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Advanced biomaterials for cancer immunotherapy
Fan Yang1, Kun Shi1, Yan-peng Jia1, Ying Hao1, Jin-rong Peng1 and Zhi-yong Qian1

Immunotherapy, as a powerful strategy for cancer treatment, has achieved tremendous efficacy in clinical trials. Despite these
advancements, there is much to do in terms of enhancing therapeutic benefits and decreasing the side effects of cancer
immunotherapy. Advanced nanobiomaterials, including liposomes, polymers, and silica, play a vital role in the codelivery of drugs
and immunomodulators. These nanobiomaterial-based delivery systems could effectively promote antitumor immune responses
and simultaneously reduce toxic adverse effects. Furthermore, nanobiomaterials may also combine with each other or with
traditional drugs via different mechanisms, thus giving rise to more accurate and efficient tumor treatment. Here, an overview of
the latest advancement in these nanobiomaterials used for cancer immunotherapy is given, describing outstanding systems,
including lipid-based nanoparticles, polymer-based scaffolds or micelles, inorganic nanosystems, and others.
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INTRODUCTION
Cancer immunotherapy is a promising treatment for cancer that
aims to provide treatment more accurately and safely than other
traditional therapies [1, 2]. Agents are designed to provoke a
robust primary and secondary antitumor immune response by
repairing or enhancing natural mechanisms that are evaded or
damaged during disease progression, thus inhibiting tumor
growth and metastasis [3–5].
Approximately a century ago, Coley first used a method to

activate the patient’s immune system to help treat tumors [6]. In
the immune system, antigen-presenting cells (APCs) continuously
eliminate exogenous or endogenous antigens; antigens are taken
up and processed to be exposed onto major histocompatibility
complexes (MHCs) I or II on the APC surface for further
presentation to naive T cells [7, 8]. The three main pathways by
which APCs activate T cells are the binding of MHC complexes to
T-cell receptors, the presence of costimulatory molecules on the
cell surface (CD80 and 86 on APCs binding to CD28 on T cells) and
the cytokines that stimulate T cells [9]. T cells can differentiate into
two major subpopulations: CD4+ T cells, which can further
differentiate into T-helper 1 (Th1) and T-helper 2 (Th2) cells, and
CD8+ T cells, which can further differentiate into cytotoxic
T lymphocytes (CTLs) to directly kill tumor cells [9, 10]. Both
CD8+ T cells and IFN-γ-secreting Th1 CD4+ T cells play a vital role
in killing tumors [10, 11] (Fig. 1).
In 1986, the US Food and Drug Administration (FDA) approved

recombinant versions of the cytokine interferon-α (IFN-α) as the
first cancer immunotherapeutic drug for the treatment of hairy
cell leukemia; however, IFN-α was replaced because of its short
therapeutic duration [12]. Subsequently, recombinant interleukin-
2 (IL-2) was approved by the FDA as a cancer immunotherapy
drug for the treatment of metastatic renal cancer (in 1992) and
metastatic melanoma (in 1998), separately [13]. Although IL-2

initially has a good therapeutic effect in some patients, the use of
large doses due to its short half-life results in many immune-
related side effects, such as cytokine release syndrome and
vascular leakage syndrome [14–16]. After a stagnant phase,
sipuleucel-T (an autologous dendritic cell (DC) therapy) as the
first cancer therapeutic vaccine was approved by the FDA for
prostate cancer, which meant tumor immunotherapy had finally
made successful progress in the early 21st century. However,
production complexities and other issues hindered the clinical
translation of sipuleucel-T [17, 18]. Since the cytotoxic
T-lymphocyte antigen-4 (CTLA-4)-targeted checkpoint inhibitor
ipilimumab was approved for advanced melanoma in 2011 [19],
there has been a shift towards novel immunotherapies, including
programmed cell death-1 or its ligand monoclonal antibody (aPD1
or aPDL1) [20] and chimeric antigen receptor (CAR) T-cell
therapies [21–23].
Although these treatments have been developed and approved

for clinical use and have achieved some efficacy, many problems
regarding safety and effectiveness remain to be solved [14, 24, 25].
In terms of safety, some immunotherapeutic drugs require a large
dose for their short half-life, which causes autoimmune side
effects in some patients. For example, two syndromes (cytokine
release syndrome and vascular leakage syndrome) caused by IL-2
lead to severe and even lethal systemic inflammatory reactions in
some patients [25]. In terms of efficacy, current immunotherapy is
only effective in some patients, and most immunotherapy is
initially used only to treat hematological tumors. Only a few
immunotherapies for the treatment of solid tumors are approved
because solid tumors have a complex tumor microenvironment
(TME) that is a difficult barrier to break through [26].
To reduce side effects and improve the accuracy of immu-

notherapy, novel delivery systems need to be manufactured. In
recent years, with the development of nanotechnology, an
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increasing number of delivery systems have been designed for the
local and sustained release of immunotherapeutic drugs in vivo
[27–29]. Biomaterial-based delivery systems have many advan-
tages in cancer immunotherapy, such as the specific and targeted
delivery of biomolecules, high efficacy, low toxicity, and immune-
stimulating effects (Table 1) [27, 30, 31]. A great variety of
advanced biomaterials can be used for cancer immunotherapy,
including liposomes, polymers, silica, and so on (Fig. 2) [2, 32, 33].
Different biomaterials use various means and technologies to play
an important role in cancer prevention [34–38]. To achieve precise
antitumor effects, these advanced biomaterials with different
functions can be used to deliver immunopharmaceuticals to
organs or tissues (such as the mucosa or skin) that are rich in
immune cells by different routes of administration (for instance,
intranasally [39], orally [40], and subcutaneously [41]).
In this review, we first summarize several major immunother-

apeutic strategies and discuss their strengths and weaknesses. We
then describe a range of advanced nanobiomaterials that have
been used for tumor immunotherapy to enhance efficacy and/or
reduce side effects and evaluate the clinical or preclinical impact
of these strategies.

