56], which can facilitate cysteine deprivation-dependent ferroptosis
while inhibiting cellular cysteine uptake. The mitochondrial promotes the
exhaustion of GSH, thereby attenuating the antioxidant mechanism [182].
Disruption of mitochondrial processes, TCA cycle, electron transport chain and
glutaminolysis, has been reported to inhibit ferroptosis [56, 118, 182]. On top of
this, mitochondrial lipids serve as a source for lipid peroxides [56].
Lysosomes are no bystanders in ferroptosis. Lysosomal activity influences iron
availability in the cell by disrupting transferrin transport and degradation of
ferritin [183, 184]. In addition, the lysosomal activity also produces ROS, inclusive
of lipid peroxides. Autophagic activities mediated by the lysosome are likely to
participate in ferroptosis, as shown by studies [43, 185]. Cysteine deprivation
significantly reduces following the knockdown of autophagic genes ATG3 and
ATG13 [43]. Autophagy is also likely to cause ROS accumulation and induction of
ferroptosis [36]. Lysosomal cathepsin B has also been known to induce GSH
depletion. STAT3 is an activator of cathepsin B and can therefore participate in
ferroptosis [36, 43].
The endoplasmic reticulum may also play a role in ferroptosis as inducers of
ferroptosis cause ER stress [118]. Erastin-induced ER stress activates the
ATF4 signaling pathway, and the downstream of the pathway promotes
degradation of GSH [186]. The role of ER and ER stress remains highly
uninvestigated. However, ER stress promotes autophagy [187], and autophagy
can degrade ferritin, causing ferroptosis.
Signaling pathways that may inhibit system xc- or increase cellular iron
availability are also likely to cause ferroptosis. The heme oxygenase 1 (HO-1)
[188], HSPB1 [48], and FANCD2 [189] pathways influence iron availability and
have been linked to ferroptosis. FANCD2 targets genes involved in iron
metabolism and GPX4, leading to iron increase while reducing the antioxidant
effect. p53 [190] and its activator G3BP1-interacting IncRNA [191] facilitate
ferroptosis by targeting the SLC7A11 component of the system xc- thereby
attenuating its function.
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and oxidation to function as a synthetic signal transduction
medium [51]. Reportedly the oxygenation attack occurs on the
acyl-arachidonoyl (AA) and the adrenoyl acid (AdA) phosphatidy-
lethanolamine (PE) end of the lipid chain [52]. This oxygenation
can be directly achieved by 12/15-lipoxygenases (12/15-LOX),
cytochrome P450 oxidoreductase, as well as other iron-containing
sources of oxidation such as AKR1C1-3 [27, 53–55]. The
oxygenated PE then functions as death signals and causes the
depletion of PE and other PUFAs [53]. When iron in the cytoplasm
reacts with H2O2 (Fenton reaction), producing OH•, which attacks
PUFAs (Fig. 1), a chain reaction that produces lipid peroxides starts
[24]. Aside from this, iron is a cofactor of enzymes that catalyze
lipid peroxidation [51, 55]. Lipid peroxidation can also occur in the
lysosome [43] as well as the mitochondrial [56] (Box 1).

ANTIOXIDANTS
The suppression of GPX4 activity leaves lipid peroxidation
unchecked and facilitates ferroptosis, achieved by RSL3/5,
ML162, ML210 DPIs, and FIN02, etc., which can interfere with
the GPX4 [26, 27, 47]. GPX4 activity can also be inhibited by
buthionine sulphoximine (BSO), which terminates the synthesis
of GSH [27], and FIN56, which causes a short supply of
selenocysteine tRNA by inhibiting the melanovate pathways,
attenuats GPX4 synthesis [57, 58]. FIN56, together with acetyl-
CoA carboxylase, can also degrade GPX4 [52]. The melanovate
pathway is likely to play a role in the inhibition of ferroptosis due
to its production of ferrostatin and liproxstatin, which reduces
lipotoxicity [26, 47]. The downregulation of GPX4 has been
shown to increase cell sensitivity to ferroptosis [44]. Other
molecules known to induce ferroptosis via direct or indirect
induction are artesunate, lanperisone, and acetaminophen
[59, 60]. The voltage-dependent ion channel proteins 1 and 3
(VDAC1/3) of the outer membrane of the mitochondria can cause
the exhaustion of cysteine and, therefore, may likely cause
cysteine deprivation [30]. Gao et al. reported the mitochondria as
an antagonist of antioxidants in ferroptosis [56].

