
REVIEW ARTICLE

MicroRNAs are involved in the development and progression
of gastric cancer
Xiaolin Liu1,3, Ruixia Ma1,4, Bin Yi1, Adam I. Riker2 and Yaguang Xi1

MicroRNAs (miRNAs) are recognized as an essential component of the RNA family, exerting multiple and intricate biological
functions, particularly in the process of tumorigenesis, proliferation, and metastatic progression. MiRNAs are altered in gastric
cancer (GC), showing activity as both tumor suppressors and oncogenes, although their true roles have not been fully understood.
This review will focus upon the recent advances of miRNA studies related to the regulatory mechanisms of gastric tumor cell
proliferation, apoptosis, and cell cycle. We hope to provide an in-depth insight into the mechanistic role of miRNAs in GC
development and progression. In particular, we summarize the latest studies relevant to miRNAs’ impact upon the epithelial-
mesenchymal transition, tumor microenvironment, and chemoresistance in GC cells. We expect to elucidate the molecular
mechanisms involving miRNAs for better understanding the etiology of GC, and facilitating the development of new treatment
regimens for the treatment of GC.
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INTRODUCTION
The World Health Organization has identified cancer as the
leading cause of death in 185 countries that were examined [1].
Accordingly, among 36 cancer types, gastric cancer (GC) is the fifth
most frequently diagnosed cancer and the third leading cause of
cancer death, respectively, and is much more prevalent in Asian
countries compared to non-Asian countries [1]. China contributes
to more than 50% of all GC cases worldwide, with approximately
680,000 new cases and 500,000 deaths each year [2]. Surgical
resection is the preferred method of initial treatment whenever
feasible, with adjuvant chemotherapy as a vital addition to the
multidisciplinary approach to treatment. For locoregional recur-
rence of GC, chemotherapy, with or without external beam
radiation therapy, appears to be a reasonable approach to treat
patients with unresectable disease. However, the response rates to
such approaches are marginal at best, leading to a median overall
survival of ~8-17 months [3].
Presently, there is a lack of effective treatment options for

patients with GC, translating to a uniformly poor overall survival
worldwide. As such, the research focus has gradually switched to
the discovery of novel and precise biomarkers that can lead to the
development of targeted therapeutics. MicroRNAs (miRNAs) are a
class of small nucleic acids and function as the master regulators
in the control of gene expression [4]. To date, over 2500 human-
specific miRNAs have been identified, with their dysregulation
associated with tumor cell proliferation, apoptosis, invasion, and

metastatic potential. Furthermore, aberrantly expressed miRNAs
are potentially useful biomarkers for GC screening, diagnosis,
prognosis, and disease monitoring. This review will summarize the
most recent literature on miRNAs and the associated target genes
that are specific to GC, highlighting their intrinsic mechanistic role
in GC development and progression.

MIRNAS ARE ASSOCIATED WITH GC DEVELOPMENT AND
PROGRESSION
Recent studies of miRNAs have shed light on their contributions
toward controlling the development and progression of GC.
Herein, we will focus on the functional interactions among select
miRNAs, their putative target genes, and the relevant signaling
pathways that are involved in the key pathophysiological
processes of GC.

Helicobacter pylori infection-associated tumorigenesis
Helicobacter pylori (H. pylori) infection is known as a driving cause
of significant morbidity in the context of GC. Yang et al. examined
the miRNA levels in H. pylori-infected patients with GC, and
showed that H. pylori infection was associated with the specific
cancer-related signaling pathways regulated by the miRNA-mRNA
interaction network [5]. Of interest, miR-155 was reported to be
involved in the differentiation of T helper 17 (Th17) and Th1 cells,
which contribute to the immunity against H. pylori infection and
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the infection-associated immunopathology [6]. H. pylori cytotoxin-
associated gene A (Cag A) was found to suppress miR-26b, which
in turn, upregulated the expression of miR-26b's putative target
gene, karyopherin alpha 2 (KPNA2), a promoter for cancer
metastasis [7]. MiR-143-3p, which was found to be the most
significantly increased miRNA in H. pylori-positive GC tissues,
hindered tumor growth [8]. In addition, miR-155, miR-16, and miR-
146a were reported to be upregulated in gastric epithelial cells
infected with H. pylori, and increased miR-155 was also found in
mucosal tissues from H. pylori-positive patients [9]. These studies
demonstrate the concurrent influences of miRNAs on H. pylori-
mediated, inflammation-associated tumorigenesis.