MAIN CLASSIFICATIONS OF CANCER IMMUNOTHERAPY
This article mainly focuses on advanced biomaterials for the
following four categories: cytokines, immunological checkpoint
inhibitors, engineered T cells, and cancer vaccines. In this section,
we outline the four immunotherapies and analyze the options that
can be used to address their shortcomings.

Cytokines
As recombinant IFN-α was approved for the treatment of hairy cell
leukemia, cytokines were the first class of immunotherapy for
clinical use [12]. After cytokines are injected into the body,
immune cells can be directly activated to generate an immune
response. The current cytokines used in immunotherapy mainly
include interferon, interleukin, and granulocyte macrophage
colony-stimulating factor (GM-CSF) [14]. Usually, when the body
is infected by pathogenic microorganisms, interferon is produced
to induce the activation and maturation of macrophages,

lymphocytes, DCs, and other immune cells [42]. In addition,
interferon can also inhibit angiogenesis at the tumor site [43].
Interleukins promote the activation and differentiation of CD4+

T cells, CD8+ cells, and B cells to promote innate and adaptive
immune responses [44–46]. GM-CSF is a cytokine that promotes
the differentiation of bone marrow cells; it plays a key role in the
activation of DCs and the priming of antitumor CTLs [47]. Both
granulocyte colony-stimulating factor (G-CSF) and GM-CSF were
approved for use in neutropenia [48]. Although cytokines have a
certain effect, due to the short half-life of cytokines, large doses
are needed to achieve better therapeutic effects, thus leading to
cytokine release syndrome [14]. In addition, cytokines may
promote regulatory T-cell growth while inducing stimulated T-
cell death, which leads to the emergence of autoimmune diseases
[24]. Researchers are currently trying to combine several cytokines
or combine cytokines with chemotherapy or other immunothera-
pies to reduce the dose used and thereby avoid the side effects
caused by high doses [43].

Immunological checkpoint inhibitors
Immunological checkpoint inhibitors are by far the most studied
immunotherapies, and the most commonly used inhibitors are
PD-1/PD-L1 (programmed death receptors 1/programmed death
receptor-ligand 1) blockade and CTLA-4 inhibition. Immune
checkpoints are inhibitory pathways in the immune system that
maintain self-tolerance and regulate the physiological immune
balance [49]. Activated T cells express PD-1 to recognize and
remove abnormal or cancerous cells [50]. However, tumor cells
inactivate the T cells that recognize tumor antigens by expressing
PD-1 ligands that bind to PD-1, thereby evading immune system
attacks [51]. Therefore, tumor cell death can be induced by
blocking inhibitors of PD-1 or its ligand. CTLA-4 is another immune
checkpoint that reduces T-cell activation and promotes tumor
progression by binding to its ligands (CD80 and CD86) [52].
Inhibitors against CTLA-4 and its ligands block their interactions to
increase T-cell activity and thereby clear tumors.
In the past few years, PD-1, PD-L1, or CTLA-4 checkpoint

blockade strategies have achieved encouraging clinical results.
More than five checkpoint inhibitors have been approved for
different tumors [53]. However, it is disappointing that there are

Fig. 1 Scheme of the cancer immunotherapy mechanism. After antigens are processed by immature dendritic cells (ImDCs), they are
presented to T cells by mature dendritic cells (mDCs) through major histocompatibility complex (MHC) class I or MHC class II complexes
binding to CD8+ or CD4+ T cells, separately. Simultaneously, mDCs also express costimulatory molecules and cytokines such as IFN-γ and IL-12
to synergistically stimulate T cells. CD8+ T cells further differentiate into cytotoxic T lymphocytes (CTLs), and CD4+ T cells further differentiate
into IFN-γ secreting T-helper 1 (Th1) cells to assist in activating CD8 cells and other innate immune cells, such as natural killer (NK) cells,
granulocytes or macrophages, to directly kill tumor cells
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many limitations to their use. As described above, the systemic
use of immunological checkpoint inhibitors can cause damage to
many normal organs [54, 55]. In addition, not all patients can
benefit from checkpoint inhibitors, and studies on the reactivity to
checkpoint inhibitors are also underway [56, 57]. Furthermore, the
immunosuppressive microenvironment of different tumors varies,
and new strategies are needed to achieve precise treatment of
tumors [58]. With the development of nanotechnology, these
limitations may be addressed by using advanced biomaterials to
achieve the precise delivery of drugs at the tumor site.

Engineered T cells
Engineering T cells mainly include CAR T cells and T-cell receptor
T cells (TCR T cells). In recent years, CAR T cells have achieved
great clinical success and received FDA approval. In CAR T-cell
therapy, T cells collected from the peripheral blood of a patient
are engineered in vitro to express CARs that specifically recognize
tumor antigens and then are reinjected into the same patient to
recognize and kill tumors; [59] these T cells can maintain activity
for a long time in the body [60]. However, CAR T-cell therapy is
time-consuming, expensive, and technically demanding, which
limits its widespread use [61]. In 2017, two CAR T-cell therapies
targeting CD-19 were approved for the treatment of lymphoma
[62, 63]. B-cell leukemias and lymphomas highly express CD-19
molecules. Moreover, normal cells expressing CD-19 have only
B-cell lineages. Therefore, the main side effect of CAR T cells
targeting CD-19 is B-cell hypoplasia, which can be alleviated by
immunoglobulin replacement therapy [64]. The clinical success of
CD-19 CAR T cells has inspired many studies of CAR T-cell therapy
for different antigens or combinations of several antigens [65–67].
However, CAR T-cell therapy causes cytokine release syndrome
and neurotoxicity [68], and in some cases (especially solid tumors
with hash microenvironments), the survival of CAR T cells is