VIRUSES, IRON METABOLISM AND FERROPTOSIS
Iron regulation and viral infection
Hepcidin, a key protein to regulate systematic iron homeostasis,
binds to the iron transporting protein ferroportin causing its

internalization and degradation (Fig. 2), resulting in an increase in
the cytoplasmic iron and a negative regulatory effect on iron
uptake [61, 62]. Degradation of ferroportin can facilitate viral
genome transcription as observed in HIV-1 [63]. The expression of
hepcidin is modulated by the increase in iron availability due to
intestinal absorption or the release from macrophages iron
recycling, a cellular increase of iron stores, inflammation, or
infection. Many viral infections have shown an inverse relationship
between the increase in cellular iron endosomes and hepcidin
upregulation [64]. An increase of hepcidin is accompanied by high
ferritin, thereby storing iron in an inactive state. The cell is
deprived of iron and is protected from further infection and the
production of free radicals [65].
Contrary to this, research in chronic hepatitis C viral (CHCV)

infection reports differently as hepcidin is downregulated instead
of upregulated [66]. This dysregulation causes the systematic
increase of ferritin in the blood and transferrin saturation, which
has been attributed as a major contributing factor to the
accumulation of iron in hepatic cells during CHCV infection, the
progression of the infection as well as its resistance to treatment
[66–68]. Iron released into circulation via ferroportin during
recycling can cause serum iron overload [69, 70]. The host
response to viral infection by redistributing iron makes it prone to
co-infection by other pathogens. Joann and the team reported the
subsequent association between HIV-induced iron redistribution
and tuberculosis [71]. High cellular iron concentration can induce
hepcidin expression. Possibly, virally infected cells experience
increased iron uptake before the hepcidin expression is elevated,
and viruses have been known to produce proteins that target
regulatory proteins of iron metabolism, such as TfR1 (Fig. 2), which
has been reported in HIV infections but is not investigated in other
viral infections [72–74]. Certain viruses have also been found to
hijack cells that are actively taking in iron [21]. Ameglio and the
team reported the downregulation of ferritin two days post-
infection due to viral replication in HeLa-derived cells RD, C8166,
and HeLa-T4-6c [75]. The team also suggested that this possibly
causes iron toxicity.
On the contrary, in a surveying study on COVID-19 patients, it

was observed that there was a high concentration of serum ferritin
in patients who had pronounced inflammatory responses [76].
However, ferritin may serve as a source of iron, while some viral
protein may scavenge iron or interfere with hepcidin activity [77]
(Fig. 2). Iron scavenging and toxicity have been elucidated in

Fig. 2 Viruses, iron, and iron receptors. Iron transport proteins such as TfR1 and DMT1 serve as receptors of many viruses. TfR1 and DMT1
are upregulated by a viral infection, causing increased iron uptake. Iron-bound in ferritin is scavenged by viruses via viral-induced ferritin
degradation or disruption. Viral activity causes hepcidin expression, which inhibits iron export and leads to excessive cellular iron. These
eventually cause cell death via ferroptosis. TfR1 Transferrin receptor protein 1, DMT1 divalent metal transporter, FPT ferroportin, CYDRB1
Cytochrome B Reductase 1.
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bacterial infections but are not highly investigated in viral
infection [77–79], further suggesting the need to investigate iron
uptake and ferritin in various viral infections prior to and post
increased hepcidin expression. The accumulation of cellular iron
due to viral infection can cause Fenton reactions and finally
ferroptosis. (Further reading on Viruses and Iron [22, 80–87]).

Inhibition of viral infection depending on iron
In mammals, blood hosts an abundant supply of iron. This iron is
either free or binds to haeme. Iron can regulate the replication
of numerous viral infections in different organisms. In humans,
iron inhibits the replication of the hepatitis C virus by
suppressing viral RNA and protein expression via inhibiting
the nonstructural protein 5B (NS5B) polymerase [88]. Ferric-
containing salts such as ferric ammonium citrate (FAC) have also
been shown to inhibit other viruses, including Influenza A virus,
Zika virus, EV-71, HIV [89]. However, this inhibition depends not
just on the iron contained in the salt but also on the citrate.
Organisms that acquire nutrition from other organisms via blood
meals obtain most of their iron from these blood meals.
Mosquitoes are one kind of such an organism, and Zhu and
coworkers found that the prevalence of dengue virus in the
mosquito was regulated by the host serum iron [90]. The host
serum iron was utilized by the iron metabolism pathway of the
mosquitoes to inhibit viral ROS generation, thereby reducing
viral infectivity. (Further reading on viruses and iron metabolism
proteins [77, 91–95]).