Cell proliferation
Numerous studies have directly examined the role of miRNAs in
GC growth by targeting cellular signaling pathways and genes.
Table 1 shows the miRNAs and their putative targets that are
relevant to the GC proliferation and apoptosis. We will focus on
the two major signaling pathways that have been extensively
studied in the context of GC cell proliferation.

PI3K/Akt/mTOR signaling pathway. The activation of the phos-
phoinositide 3-kinases/protein kinase B/mammalian target of
rapamycin (PI3K/Akt/mTOR) signaling pathway is important for
regulating gene expression in a variety of human cancers. This
pathway is also involved in cell cycle regulation, apoptosis,
transcription, translation, metabolism, and angiogenesis. For
instance, elevated miR-21 in GC was reported to target the 15-
hydroxyprostaglandin dehydrogenase (15-PGDH) gene and
the phosphatase and tensin homolog (PTEN) gene, to promote
GC proliferation. In doing so, miR-21 exerts its oncogenic effect
through the prostaglandin E2 (PGE2)/PI3K/Akt/Wnt/β-catenin axis,
resulting in GC cell proliferation [10–12]. In addition, Akt and
mTOR were reported to be targeted by miR-495 directly; the
overexpression of miR-495 could inhibit the growth and induce
the apoptosis of GC cells, with the blockade of the PI3K/Akt/mTOR
signaling, which in turn, altered the expression of Bax, caspase-3/-
9, and cyclin D1 [13]. MiR-495 was also shown to accelerate the
death of GC cells through noncanonical beclin 1-independent
autophagy induced by the Akt/mTOR pathway [14]. Furthermore,
tripartite motif-containing 24 (TRIM24) elicited tumor-stimulating
effects through the regulation of the PI3K/Akt and Wnt/β-catenin
signaling pathways, and these effects seemed to be negated by
the overexpression of miR-511 [15] (Fig. 1). A recent study also
reported that GC tumor-derived exosomes containing enriched
miR-107 could enter myeloid-derived suppressor cells (MDSCs)
and downregulate the PTEN gene, leading to the activation of the
PI3K pathway in MDSCs [16].

Wnt/β-catenin signaling pathway. The Wnt/β-catenin signaling
pathway is involved in numerous physiological processes,
including cell cycle regulation and tumorigenicity. MiR-154
was reported to inhibit the activation of the Disheveled-Axin
domain containing 1 (DIXDC1)/Wnt signaling, which then
mitigated the growth of GC cells [17]. It is reported that miR-
511 could suppress the PI3K/Akt and Wnt/β-catenin signaling by

Table 1. MiRNAs and their putative targets and signaling
pathways that are relevant to GC cell proliferation and apoptosis.

MiRNA Target genes Signaling pathway References

Up

miR-21 15-PGDH PGE2/PI3K/Akt/
Wnt/β-catenin

[10]

PTEN PTEN/PI3K/mTOR [11, 12]

miR-27a SFRP1 Wnt/β-catenin [21]

miR-103 KLF4 [91]

miR-106a FAS [29]

miR-107 NF1 [92]

PTEN PI3K [16]

miR-146a SMAD4 [93]

miR-151-5p P53 Notch1 [94]

miR-192/215 APC Wnt/β-catenin [22]

miR-194 SUFU Wnt/β-catenin [23]

miR-200c P27Kip1 [95]

miR-558 HPSE [96]

miR-590-5p RECK Akt/ERK; STAT3 [71]

miR-208a-3p PDCD4 [97]

miR-423-3p Bim [98]

miR-454 CHD5 [99]

miR-520c IRF2 [100]

miR-3174 ARHGAP10 [24]