affected [69, 70]. Therefore, new biomaterials and techniques are
urgently needed to improve the survival of CAR T cells.
TCR T cells are clinically available for hematological and solid

cancers. TCRs respond to MHC-presented tumor-associated
intracellular antigens, such as neoantigens and cancer-testis
antigens [71]. TCR T cells are MHC-dependent immunotherapies.
In addition, preclinical studies have shown that the specificity of
TCR T cells plays an important role in clinical outcomes; [72]
however, the toxicity caused by high-affinity TCR T cells is also
difficult to predict [73]. For the above reasons, it is particularly
important to develop new technologies and new biomaterials to
avoid the toxicity of CAR T cells and TCR T cells while improving
their applicability to solid tumors.

Cancer vaccines
The four main cancer vaccines are DCs, tumor cell lysates (TCLs),
nucleic acids, and neoantigens [74]. DC vaccines are a widely
studied class of cell-based tumor vaccines in which DCs obtained
from patients are stimulated in vitro to express tumor-associated
antigens and then directly activate T cells to kill tumors. As
mentioned above, one DC vaccine approved for prostate cancer is
sipuleucel-T [75]. However, other DC-based vaccines have failed in
clinical studies despite their high safety [76]. It is predicted that
the therapeutic effect on a tumor can be improved by increasing
the expression level of the target antigen on the surface of the DC
[77] and promoting the lymph node delivery efficiency of the DC
vaccine [78].
Tumor cell lysates can be prepared by two common clinical

methods: ultraviolet B ray irradiation or freeze–thaw cycles. Tumor
cell lysates contain a variety of tumor-associated antigens, which
can avoid ineffective immunization caused by the loss of a single
antigen after tumor mutation. In addition, TCLs are suitable for all
patients and are not restricted to their HLA type [79]. Clinical

Table 1. Characteristics of selected delivery strategies for cancer immunotherapies

Delivery technology Classes of immunotherapy Advantages Limitations

In vivo nanoparticle delivery to
immune cells

• Cytokines
• Checkpoint inhibitors
• Agonistic antibodies
• Engineered T cells

• Surface functionalization with
targeting agents

• Localized delivery
• Cargo protection

• Premature drug release
• Nanoparticle stability
• Delivery to off-target clearance organs
• Systemic toxicity

Ex vivo T-cell functionalization with
nanoparticles

• Cytokines
• Vaccines
• Engineered T cells

• Innate tumor infiltration
• Improved drug delivery
• Can be engineered ex vivo or in vivo

• Long production time
• Short drug release profiles
• Cell death after administration
• Complex manufacturing

Controlled release systems • Cytokines
• Checkpoint inhibitors
• Agonistic antibodies

• Extended therapy timeline
• Cargo protection
• Low required doses
• Localized delivery following
intravenous injection

• Difficult to control release profiles
• Toxicities from off-target release
• Potentially require surgical implantation
• Acidification can degrade cargo

Biomaterial implant scaffolds • Cytokines
• Vaccines
• Engineered T cells

• In situ dendritic cell activation
• Delivery of dendritic cell attractants
• Implant functionalization with
antigen

• Controlled release profiles
• Provides physical structure for cells

• Potential toxicity from the implant
material

• Need to define specific antigens
• Potential rejection of loaded adjuvant
• Requires surgery

Injectable biomaterial scaffolds • Cytokines
• Checkpoint inhibitors
• Neoantigens

• Minimally invasive
• No surgery required
• Controlled release of loaded cargo
• Delivery directly to the tumor

• Early stages of development
• Requires extensive characterization for
biodegradation profile

• May require large gauge needle

Transdermal delivery systems • Checkpoint inhibitors
• Neoantigens

• Sustained release
• Low required doses
• Local delivery directly to the tumor
• Minimally invasive
• Bio-responsive

• Small treatment area
• Bioavailability and biocompatibility are
unknown

• Can be used only for tumors close to
the skin

• Complex manufacturing

Reprinted with permission from [2]
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experiments have shown that tumor cells can be modified to
express more immune-related elements, including interleukins,
costimulatory molecules, etc., so that TCLs can produce a stronger
antitumor immune response in vivo after injection [74].
However, many TCL-associated vaccines have failed in Phase II
or Phase III clinical trials [80], suggesting that tumor lysate
vaccines require new techniques and materials to increase their
effectiveness.
The nucleic acid vaccine is a promising alternative to traditional

vaccines that work by delivering exogenous nucleic acids into
target cells [81]. Nucleic acid therapeutic drugs consist of DNAs or
RNAs that are taken up and translated into antigenic proteins by
APCs, which induce immune responses against the target proteins
to kill tumors expressing target antigens [81]. Although DNA-
based nucleic acid vaccines have been clinically tested, they have
failed due to their intranuclear delivery difficulties and somewhat
disappointing immunogenicity [82, 83]. In contrast, RNA-based
nucleic acid vaccines can be directly translated into antigenic
proteins, which enhance immune efficiency. Furthermore, since
RNA is a naturally occurring molecule, its preparation cost is low,
and its half-life can be extended by modification. Moreover, RNA is
not integrated into the genome as DNA is and therefore does not
cause hereditary side effects [84]. However, naked RNA is highly
susceptible to degradation by nucleases; therefore, it requires
special transfection reagents or delivery techniques to enhance its
intracellular delivery [85]. Thus, nucleic acid vaccines can greatly
benefit from advanced delivery technologies and materials, which
are technical barriers to current nucleic acid vaccines. An effective
and safe delivery system is the key to the successful application of
nucleic acid vaccines.
Neoantigen vaccines use tumor somatic DNA as antigens to

promote the antitumor immune response [86]. These antigens are
only expressed in tumor cells and can avoid damage to normal
tissues [87]. Advanced materials and delivery systems can improve
the stability of these neoantigens and combine multiple
vaccine classes to improve the safety and efficacy of cancer
vaccines [88–90].