Iron receptors and transport proteins usage by viruses
Iron receptors on cells of different organisms have also been
known to serve as entry points of viruses (Table 1, Fig. 2). The
natural resistance-associated macrophage protein (NRAMP), a
common iron receptor in Drosophila and A. aegypti was found to
be the serve receptor of Sindbis virus, and its downregulation due
to iron supplements resulted in the inhibition of the viral
replication in a research study by Hitoshi and the team [96].
TfR1 in mammals has also been identified as receptors of several
viral species, including but not limited to New World hemorrhagic
fever viruses, Machupo virus, Junin virus, Canine Parvovirus,
Mouse mammary tumor virus [91, 97]. Some viruses like the
coxsackievirus B3 tend to facilitate the expression of proteins

involved in cellular iron uptake, such as metallothionein 1/3 and
DMT1 upon early days of infections [81].

VIRUSES, IRON RICH ORGANELLE, AND FERROPTOSIS
Viral activities such as viral gene expression, host-virus triggered
signaling, virus-physiological stress, among others, can destroy
organelles of the host. The destruction of cellular organelles that
abundant house iron-containing or iron-requiring proteins such as
lysosome and mitochondria results in releasing the iron into the
cytosol. The organelle contents are likely to participate in
ferroptosis or infection progression (Fig. 3).

The mitochondria
The mitochondria possess a high iron content, as is required in the
ATP synthesis during the electron transporting process. Exogen-
ous factors, including viral infections, have been known to induce
loss of mitochondrial membrane potential (MMP) [98, 99]. MMP
can cause leakage of many mitochondrial contents, which may
disrupt many cellular processes. Although there is no research
showing the link between viral infection and the release of
mitochondrial iron, recent findings suggest that this is likely to
occur when the mitochondria membrane integrity is jeopardized
[100, 101]. Investigations in this area may provide new therapeutic
targets and further understand why viral infections are worsened
in older people. Iron uptake by the mitochondria increases with
age, and this may cause iron overload [46]. Reportedly iron
overload causes leakage of mitochondrial oxidants and ROS [102].
Mitochondrial ROS has been known to inhibit hepcidin transcrip-
tion, leading to iron accumulation [100, 103]. Iron can then
participate in lipid peroxidation and eventually cause ferroptosis
cell death. Notably, in some viral infections, mitochondrial damage
seems to be inhibited [100]. Alternatively, with the depletion of
GSH and the inactivity of GPX4, 12/15-lipoxygenase (12/15-LOX)
can be activated in the mitochondria to oxidize PUFAs
[55, 104, 105]. Activated 12/15-LOX has been reported to oxidize
mitochondria membrane lipids in neuronal cells [105], which
causes the accumulation of lipid peroxides in the mitochondrial
membrane. 12/15-LOX activation has also been known to
increase mitochondrial iron content via its inhibition of the
CDGSH iron-sulfur domain 1 (CISD1) [105, 106]. CISD1 plays a key

Fig. 3 Iron-rich organelles in viral infection. The iron in lysosomes and mitochondria with permeabilized membranes is released into the
cytosol, causing cytosolic iron accumulation. Lysosomes and mitochondria can also be a source of lipid ROS. 12/15 LOX inhibits CISD1, which
increases mitochondrial iron uptake consequently. 12/15 LOX is upregulated during RSV infection. Viruses hijack cell metabolism and increase
the TCA cycle, ETC activity, and glutaminolysis which facilitates ferroptosis. H5N1 can deglycosylate LAMP, thereby disrupting or
permeabilizing the lysosome and causes lysosomal content leakage. Lysosomal enzymes degrade ferritin causing further accumulation of
iron. The iron can then participates in lipid peroxidation, or the lysosome/mitochondria lipid ROS causes ferroptosis. ROS Reactive oxygen
species, CISD1 CDGSH Iron Sulfur Domain 1, LOX Lysyl Oxidase, LAMP Lysosomal Associated Membrane Protein, TCA cycle tricarboxylic acid
cycle, ETC Electron Transport Chain, RSV Respiratory Syncytial Virus.
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role in the modulation of iron uptake by the mitochondria, and
its loss of function increases iron content [107, 108]. This iron can
cause Fenton reactions in the mitochondria or can be released in
an event where the mitochondria membrane integrity is
jeopardized. Yuan et al. reported that the inhibition of CISD1
contributes to mitochondrial lipid peroxidation and eventually
ferroptosis [109]. Certain viruses hijack the mitochondria to
evade the mitochondrial antiviral signaling and replication [110],
and this may cause hyperpolarization, which can impair the
antioxidant mechanism [56].