Down

miR-15a Bmi-1 [101]

miR-15a-3p/
miR-16-1-3p

Twist1 [102]

miR-16-5p Smad3 [103]

miR-26b KPNA2 KPNA2/c-Jun [7]

miR-29b KDM2A RUNX3/miR-29b/
KDM2A

[104]

miR-29c-3p KIAA1199 FGFR4/Wnt/β-
catenin; EGFR

[105]

miR-31 HDAC2 [106]

miR-101 MCL1/ZEB1 [30]

miR-127 MAPK4 [107]

miR-132-3p MUC13 Akt/ ERK [108]

miR-135a KIFC1 [109]

miR-143-3p AKT2 [8]

miR-154 DIXDC1 Wnt [17]

miR-194 KDM5B [110]

miR-199a/b-
3p

PAK4 PAK4/MEK/ERK [111]

miR-202-3p Gli1 [112]

miR-203a E2F3 [113]

miR-203 Slug [114]

miR-204 CKS1B/CXCL1/
GPRC5A

[115]

miR-337-3p MMP-14 [116]

miR-338-3p SOX5 Wnt/β-catenin [18]

miR-375 YAP1/TEAD4/CTGF Hippo [117]

miR-495 Akt; mTOR PI3K/Akt/mTOR [13]

miR-511 TRIM24 PI3K/Akt; Wnt/β-
catenin

[15]

miR-520f-3p SOX9 Wnt/β-catenin [19]

miR-524-5p MMP-2/MMP-9 [118]

Table 1. continued

MiRNA Target genes Signaling pathway References

miR-584-3p MMP-14 [119]

miR-647 SRF SRF/MYH9 [120]

miR-873 STRA6 Wnt/β-catenin [20]

miR-1284 EIF4A1 [25]

miR-3978 LGMN [121]
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directly targeting TRIM24, while the ectopic expression of miR-
511 significantly inhibited GC cell proliferation, with the reduced
expression of p-Akt, β-catenin, cyclin D1, and c-Myc [15]. Other
studies have shown that miR-338-3p, miR-520f-3p, and miR-873
were downregulated in GC cells, with the forced expression of
these miRNAs able to suppress GC progression via the down-
regulation of SRY-box transcription factor 5 (SOX5), SRY-box
transcription factor 9 (SOX9), and stimulated by retinoic acid 6
(STRA6) to further block Wnt/β-catenin signaling [18–20]. In
addition, miR-27a, miR-194, miR-192, and miR-215 were reported
to be upregulated in GC cells, and their ectopic expression could
promote the tumor cell proliferation and cancer development
[21–23]. The mechanistic studies demonstrated that these
oncogenic miRNAs could repress the negative regulators of
the Wnt signaling cascade, including secreted frizzled-related
protein 1 (SFRP1), suppressor of fused homolog (SUFU), and
adenomatous polyposis coli (APC), with the translocation of β-
catenin into the nucleus, as shown in Fig. 1.

Apoptosis
Li et al. showed that miR-3174 inhibited mitochondria-
dependent apoptosis and autophagic cell death, with the high
expression of miR-3174 shown to be related to the resistance of
cisplatin (DDP) [24]. Others have shown the effect of miR-1284 in
modulating multidrug resistance (MDR) and accelerating drug-
induced apoptosis, further preventing cells from entering the S
phase of the cell cycle [25]. The mechanistic studies demon-
strated that these phenotypes resulted from miR-1284 directly
targeting the gene of eukaryotic translation initiation factor 4A1
(EIF4A1), and indirectly suppressing the gene expression of Jun
and matrix metallopeptidase 12 (MMP-12) and facilitating the
gene expression of Myc [25]. MiR-30a’s downregulation was
recently identified in DDP-resistant SGC-7901 cells and
decreased DDP-induced apoptosis. Of note, the downregulation

of LC3-II by miR-30a was able to inhibit chemoresistance-
associated autophagy and increase the total apoptotic rate in
chemoresistant cells [26].