NOVEL BIOMATERIALS FOR CANCER IMMUNOTHERAPY
Lipid-based biomaterials
As the most powerful professional APCs, DCs have the potency of
integrating both innate and adaptive immunity [91–94]. Antigens
must be seized by APCs, especially DCs, to induce a cytotoxic
CD8+ T-cell (CTL) immune response directed against tumors
(Fig. 3) [95–98]. Since cellular DC vaccines require a time-
consuming and costly preparation process [99, 100], lipid-based
nanobiomaterials such as liposomes have been explored to deliver
antigens and adjuvants directly to DCs in vivo [101–103].

Liposomes. Liposomes are nanosized bubbles made of a phos-
pholipid bilayer [104, 105], which are the main lipid-based
nanobiomaterials. Liposomes have been studied as potential
vectors of immunotherapy for many years, including marketed
vaccines for influenza (Inflexal®), Hepatitis A (Epaxal®), and recently,
malaria (Mosquirix) for the property of being easily functionalized
[106]. Lai et al. synthesized liposomes that were loaded with a
melanoma-specific TRP2180-188 peptide and modified with the
DC-targeting mannose and immune adjuvant CpG-ODN. These
liposomes significantly increase tumor antigen-specific CD8+

cytotoxic T cells, and this leads to the inhibition of tumor
angiogenesis and tumor cell proliferation [107]. Le Moignic et al.
reported a dramatic mRNA delivery system made with cationic
liposomes (L), a cationic polymer (P), and mRNA (R) that promoted
DC-targeting and exerted cogent antitumor responses [102].
To increase the environmental responsiveness of liposomes,

highly pH-sensitive polymers were modified on the surface of
liposomes: they promoted the secretion of Th1 cytokines from DCs
and enhanced the therapeutic effects of the tumor [108, 109]. Yuba
et al. designed a codelivery system to simultaneously load
antigen and IFN-γ genes by using pH-sensitive liposome-loaded
antigen and lipoplexes containing the IFN-γ gene, which
resulted in strong therapeutic effects [110]. Moreover, combining
these pH-sensitive liposomes with DC-targeting adjuvants could
trigger double stimulation to DCs and promote antitumor
immunity [111].

Fig. 2 Different biomaterials for cancer immunotherapy. Reprinted with permission from [2]
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Another study suggested that liposomes that were modified
with small molecule inhibitors to prevent TGFβ from binding with
the TGFβ receptor and preloaded on T cells could improve the
infiltration of T cells into B16F10 melanoma tumors more efficiently
[112]. Drugs wrapped by liposomes have a prolonged blood
circulation time and reduced adverse effects [113]. In recent years,
a cytotoxic T-lymphocyte-associated protein-4 (CTLA-4)-blocking
monoclonal antibody had been used in clinical research and
achieved some effects [114, 115]. However, its adverse effects were
also serious [116]. Nikpoor et al. studied the antitumor effects of
liposomes containing a CTLA-4 blockade antibody and proved that
the PEGylated liposomal formulation of CTLA-4 could improve the
antitumor immune response and therefore merited further human
tumor-associated studies [117]. To improve the efficiency of
antigen delivery, Miura et al. reported liposomes modified with a
KALA peptide (WEAKLAKALAKALAKHLAKALAKALKA), an α-helical
cationic peptide, and encapsulated antigens that delivered
antigens to the cytoplasm and achieved a more antigen-specific
cytotoxic T-lymphocyte response [118].
Recently, many studies proved that combined photothermal

immunotherapy could potentiate the antitumor immune response
and overcome the limitations of photothermal therapy (PTT)
[119, 120]. Li et al. illustrated that fluorophore-loaded liposomes

(IR-7-lipo) modified with an immunoadjuvant (HA-CpG) could
synergistically activate CD8+ T effector cells and alleviate the
immunosuppressive TME [121]. Furthermore, researchers prepared
liposome-coated gold nanocages containing adjuvant MPLA and
melanoma antigen peptide TRP2 and modified them with the DC-
specific antibody aCD11c on the surface; they confirmed that these
liposomes potentiated the activation and maturation of DCs by the
targeting capacity of aCD11c, and the migration of DCs could also
be monitored in real time by fluorescence and photoacoustic
imaging [122].

Lipid/calcium/phosphate (LCP) nanoparticles. LCP nanoparticles
(NPs) are made of lipid-coated CaP [123]. Liu et al. combined an
anti-CTLA-4 monoclonal antibody with the LCP-based mRNA
vaccine encoding tumor antigen MUC1 to DCs to promote
antitumor effects [124]. This combination administration signifi-
cantly enhanced the T-cell immune response and proved that LCP
is an effective carrier for delivering tumor-associated RNA.
Moreover, an LCP-based cancer cell-mimicry vaccine (αHSP70p-
CM-CaP) was reported to kill tumor cells and suppress tumor
infiltration [125]. Huo et al. encapsulated sunitinib base into PLGA-
PEG-MBA (SUNb-PM) polymeric micelles and simultaneously
hypodermically injected an LCP-based vaccine encompassing

Fig. 3 Schematic depiction of an in situ DC vaccine using chimeric cross-linked polymersomes (CCPS) as adjuvants combined with PDT and
ICD for the treatment of MC38 colorectal cancer. a Process of self-assembled nanoparticle formation. b Immune response in vivo after
injection of CCPS/HPPH/DOX. Reprinted with permission from [98]
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tyrosinase-related protein 2 (Trp2) peptide and CpG-ODN; they
proved that SUNb-PM could enhance the effects of immunotherapy
for advanced melanoma by modulating the TME [126].