Lysosomes
Lysosomes have been long known to contain a relatively large
amount of redox-active iron due to their role in iron metabolism
[111, 112]. Lysosomal damage can occur in viral infections,
resulting in the release of lysosomal content, including
redox-active iron. Xiangwu and the team found that the
neuraminidase (NA) of the H5N1 influenza virus can degrade
and deglycosylate the lysosomal associated membrane protein
(LAMP) (see Fig. 1) [45]. Lysosomal enzymes are often
glycosylated to prevent the hydrolysis of lysosomal environment
content [113, 114]. The deglycosylation effect of NA on LAMP,
which makes up at least 50% of the lysosome membrane
content, can cause digestion and rapture of the lysosome
membrane (see Table 1) [45]. Reportedly this can cause the
release of lysosomal content inclusive of hydrolytic enzymes and
the high content of iron which is often present in the lysosomal,
thereby leading to an increase in the cytosolic iron labile pool
[45, 115]. The accumulated iron can then mediate Fenton lipid
peroxidation. Iron catalyzed lipid peroxidation in the absence of
reductants and causes lipid peroxide accumulation, leading to
cell death.
Furthermore, the released lysosome enzymes can degrade the

ferritin via proteolytic methods. Ferritin is degraded by the lysosome
to supplement cellular iron deficiency or in an autophagic manner
by the process of ferritinophagy using lysosome enzymes [116]. The
autophagy degradation of ferritin has been reported to cause
ferroptosis [36]. Suggestively, permeabilization of the lysosome is
likely to cause the release of enzymes involved in ferritin
degradation and the degradation of proteins involved in iron
regulation into the cytosol, which can increase the cytosolic iron ion

content leading to the dysregulation of iron metabolism. Lysosomal
permeabilization can induce or participate in multiple cell death
mechanisms, including but not limited to lysosomal dependent cell
death, necrosis, necroptosis, and apoptosis [117]. Other viruses have
been known to induce lysosome permeabilization, although the
mechanism remains unclear [115].

VIRUSES, ANTIOXIDANTS, AND FERROPTOSIS
System-xc- antiport and cysteine
The cysteine can be prevented from entering the cell by blocking
or inhibiting the cysteine/glutamate antiporter system-xc- or
preventing the participation of cysteine in GSH formation.
Inducers of ferroptosis include but are not limited to glutamate,
erastin sulfasalazine, and sorafenib. These molecules can directly
interfere with the activity of system xc- thereby interrupting the
supply of cysteine and consequently damages the endoplasmic
reticulum [24, 118, 119]. The supply of cysteine is essential in the
synthesis of GSH [120]. Jiang L and Sato have reported P53’s ability
to repress cysteine absorption via the downregulation of SLC7A11,
a key active component of the system-xc- [121, 122]. This process
is, however, dependent on the presence of ROS-induced stress
[123]. System-xc- functions involve the influx of cysteine in the
cytosol and the efflux of glutamate into the extracellular space
[124]. The released glutamate represents the principal source of
extracellular glutamate in brain regions and causes excitotoxicity
implicated in several neuronal diseases [125, 126]. Certain viruses
such as the Japanese encephalitis virus have been known to
enhance the system-xc- activity and therefore facilitate neuronal
damage, but this also has been found to reduce oxidative stress in
the cells [127]. Research by Dai and coworkers reported reducing
intracellular GSH and inducing viral lytic gene expression
following the inhibition of system-xc- in PEL cells infected with
the Kaposi’s sarcoma-associated herpesvirus (KSHV) [128]. In the
same research, it was suggested that the inhibitors of system-xc-

can prevent PEL tumor progression. The inhibition of the
antiporter results in the reduction of GSH synthesis, GPX activity
and weakens the antioxidant defense. There is limited knowledge
on the role and state of system-xc- antiport in viral infection.
However, current data suggest that inhibiting the antiport can
facilitate ferroptosis. Suggestively as most viruses incorporate