Cell cycle
Many oncogenic and tumor suppressor miRNAs have been
reported to be involved in cell cycle regulation. Table 2 is the
summary of select miRNAs and their putative target genes that

miR-495

miR-511

miR-27amiR-194
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miR-520f-3p

miR-873

β-cat
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miR-215
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GSK-3

Oncogene

Tumor Suppressor

Fig. 1 MiRNAs are involved in the regulation of gastric cancer cell proliferation by targeting PI3K/Akt/mTOR and Wnt/β-catenin signaling
pathways. 15-PGDH 15-hydroxyprostaglandin dehydrogenase, β-cat β-catenin, Akt protein kinase B, APC adenomatous polyposis coli, DIXDC1
disheveled–axin domain containing 1, GFs growth factors, GSK-3 glycogen synthase kinase-3, mTOR mammalian target of rapamycin, PI3K
phosphoinositide 3-kinases, PGE2 prostaglandin E2, PTEN phosphatase and tensin homolog, SFRP1 secreted frizzled-related protein 1, SOX5
SRY-box transcription factor 5, SOX9 SRY-box transcription factor 9, STRA6 stimulated by retinoic acid 6, SUFU suppressor of fused homolog,
TRIM24 tripartite motif-containing 24.

Table 2. MiRNAs interfere with GC cell cycle regulation.

MiRNA Cell cycle regulation Target genes References

Up

miR-17-5p/-
20a

G0/G1–S acceleration P21; TP53INP1 [122]

miR-214 G1–S acceleration PTEN [33]

miR-215 G0/G1–S acceleration RB1 [123]

Down

miR-31 G1–S blockade E2F2 [27]

MiR-101 G1 arrest MCL1/ZEB1 [30]

miR-126 G0/G1 arrest Crk/ADAM9 [31, 32]

miR-143 G0/G1 arrest GATA6 [124]

miR-329 G1 arrest KDM1A [28]

miR-375 G1 arrest RON [125]

miR-383 G1 arrest cyclin E2 [34]

MiR-638 G0/G1 arrest SOX2 [126]

MiR-647 G0/G1 arrest ANK2 [79]

miR-1284 G0/G1 arrest EIF4A1 [25]

miR-4317 S–G2/M blockade ZNF322 [127]
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have been reported to contribute to the cell cycle progression in
GC cells. For instance, the downregulation of miR-31 has been
found in several human cancer cell lines (MGC-803, MKN-45,
AGS, and SGC-7901), but not in the N87 cell line. Functionally,
miR-31 suppresses tumor cell proliferation, induces apoptosis,
blocks G1 transition, and reduces migration and invasion in both
SGC-7901 and MGC-803 cells via the inhibition of expression for
the E2F transcription factor 2 (E2F2) gene [27]. Clinical and
pathological characteristics show that low miR-329 expression,
along with high expression of its target gene, histone lysine
demethylase 1 A (KDM1A), likely contribute to GC progression.
Forced expression of miR-329 showed a comparable phenotype
as that of KDM1A silencing in inhibiting BGC-823 cell viability,
facilitating G1 arrest, reducing colony formation, and promoting
tumor cell apoptosis [28]. The inhibition of miR-106a accelerated
GC cell apoptosis with a visible sub-G1 peak as a reliable
indicator of apoptosis, which was further confirmed in AGS and
N87 cells transfected with miR-106a antisense oligonucleotides
[29]. The tumor suppressor miR-101 induced a more significant
accumulation of sub-G1 phase cells, with both early and late
apoptotic cells after 72 h of miR-101 mimic transfection in MKN-
45 cells. The overexpression of miR-101 induced the cleavage of
poly(ADP-ribose) polymerase (PARP) and suppressed migratory
and invasive abilities, as well as the epithelial-mesenchymal
transition (EMT), and directly inhibited the expression of the zinc
finger E-box-binding homeobox 1 (ZEB1) gene [30]. Further-
more, miR-126 could function as a putative tumor suppressor in
GC, potently inhibiting the cell growth as a result of cell cycle
arrest in the G0/G1 phase by synergistically targeting Crk and a
disintegrin and metallopeptidase domain 9 (ADAM9) [31, 32].
The overexpression of miR-214 has been identified in GC cells,
and its downregulation can induce G1 cell cycle arrest by
upregulating PTEN in BGC-823 and MKN-45 cells [33]. A similar
phenotype was observed in SGC-7901 and U87 cells after the
transfection of miR-383, which targets cyclin E2 [34].