Polymer-based biomaterials
Micelles. When the critical micelle concentration was reached,
amphiphilic polymers self-assembled as nanosized particles,
namely, micelles [127, 128]. Particles with a smaller size and
neutral charge may arrive more easily at the draining lymph nodes
and enhance systemic spread [90, 129–132].
To induce systemic toxicity and promote the maturation of DC,

Zeng et al. produced an amphiphilic molecule (PSA) by modifying
polyethyleneimine (PEI)-2k with stearic acid, and PSA micelles
selectively accumulated in the draining lymph nodes rather than
the systemic area. Moreover, PSA micelles stimulated the secretion
of CCR-7 and the expression of CD86 and MHC-II in draining
lymph nodes, and PSA micelles loaded with Trp2 showed
significant antitumor effects [133]. Poly(ethylene glycol)-block-
poly(L-arginine)-based micelles delivered to a tumor site via
enhanced permeability and retention effects suppress tumor
progression by targeting macrophages and promoting the
generation of NO in the tumor site [134]. Another tumor-
associated macrophage (TAMs)-targeted micelle, galactose-
functionalized zinc protoporphyrin IX (ZnPP)-grafted poly(L-
lysine)-b-poly(ethylene glycol) polypeptide micelles (ZnPP PM),
was reported, and these micelles could repolarize TAMs to M1
macrophages by producing reactive oxygen species (ROS) [135].
A mixed micellar system loaded with curcumin (CUR) was

proven to have good bioavailability and to downregulate
proinflammatory cytokines, which provided a new idea for
surmounting the development of resistance in endometrial cancer
[136]. Another CUR–PEG micelle, a curcumin–polyethylene glycol
conjugate, was designed to promote antitumor effects combined
with a vaccine, and it significantly increased interferon-γ (IFN-γ)
production and reduced immunosuppression in the TME [137].
However, a high concentration of IFN-γ may induce systemic
toxicity. Ishii et al. designed polyion complex (PIC) micelles whose
viscosity was low at room temperature but increased under
physiological conditions and proved that this gel loaded with IL-
12 could inhibit tumor growth and decrease side effects [138].
Cui et al. investigated polyplex micelles loaded with genes

encoding the tumor-associated antigens SART3, GM-CSF, and
CD40L and demonstrated that these micelles when administered
subcutaneously may be safe and effective for tumor immunother-
apy [139]. Researchers manufactured polymeric hybrid micelles
(PHMs) loaded with Trp2 and CpG, and these PHMs consisted of
polycaprolactone–polyethylene glycol (PCL–PEG) and 10% (w/w)
PCL–PEI and were proven to have the ability to deliver antigen
and adjuvant to lymph nodes and stimulate the CTL response,
thus effectively inhibiting tumor growth [140]. Luo et al. prepared
poly(ethylene glycol)-b-poly(L-lysine)-b-poly(L-leucine) (PEG-PLL-
PLLeu) micelles coloaded with OVA and STAT3 siRNA and proved
that these micelles downregulate the expression of STAT3 and
promote the maturation of DCs, thus improving the therapeutic
efficacy of tumor vaccines [141]. Moreover, PEG-PLL-PLLeu self-
assembled into micelles containing miR-148ai, and OVA repro-
grammed the immunosuppression of tumor-associated dendritic
cells (TADCs) by inhibiting the DNMT1 gene, which upregulated
SOCS1, the suppressor of TLR signaling, and these findings
provided a novel idea for antitumor immunotherapy [142]. Li et al.
designed carboxylated micelles modified with OVA and toll-like
receptor-7 agonist CL264, which showed the ability to deliver
antigen and adjuvant to lymph nodes, thus stimulating cellular
and humoral antitumor immune responses [143].

Nanoparticles. PLGA copolymers are biodegradable aliphatic
polyesters made of diverse proportions of lactic and glycolic
acids, which are approved by the FDA to be used in the

production of surgical sutures and in some drugs to achieve
controlled release [144–147]. Because its degradation products
can be metabolized normally, PLGA has good biocompatibility,
and therefore, many researchers use PLGA to deliver not only
antitumor agents or drugs such as paclitaxel [148], 9-
nitrocamptothecin [149], and estradiol [150] but also cancer
vaccines [151–156].
Researchers have successfully manufactured PLGA NPs loaded

with cancer cytomembranes, which can simultaneously deliver
tumor-associated antigens and adjuvants so that these NPs can
promote the expression of surface biomarkers on DCs. Moreover,
this strategy can be used to target the source of cancer cells by an
isotypic combining mechanism and is beneficial to antitumor drug
delivery [157]. A PLGA-based biomimetic artificial antigen-
presenting cell (aAPC) combined with an anti-PD-1 monoclonal
antibody has been proven to have synergistic effects on tumor
immunotherapy by motivating cytotoxic CD8+ T cells and
decreasing the inhibition of the tumor immunosuppressive
microenvironment [158]. PLGA-based NPs that were coloaded
with antigens and MPLA can be fractured in the intracellular
milieu and promote antigen retention and IFN-γ secretion
simultaneously by enveloping the erythrocyte membrane on the
surface [159].
PLGA-based microspheres were found to enable the eradication