Fig. 4 Antioxidants of ferroptosis during viral infection. System-xc- influxes cysteine and effluxes glutamate. Cysteine is used in viral protein
synthesis, causing reduced GSH synthesis. Viruses inhibit GPX4 and GSH by either attenuating synthesis or degrading the protein and
molecule. Virally hijacked metabolism produces metabolites that inhibit or degrade GSH. Lack of antioxidant activity leads to the
accumulation of lipid ROS and eventually causes ferroptosis. GSH Glutathione, GPX4 Glutathione Peroxidase 4, ROS Reactive oxygen species,
TCA tricarboxylic acid.
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cysteine in their protein, it is likely to occur that the antiport can
maintain its function during viral infection, yet the antioxidant
response is jeopardized.

Glutathione and GPX4
Glutathione (GSH), a molecule that plays a key role in the cellular
response to ROS and their elimination. It is formed by glutamate-
cysteine synthetase by covalently combining cysteine and
glutamate. In this process, cysteine is the rate-limiting reactant,
and its absence reduces the cells’ capability to respond to ROS
effects [120, 129] (Fig. 4). Cysteine enters the cell via the system
xc-. GSH often detoxifies hydrogen peroxide (H2O2), which is often
involved in many reactions that produce ROS, including Fenton
reactions. Enzymes of the GPX family then use GSH as a substrate
to reduce H2O2 into water producing a hydroxyl (OH−) molecule,
which oxidizes GSH and forms GSSG. GSSG is not an antioxidant
and requires to be reduced to GSH to function as an antioxidant,
achieved by using NADPH as a cofactor, and the enzymes
glutathione reductase (GSR) catalyzes the reaction, which yields
GSH and NAD+ [120, 129, 130]. Unfortunately, the oxidation and
reduction of GSH can produce excess free radicals that damage
molecules (via oxidation) that play critical roles in cellular
homeostasis [131].
ROS in a cell can have beneficial functions as signal molecules in

immune response [132]. Different viruses may have various ways
by which they can induce ROS and lead to its accumulation. These
ROS targeting antioxidant defense proteins are often inclusive of
the GPX family of enzymes [133]. Morris et al. reported low cellular
GSH in macrophages with an increased concentration of GSSG in
HIV infection [134] (see Table 1), and a higher concentration of
free radicals, pro-inflammatory cytokines were observed. Aside
from the ROS oxidation of GSH to form GSSG, the production of
pro-inflammatory cytokines such as IL-1 can cause the depletion
of cysteine concentration in the cell [135]. Cysteine depletion can
also be attributed to the excessive and rapid incorporation of
cysteine in the viral genome RNA proteins, which have several
cysteine amino acids containing domains, which occurs mainly
during viral replication and contributes to a decrease in GSH
[136, 137]. In response to the inflammation and depletion of
cysteine, key enzymes in the synthesis of GSH are downregulated
[138–140], which impairs the antioxidant function of GSH and its
availability, leading to cellular loss of GPX4 function. As
established earlier, GPX4 is identified as a key enzyme in response
to lipid peroxidation and an inhibitor of ferroptosis. The lack of
GSH will cause GPX4 inactivity, and this, therefore, can promote

cell death by ferroptosis due to the accumulation of lipid-free
radicals or lipid peroxides. Some studies found that GPX4
expression, together with other selenoproteins, was reduced due
to HIV infection [141], which may require further investigation into
other viruses. On top of this, ROS molecules produced during viral-
induced inflammation may facilitate ferroptosis. Interestingly,
some viruses can encode GPX4 in their genome, as observed in
the human dermatotropic poxvirus [142]. GPX4 is not only
essential in the antioxidant mechanism but also the immune
system (Box 2).