EMT
EMT is a process associated with tumor initiation, progression,
invasion, metastasis, and resistance to drug therapy [35]. During
this process, E-cadherin can sustain key intracellular binding
structures, such as desmosomes and claudins, and switch to N-
cadherin [36]. The downregulation of E-cadherin can be mediated
by putative miRNAs and EMT-inducing TFs, such as snail1 (snail),
snail2 (slug), Twist, ZEB1, and ZEB2 [36].
MiR-25 exhibits inhibitory effects on human diffuse-type GC,

with the inhibition of miR-25 leading to increased collagen type
I alpha 2 chain (COL1A2), as well as the attenuation of E-
cadherin gene expression [37]. In addition, miR-25 was shown to
suppress p53 gene expression and sensitize c-Src activation,
revealing its role in intestinal-type GC [37]. MiR-30a’s over-
expression increased E-cadherin levels, but decreased N-
cadherin levels in SGC-7901 cells, with the activity of mitigating
MDR and modulating EMT in GC cells [38]. Moreover, fibroblast-
like morphology may be shifted to a more epithelial-like
phenotype with miR-30a overexpression in DDP-resistant SGC-
7901 cells, increasing DDP sensitivity and inducing a concomi-
tant reduction in both snail and vimentin levels [39]. The
restored function of miR-216a resulted in a reduction of GC
liver metastatic lesions in nude mice, and was also notable for
suppressing EMT via the Janus kinase 2 (JAK2)/signal transducer
and activator of transcription 3 (STAT3) signaling pathway [40].
Furthermore, the alteration of several miRNAs, such as miR-
181a-5p [41], miR-302b [42], miR-223 [43], and miR-181b [44],
also displayed a variety of effects on EMT, cell proliferation, and
migration in GC. A study examining GC stem cells additionally
confirmed that miR-196a-5p serves as a regulator of EMT and
invasion, with one of the target genes identified as SMAD family
member 4 (Smad4) [45].

MIRNAS AND THE GC TUMOR MICROENVIRONMENT
The tumor microenvironment (TME) is defined as a complex milieu
within the tumor mass itself, surrounded by fibroblasts, blood
vessels, immune and inflammatory cells, adipose cells, neuroen-
docrine cells, and the extracellular matrix [46]. Each component in
the TME has a contributing role and function, as it relates to the
tumor development and progression. Herein, we will summarize
how miRNAs are intimately involved with the regulation of the
TME for GC.

Cancer-associated fibroblasts
Cancer-associated fibroblasts (CAFs) have emerged as one of the
key participants involved in the reactive stromal generation that
regulates a tumor-promoting environment in cancer [47]. We have
progressed our current understanding of CAF’s oncogenic
functions, learning that the dysregulation of miRNAs in stromal
cells has a significant influence on this important tumor milieu,
likely contributing to the transformation of CAFs to promote
cancer progression. For instance, miR-149 expression negatively
regulates CAFs, mediating the crosstalk with tumor cells through
the PGE2/interleukin-6 (IL-6) signaling [48]. Another miRNA, miR-
106b, has been shown to be upregulated in CAFs, promoting cell
migration and invasion by targeting the PTEN gene [49]. The low
expression levels of miR-200b and miR-200c have been demon-
strated to correlate with an overall poor prognosis for patients
with GC [50]. A recent study reported that miR-200b down-
regulation was associated with the transformation of CAFs in GC.
Specifically, miR-200b promoter methylation was observed in GC
patients with high expression of alpha-smooth muscle actin (α-
SMA), which was one of the specific markers of CAFs [51].
Functional studies further demonstrated that CAFs could promote
tumor invasion by epigenetically altering miR-200b expression in
GC cells [51]. MiR-141 is a tumor suppressor and a member of the
miR-200 family, which was found to be downregulated in GC cells,
and associated with cell proliferation in MGC-803, HGC-27, SGC-
7901, and BGC-823 cell lines [52]. Recently, miR-141 was also
reported to target the STAT4 gene, which is involved in the
transformation of CAFs from normal fibroblasts in AGS cells [53].