of prostate carcinoma by codelivering tumor lysates, CpG-ODN,
and Poly(I:C), and their capacity to stimulate T cells to produce IFN-
γ and granzyme B was significantly enhanced in TRAMP mice
[160]. PLGA polymers were also used to codeliver OVA, CpG-ODN,
and Poly(I:C); however, the therapeutic effects were weakened,
and the production of IFN-γ and the activation of DCs were
decreased under chronic stress [161]. Two TLR7/8 agonists have
been synthesized and encapsulated in PLGA NPs. This OVA or
tumor lysate NP vaccine significantly inhibits tumor growth in
B16F10-OVA or renal cell carcinoma by stimulating the CD8+ CTL
response [162].
To realize image-guided delivery of immunomodulators, IFN-γ

and iron oxide nanocubes were coencapsulated in PLGA micro-
spheres. This delivery system could provide a convenient way of
delivering drugs to tumor sites after injection and monitoring the
distribution of drugs sequentially [163]. A new combination
method that uses PLGA for encapsulating a physical mixture of
ovalbumin and hydroxychloroquine promotes CD8+ CTL and
memory T-cell immune responses in tumor tissues via the
controlled release of OVA and upregulation of MHC-I and CD86
costimulatory molecules in DCs [164]. To achieve the goal of
targeting DCs more accurately, Rosalia et al. designed a PLGA-
based CD-40-targeted cancer vaccine that showed significant
enhancements in delaying tumor growth and extending the
survival of tumor-bearing mice by facilitating antigen-specific
antitumor CD8+ T-cell responses [165]. Recently, combination
immunotherapy has become a particularly promising strategy for
tumor treatment, and PLGA has been used to realize the
codelivery of antiprogrammed cell death-1 (aPD1) and T-cell
agonist (aOX40) agents to simultaneously rather than sequentially
elicit the activation of T cells. These dual-immunotherapy NPs
increased the ratio of CD8+ to regulatory T cells infiltrating the
tumor, thereby promoting therapeutic efficacy in both B16F10
melanoma tumors and 4T1 breast cancers [166].
Indocyanine green (ICG) and imiquimod (R837) were coloaded

by PLGA to achieve the eradication of preexisting tumors and
enhance the antitumor immune response simultaneously. More-
over, with the combination of these particles and anti-CTLA-4, this
strategy has been proven to delay tumor growth and extend
survival in both 4T1 and CT26 tumor models [167]. PLGA polymers
as biodegradable materials can also be combined with photo-
thermal agents. Researchers produced anti-PD-1 peptide
(AUNP12) and hollow gold nanoshell coencapsulated PLGA NPs,
and these particles facilitated the effective inhibition of primary
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and distal tumor growth via an increasing percentage of CD8+

CTLs and secretion of IFN-γ [168]. In addition, the coadministration
of anti-PD-1 peptide (AUNP12) and hollow gold nanoshell
coencapsulated PLGA NPs with CpG has been proven to mediate
the maturation of DCs in vitro and enable direct tumor necrosis in
bilateral and lung metastatic 4T1 tumor-bearing mice [169]. The
antibody-modified PLGA core was used to load the hydrophobic
drug imatinib (IMT), which was developed as an inhibitor of
tyrosine kinase and then manufactured as IR-780 and IMT
codelivery PH-sensitive NPs, which showed a great capacity to
stimulate an effective CD8+ T-cell antitumor immune response
[170].
Researchers have compared the capacity of synthetic long

peptide-based cationic liposomes and PLGA NPs to induce an
immune response. They proved that liposomes have advantages
over PLGA particles for inducing the T-cell response. However, the
mechanism of this phenomenon has not been investigated [171].
In addition, PLGA polymers used to formulate antigen-capturing
nanoparticles (AC-NPs) were proven to promote an antitumor
immune response and improve the efficacy of αPD-1 immu-
notherapy. The surfaces of PLGA NPs were modified by different
chemical groups to bind tumor antigens; however, although all
other AC-NPs except mPEG AC-NPs loaded plenty of proteins,

PLGA and Mal AC-NPs showed a higher ability to improve the
immunotherapeutic efficacy (Fig. 4) [172].

Hydrogels. Hydrogels can serve as antigen storage caverns
because of their gelation properties, and they have been
used as vectors to coload cytokines, proteins, DNAs, and so on
[31, 173–179]. Alginate microparticle-based injectable gels were
reported ~10 years ago and have been used to codeliver mature
DCs and chemokines CCL21 and CCL19. The study showed that this
hydrogel system could recruit host DCs to the injection site and
migrate to local lymph nodes at the same time, thus providing a
continual process to initiate the immune response [180]. Research-
ers have designed a two-step strategy to realize the recruitment of
APCs and presentation of antigens via the injection of GM-CSF
delivering mPEG−PLGA hydrogels followed by the administration
of antigen-loaded vectors, which showed obvious antitumor
immunotherapeutic potential [181]. Nanogel particles formed by
cholesteryl pullulan showed the good function of delivering and
cross-presenting antigens to medullary macrophages. In addition,
the study revealed that this vaccine could significantly slow tumor
growth with the help of Toll-like receptor agonists [182].
Hyaluronic acid–tyramine-based hydrogels have been used to

deliver IFN-α to the injection site and to inhibit tumor proliferation

Fig. 4 AC-NPs have the capacity to inhibit distant B16F10 xenografts. a Schematic illustration of cancer immunotherapy promotion by using
antigen-capturing nanoparticles (AC-NPs) combined with radiotherapy and αPD-1 treatment. b Average tumor growth curves of abscopal
tumors in mice treated with different administrations. c The survival rate of the treated mice in b. Reprinted with permission from [172]
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via the coadministration of sorafenib [183]. In addition, a
hyaluronic acid-pluronic F-127 hydrogel was used to prepare black
phosphorus quantum dot nanovesicles (BPQD-CCNVs), GM-CSF,
and LPS coloaded systems. The study showed that the sustained
release of GM-CSF and LPS from the injection site could recruit and
activate DCs. In addition, NIR irradiation combined with PD-1
antibody could generate a strong antitumor immune response
[184].