CONCLUSION AND PERSPECTIVES
Viruses are no strangers to hijacking and disrupting multi-cellular
processes to favor their proliferation, which can have unfavorable
consequences on host cells and lead to cell death. Various
mechanisms of cell death have been observed in many viral
infections. A recently described mechanism of cell death,
ferroptosis, is likely to be among the forms of cell death during
viral infections. Common features of ferroptosis, such as reduced
cysteine and consequently reduced GSH, reduced GPX4 activity,
and increased cellular iron availability, among others, have been
found to occur in viral infections, suggesting the possible
occurrence of ferroptosis, especially when occurring together
with dysregulated cell metabolism. However, it is noteworthy that
the induction and process may differ from one virus to another,
and some viruses may not cause ferroptosis. Iron is essential for
viral replication, which may be the reason for the viral usage of
iron transporters as receptors, while the underlying mechanism
that viruses interrupt iron metabolism remains elusive.
Gut which serves as a major site for dietary iron uptake and a

site for iron regulation by hepcidin, and the role of microbiota
in iron uptake during viral infections may also provide new
insights. Certain viruses target intestinal enterocytes as primary
cells of infection. Advances in understanding the mechanism of
ferroptosis and discovering new inducers have revealed the role
of metabolites and cellular organelles in ferroptosis. Viruses
have been known to disrupt cell metabolism and organelles,
leading to conditions that may favor ferroptosis. Further
investigations in cellular metabolism during viral infections
and how it may facilitate ferroptosis can also provide a new
understanding. An increased focus on how ferroptosis occurs in
viral infections and understanding the role of microbiota in iron
uptake during viral infections may lead to discovering new
therapeutic targets.
Furthermore, therapeutics of iron metabolism may serve as

potential drugs to inhibit viral infection exacerbation caused by
cell death. Currently, there are many types of medicines regulating
ferroptosis by enzyme inhibition, ion chelation and redox
response [143]. Canonical antioxidants, like butylated hydroxyto-
luene or vitamin E, are recognized as both modulators of
ferroptosis and supplements fighting against SARS-CoV-2, HSV,
HIV, etc. [144–146]. Among these iron-dependent drugs, most of
them variously show antiviral activity for certain viral species.
However, the precise antiviral mechanism still need further
investigations to provide significant research data. Increasing
discoveries prove that ferrous-reactive endoperoxides like artemi-
sinin, arterolane, and artefenomel also have an antiviral function
[147–149]. The pharmacological intervention of the ferropotosis
pathway indicates promising therapeutics for virus infection
prevention and control. The decipherment of the regulatory
process of ferroptosis is still critical and can ultimately facilitate the
development of new antiviral drugs.
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Box 2 GPX4 in antiviral innate immunity
While GPX4 function has been mainly attributed to reducing oxidized molecules,
it is noteworthy that GPX4 also plays a role in the innate immune system.
Research by Matsushita and the team reported that the absence of GPX4 in
antigen-specific T cells (CD8+ and CD4+) altered the physiological response of the
T cells [192]. This alternation was manifested in the form of the failure to expand
and protect from acute lymphocytic choriomeningitis virus (LCMV). GPX4 was
therefore found to be crucial in the expansion of the T cell and the protection of
viral and parasitic infections. Notably, GPX4 is required for T cell survival under
noninflammatory conditions [192]. However, the requirement for survivability may
differ among the subsets of T cells. GPX4 deficient T cells died via ferroptosis, and
this prevented immunity to infection by LCMV. Returning normal functionality
and increased survivability were observed in cells under lipid peroxyl stress after
treatment with Vitamin E [192]. Vitamin E is known to be an inhibitor of ferroptosis
due to its antioxidant activity and has been shown to improve cell survival in
GPX4 deficient cells [192, 193]. GPX4 also indirectly activates the stimulator-of-
interferon genes (STING), which is important in sensing foreign nucleic acid
material in the cytoplasm. This activation is achieved by maintaining the redox
state of the cell. Jia et al. reported the carbonylation of STING in HSV, which was
facilitated by GPX4 deficiency and is inhibited by GPX4 [194]. In the same
experiment, the inhibition of STING by GPX4 reduced HSV infection. The role that
GPX4 plays in the immune system is not well elaborated and may require further
investigation. There is supporting evidence that low levels of GPX4 can exacerbate
infections by enhancing cell death and altering the function of the T cells. (Further
reading on GPX4 in the immune system [194–197]).
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