Angiogenesis/neovascularization
The process of tumor cell angiogenesis and neovascularization is a
well-known mechanism by which tumor cells are able to grow,
progress, and eventually develop the means for metastatic spread.
The development of newly formed blood vessels by the tumor
itself has been clearly established as an important mechanism for
tumor cell survival, with antiangiogenic treatment strategies
integrated into the current cancer treatment regimens. MiRNAs,
such as miR-29c, are stimulated by the treatment with insulin-like
growth factor 1 (IGF1) within the endothelium. In turn, direct
targeting of miR-29c promotes tube network formation by human
umbilical vein endothelial cells (HUVECs) in vitro [54]. The gene
expression of vascular endothelial growth factor (VEGF) is
upregulated in GC and is directly targeted by miR-29a/c, with its
overexpression shown to suppress angiogenesis within the TME.
MiR-29a/c delivered by microvesicles (MVs) effectively suppressed
the proliferation and ring formation of HUVECs. The blood vessel
density was markedly reduced by MV-delivered miR-29a/c in vivo,
as clearly indicated by the downregulation of CD31, known as one
of the vascular markers [55].
VEGF-C is a putative target of miR-27b, which may function as a

tumor suppressor in human GC development by inducing
apoptosis. It has been recently reported that the overexpression
of miR-27b suppresses GC cell proliferation and inhibits the
expression of VEGF-C [56]. In addition, miR-132 was reported to
facilitate pathological angiogenesis by targeting p120RasGAP and
activating the endothelium [57]. After delivering anti-miR-132 to
the tumor endothelium of mice utilizing the nanoparticles
targeting integrin αVβ3, Anand et al. found that the tumor
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angiogenesis induced by a VEGF-secreting ovarian carcinoma
could be ultimately blocked in vivo, which was further validated
in a xenograft tumor model of breast cancer with MDA-MB-231
cells. These results support the notion that miRNA modification
can regulate pathological neovascularization in vivo [57]. MiR-130a
was identified in GC cell-derived exosomes, noted to have the
capacity to invade HUVECs and target c-Myb in order to drive
angiogenesis [58]. By harnessing the vascular-modulatory func-
tions of miRNAs, we may be able to manipulate the antiangio-
genic effect on tumor cells, possibly developing a more effective
treatment approach.

Immune cells
The TME consists of a variety of immune cells, which have a
dominant influence on and control of tumorigenesis, immune
tolerance, and immune escape. Multiple immune cell types,
including neutrophils, macrophages, dendritic cells, natural killer
(NK) cells, and T and B lymphocytes, have been shown to infiltrate
the tumor and actively participate in the modulation of the TME
[59]. MiRNAs are recognized as dynamic regulators of immune cell
functions in human cancers, and tumor-derived miRNAs can
significantly influence the TME and specifically target immune
cells to facilitate immune surveillance [60]. There has been a
scarcity of publications that have detailed the true impact of
miRNAs upon immune cells in GC.
Various levels of miRNA expression will have differential effects

on NK cell and invariant NKT (iNKT) cell development. In the
thymus and peripheral lymphoid organs, miR-150 negatively
regulates iNKT cells [61]. Exosomal miR-451 was associated with
increased Th17 cell differentiation and the redistribution of miR-
451 from GC cells to infiltrating T cells [62]. MiR-155 regulates
interferon γ (IFN-γ) production in NK cells by IL-12, IL-18, or
CD16 stimulation [63]. In the GC TME, a novel mechanism was

identified by which the downregulation of the miR-155-5p drives
the switch of bone marrow mesenchymal stem cells (MSCs) to a
more aggressive GC tissue-derived MSC-like phenotype. The
mechanism was dependent upon the activation of nuclear factor
kappa B (NF-κB) p65, revealing a potential meaningful approach
for GC therapy within the TME [64].