Mooney and his colleagues manufactured an infection-
mimicking system to coload GM-CSF, Toll-like receptor agonists
(CpG-ODN) and a tumor lysate to achieve the recruitment and
activation of DCs, which promoted a specific and effective
antitumor immune response [185, 186]. The same team designed
a cryogel-based delivery system to encapsulate GM-CSF and CpG-
ODN. This vaccine could be subcutaneously injected into mice and
controlled release immunomodulatory factors and cancer antigens,

Fig. 5 PVAX immunotherapy for both recurrent and metastatic 4T1 tumors. a Schematic depiction of the manufacture of PVAX for cancer
immunotherapy. b Average and individual tumor growth curves of recurrent 4T1 xenografts in mice treated with different formulations.
c Survival curves of the mice bearing 4T1 recurrent tumors. d Average tumor growth curves of the distant tumors treated with different
formulations. e Tumor-free percentages of the abscopal tumor. Reprinted with permission from [195]
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thus provoking strong antitumor T-cell responses and improving
the survival rate of B16F10-bearing mice [187].

Yang and coworkers reported that hydrogels formed by
phosphatase enzymes had good potency in evoking humoral
and cellular immune responses and could be used as protein
vaccine adjuvants [188]. Moreover, they also proved that
peptide Nap-GFFY hydrogels formed by a very simple process
could also provoke a cogent CD8+ T-cell immune response
[189]. Chao et al. designed a combination system in which ALG
was cross-linked by multivalent cations and 131I-labeled catalase
coadministered and jellified in a local tumor site, followed by
systemic CTLA-4 injection. This strategy delayed local tumor
growth and metastasis [190].

Gu and coworkers designed a therapeutic scaffold formed by
a ROS-responsive hydrogel to release gemcitabine (GEM) and an
anti-PD-L1 blocking antibody (aPDL1) locally in tumor-bearing
mice [191]. This system significantly decreased the level of ROS
and the numbers of myeloid-derived suppressor cells and TAMs
in the tumor site. Moreover, a 50% survival rate and 30%
recurrence rate were observed in the aPDL1-GEM@Gel treat-
ment group on account of primary and memory immune
responses. In the same year, this research group also generated
another immunotherapeutic gel for postsurgical tumor treat-
ment, which was manufactured by mixing the fibrinogen
solution containing anti-CD47 antibody-loaded CaCO3 NPs and
thrombin solution in the postsurgical tumor site [192]. This
strategy had the potency of preventing local and distant tumors
via activating M1-type TAMs and promoting macrophage
phagocytosis and antitumor immune responses.
DNA-based supramolecular hydrogels were reported to

recruit and activate APCs by releasing a high concentration of
CpG, which could serve as a promising method for tumor
immunotherapy [193]. Song et al. demonstrated a poly(L-valine)
hydrogel for coencapsulating TCL, TLR3 agonist, poly(I:C) that
realizes the controlled release of antigens and adjuvants, thus
promoting antigen persistence and presentation to enhance the
cytotoxic T-lymphocyte immune response against cancer [194].
A tumor-penetrable peptide-based hydrogel was prepared by
encapsulating JQ-1 (a BRD4 inhibitor) and ICG coloaded tumor
cells (Fig. 5) [195]. This vaccine could evoke a strong patient-
specific immune response and prevent recurrence and

metastasis of postsurgical tumors by NIR laser-triggered release
of tumor-specific antigens and JQ-1.

Inorganic biomaterials
Siliceous nanoparticles. Mesoporous silica NPs can be prepared
by using organosilane precursors to participate in hydrolysis and
condensation reactions [196, 197]. Moreover, the surface of these
particles can be modified with various reactive groups for different
medical applications [198, 199]. Amino acid-modified silica NPs
were reported to promote cytokine production, and silica nano-
spheres doped with Ca, Mg, and Zn (MS-Ca, MS-Mg, and MS-Zn)
showed the capacity to provoke a Th1 anticancer immune
response [200, 201]. Both spherical silica NPs and asymmetric
mesoporous silica NPs were found to have the potential to
activate and mature immune cells [202–206]. In addition, siliceous
NPs also play a strong role in vaccine formulations such as the
Japanese encephalitis vaccine [207], hepatitis B virus DNA vaccine
[208], and oral hepatitis B vaccine [209], as well as in viral vaccine
heat resistance [210] and viral inhibition [211]. Mesoporous silica-
templated and hollow particles were designed to load antigens
and adjuvants that showed a robust lymph node targeting and
immune cell-activating capacity [212–216]. Yang et al. achieved
the synthesis of dendritic mesoporous organosilica hollow spheres
for the first time, which showed a significant potential to provoke
an antitumor immune response [217]. Mooney and coworkers
reported mesoporous silica rods (MSRs) with a high aspect ratio
that spontaneously assembled as a macroporous structure to
recruit DCs and generate humoral and cellular immune responses
against tumors in the presence of GM-CSF and CpG [218]. They
also modified these MSRs with PEG, PEG–RGD, or PEG–RDG groups
[219] and PEI (Fig. 6) [220], which promoted immune cell
activation and infiltration and may pave the way for cancer
vaccination.