MIRNAS AND GC CHEMORESISTANCE
It is readily apparent that miRNA expression contributes to
tumor growth by modulating the functional expression of
critical genes and signaling pathways that are important for
tumor cell proliferation or survival. In addition, we have
discussed a number of specific miRNAs related to the regulation
of GC growth, as well as their responses to chemotherapy and
targeted therapy. Although the molecular mechanisms account-
ing for the chemoresistance in GC cells are not fully understood
yet, miR-21 [65, 66], miR-99a and miR-491 [67], miR-132 [68],
miR-147 [69], miR-214 [70], miR-590-5p [71], and miR-3174 [24],
have been identified as contributing to the resistance to
chemotherapy in GC cells. For example, miR-99a and miR-491
were identified to be upregulated in GC cell lines with resistance
to the DDP treatment, the gene calpain small subunit 1
(CAPNS1) was demonstrated to be targeted by both miRNAs.
Inhibiting miR-99a and miR-491, or overexpressing CAPNS1
could robustly improve the sensitivity of these resistant GC cells
to DDP [67]. In addition, anti-miR-21 combined with 5-
fluorouracil (5-FU) can induce the sensitivity of receptor
tyrosine-protein kinase erbB-2 (HER2)-positive GC cells to the
anti-HER2 antibody trastuzumab, repressing GC cell proliferation
and slowing disease progression [66].
Furthermore, the sensitivity of GC cells to chemotherapy drugs

can be enhanced by the overexpression of miR-7 [72], miR-23b-3p
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Fig. 2 MiRNAs modulate the chemoresistance in gastric cancer cells. 5-FU 5-fluorouracil, DTX docetaxel, DDP/CDDP cisplatin, PTX paclitaxel,
VCR vincristine, ABCG2 ATP binding cassette subfamily G member 2, Akt protein kinase B, ANK2 ankyrin 2, ANXA2 annexin A2, ARHGAP10 rho
GTPase activating protein 10, ATG12 autophagy-related 12, CAPNS1 calpain small subunit 1, E2F5 E2F transcription factor 5, ERBB2 erb-b2
receptor tyrosine kinase 2, HMGA2 high mobility group AT-Hook 2, MALAT1 metastasis-associated lung adenocarcinoma transcript 1, MDR1
multidrug resistance mutation 1, mTOR mammalian target of rapamycin, PI3K phosphoinositide 3-kinases, PTEN phosphatase and tensin
homolog, RECK reversion-inducing cysteine-rich protein with Kazal motifs, SIRT1 sirtuin 1, SLC34A2 solute carrier family 34 member 2, TGFBR2
transforming growth factor beta receptor 2.

MicroRNA and gastric cancer
X Liu et al.

1022

Acta Pharmacologica Sinica (2021) 42:1018 – 1026



[73], miR-30a [26], miR-33b-5p [74], miR-34a [75], miR-101 [76],
miR-204 [77], miR-375 [78], miR-647 [79], and miR-939 [80]. For
example, miR-101 was identified to be downregulated in GC
tissues and chemoresistant GC cells, showing an inverse correla-
tion to the gene expression of annexin A2 (ANXA2). Forced
expression of miR-101 could enhance the response of GC cells to
DDP and vincristine (VCR) [76]. In addition, the GC chemoresistant
cell line, SGC-7901/VCR, not only showed the resistance to VCR,
but also to 5-FU and DDP. Of significance, the mechanistic studies
demonstrated that a long noncoding RNA, metastasis-associated
lung adenocarcinoma transcript 1 (MALAT1), was involved in the
development of chemoresistance in SGC-7901/VCR cells, interact-
ing with autophagy-related 12 (ATG12). Intriguingly, miR-23b-3p
was identified as the “linker” between MALAT1 and ATG12,
because it could suppress the expression of ATG12 and was also
targeted by MALAT1 directly. In the in vivo studies, the drug
resistance caused by MALAT1 overexpression could be compro-
mised by the ectopic expression of miR-23b-3p [73]. Figure 2
illustrates the mechanistic involvement of these miRNAs and their
putative target genes in GC chemoresistance.

CONCLUSION
Our group has been focused on researching the central
importance of the interactions of miRNAs with several human
cancers for well over a decade [81–90]. We have learned quite a
bit about the role of miRNAs, with much more to understand
about their involvement with the TME and the host immune
system. In this review, we have summarized the latest literature on
this topic, focusing on GC and the related genes involved in tumor
development, progression, and chemoresistance. In doing so, we
expect to identify homologous target genes and the associated
signaling pathways involved in the clinically aggressive behavior
of GC. Although the effects of particular miRNAs on GC have been
identified, the true function of miRNA remains quite enigmatic,
with further research needed examining the specific impact on GC
development and progression.
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