Iron oxide nanoparticles. Because iron oxide NPs have been
approved for human use as MRI contrast agents and their
degradation products are good for the body’s iron store, iron
oxide NPs have been increasingly used simultaneously for cancer
immunotherapy and imaging [221–223]. Iron oxide NPs can be
modified with many cargos to improve the antitumor immune
response, such as heat shock protein 70 (Hsp70) [224], R837 and

Fig. 6 The MSR–PEI vaccine inhibits established tumors. a Schematic illustration of PEI and antigen adsorption. b Schematic depiction of the
MSR vaccine and MSR–PEI vaccine. Tumor growth (c) and survival rate (d) of mice bearing E7-expressing TC-1 tumors rechallenged with TC-1
cells. e The survival rate of mice bearing E7-expressing TC-1 tumors treated with different formulations. Reprinted with permission from [220]
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Poly(I:C) [225], CpG-ODN [226], and ICG [227]. These NPs have the
potential to realize the integration of imaging and therapy.

Gold nanoparticles. Photothermal immunotherapy is an effective
treatment combining laser photophysical effects with immunor-
egulation [228–230]. Many photothermal biomaterials, such as
gold nanorods [231], Prussian blue [232, 233], and NIR photo-
sensitizers [234], have recently been used for cancer immunother-
apy. Gold NP labeled melanoma-specific T cells show the potential
to be noninvasively imaged by classical X-ray computed
tomography, which provides a convenient way to track immune
cells in immunotherapy [235]. More interestingly, gold NPs can

predict the therapeutic response to immune checkpoint blockade
after modification with programmed death-ligand 1 antibody
(αPD-L1) [236]. Gold-based NPs may also be combined with
adjuvants to promote antitumor immune responses and con-
tribute to cancer immunotherapy [237, 238].

Others
Microneedles with dimensions of <1mm can be utilized to pierce
the skin to the dermis in a minimally invasive and painless manner
[239–241]. As a significant research target, microneedles have
been used in many aspects, such as the delivery of small molecule
and protein drugs and vaccines [242–244]. It is an inexpensive and

Fig. 7 Local immunotherapy for various tumors via microneedles. a Schematic illustration of immunotherapy utilizing microneedles.
b Average tumor growth and survival rate of treated C57BL/6J mice in the BP tumor model. c Average tumor growth and survival rate of
treated BALB/c mice in the 4T1 tumor model. d Average tumor growth and survival rate of C57BL/6J mice in established BP tumor models.
e Average tumor growth and survival rate of BALB/c mice in established 4T1 tumor models. Reprinted with permission from [255]
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convenient way to use microneedles for various medical applica-
tions [245–249]. There are many lymph nodes in the dermis; thus,
microneedles achieve direct contact with DCs for antigen uptake
and presentation [27]. To decrease the cost of treatment and
reduce the dosage-dependent side effect [250–252] of immuno-
modulators, Gu and coworkers prepared biocompatible hyaluronic
acid (HA)-based microneedles integrated with pH-sensitive
dextran NPs containing aPD1 and glucose oxidase, which realized
the substantial release of aPD1 and evoked a strong immune
response in B16F10-bearing mice [253]. Meanwhile, the same
group designed another microneedle system that combined aPD1
and 1-methyl-DL-tryptophan (1-MT), an inhibitor of IDO, to
promote T-cell immunity and reduce immunosuppression [254].
Moreover, a hyaluronic acid-based MN encapsulated B16F10
melanoma whole tumor lysate and GM-CSF were proven to
stimulate a robust antitumor immune response through spatio-
temporal PTT and immunotherapy (Fig. 7) [255]. In addition to
soluble microneedles, hollow microneedles can also be used for
vaccine delivery and immunotherapy on account of the

controllability and accuracy of the injection progress [256, 257].
Researchers compared four types of NP-loaded OVA and poly(I:C)
by using hollow microneedles, which showed that PLGA NPs and
liposomes could provoke stronger IgG2a responses [258]. In
addition, a digitally controlled hollow microneedle system was
used for the injection of liposomes containing an HPV E743–63
synthetic long peptide, thus reducing pain and the dosage of
injection [259].
In recent years, biologically derived nanobiomaterials, such as

cancer cell membranes, viral proteins, and DNAs, have started to
be used for new cancer nanovaccines [260–263]. Researchers
found that tumor antigens and subcellular particles in the cancer
membrane, such as melanoma cells, could be loaded into various
NPs, which induce specific cellular and humoral responses, thus
preventing tumor growth [157, 264, 265]. Another approach is to
form virus-like NPs via the self-assembly of viral proteins [266].
Furthermore, cowpea mosaic virus NPs effectively evoked
cytokine secretion and inhibited tumor growth in various models
(Fig. 8) [267].

Fig. 8 eCPMV immunotherapy for metastatic breast, colon, and ovarian tumors. a Photo and survival rate of mice in a metastatic breast tumor
model. b Photo and survival rate of mice in a colon tumor model. c Photo and survival rate of mice with ID8-Defb29/Vegf-A ovarian cancer.
Reprinted with permission from [267]
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CONCLUSION
In this review, we have analyzed different strategies of immu-
notherapy and described advanced biomaterials that may be
applied to improve therapeutic potency and reduce adverse
effects. Although cancer immunotherapy is advancing at a high
speed, the use of biomaterials to manufacture optimal systems for
various tumors remains in its nascent stages. It is hoped that the
biomaterials described in this review can be more widely and
innovatively designed for cancer immunotherapy, thus promoting
its efficacy and reducing immune-related side effects. Although
preliminary advances have been made in the design of
immunotherapy strategies based on biomaterials, many systems,
including NPs, micelles, and hydrogels, can be loaded with
multiple drugs and selected based on the targets identified in the
patient’s biopsy sample. This personalized treatment will be an
important and promising research direction in the future.
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