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State-of-the-art: functional fluorescent probes for bioimaging
and pharmacological research
Lu Lu1, Zhou-yue Wu1, Xin Li2 and Feng Han1,2

Cardiovascular diseases, neuropsychiatric disorders, and cancers seriously endanger human health. Mechanistic and
pharmacological mechanisms of candidate drugs are central to the translational paradigm. Since many signal transduction and
molecular events are implicated in these diseases, a novel method to interrogate the key pharmacological mechanisms is required
to accelerate innovative drug discovery. Much attention now focuses on the real-time visualization of molecular disease events to
yield new insights to the pathogenesis of the diseases. This review focuses on recent advances in the development of chemical
probes for imaging pathological events to facilitate the study of the underlying pharmacodynamics and toxicity involved. As
reviewed here, optical imaging is now frequently viewed as an indispensable technique in the field of biological research.
Promoting interdisciplinary collaboration among chemistry, biology and medicine, is necessary to further refine functional
fluorescent probes for diagnostic and therapeutic applications.
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INTRODUCTION
Cardiovascular diseases, neuropsychiatric disorders, and cancers
remain the major global causes of death and the major burden on
public healthcare systems [1–4]. Accordingly, much research is
focused on identifying and validating novel drug targets [5];
however, most aspects of the links between disease etiology and
progress and the development of clinical symptoms remain
unknown [6–8]. Studying the signal transduction process is
necessary to clarify the links, but this is highly challenging.
Indeed, identifying the molecules involved in intracellular signal
transduction is only the first step [9–11]. This must be followed by
a study of the concentration and location of these signaling
molecules in their native environments to reveal the operation of
the signal transduction cascades and their key points that could
be a focus for drug discovery and development [12–14].
Biological signaling molecules have been identified by bio-

chemical assays; however, these traditional methods are limited
by their time-consuming operation, nonspecific and low test
volume. Novel tools to clarify the key molecules that link the
pathological cascade are becoming a new research focus [15], for
example, the development of fluorescent sensors. More recently,
chemistry has been integrated with biology to provide chemical
fluorescent probes capable of tracking biological events [2, 4, 16].
These novel chemical biology tools may even deliver tailored
therapeutic agents while the targets are imaged to permit a real-
time analysis of the drug/target interaction.
This review will focus on recent advances in the development of

chemical probes for imaging key molecules involved in patholo-
gical events. Functional fluorescent dyes have been established
that are nondestructive and relatively easy to use. Some probes

are even capable of the real-time tracking of pathophysiological
events with a high spatial resolution to detect specific molecular
steps in signal transduction. Fluorescent probes are also becoming
indispensable tools for acquiring important information in
biological systems to explore the nature of various pathological
processes and in the development of high-throughput assays.
Thus, these probes have an important role in the design, screening
and validate novel drug targets.

PATHOLOGY AND TOXICOLOGY OF MOLECULAR EVENTS AND
THEIR IMPLICATIONS
Pharmacology and toxicology are the key disciplines for new drug
development to provide the necessary information on the
pharmacological efficacy, mechanisms, toxicity, and clinical
applications. Fluorescent probes are valuable on the evaluation
of each of these steps.
The link between signaling pathway and disease pathway

analysis illuminates the mechanism of pharmacology and
toxicology. Cell signal transduction refers to the passage of
information molecules through the cell membrane, intracellular
receptors or biochemical reactions. This information is converted
by intracellular signal transduction systems, thereby affecting cell
function [17]. A defect in molecular signal transduction often
forms the basis for the aberrant expression or localization of
biomolecules (proteins, lipids, nucleic acids and small metabolites)
in the pathogenic process of diseases [18–21]. These biomolecules
are diverse and greatly adding to the complexity of designing
appropriate fluorescent probes. Signaling pathways, such as a G
protein-coupled receptor (GPCR), nuclear receptor, MAPK/ERK, the
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transcriptional or ubiquitin-proteasome pathway, are frequently
targeted [22–24]. For example, a loss of control over cell cycle,
apoptosis, growth, and signal transduction pathways, such as Wnt
or MAPK signaling, implicates the hallmarks of cancer and
metastasis [25]. Targeting specific signaling pathways has enabled
the discovery of many marketed drugs, such as Bcr/Abl kinase
inhibitors (imatinib mesylate and dasatinib) or inhibitors of
interleukin 1 (IL-1), which have been used for the clinical
treatment of rheumatoid arthritis [26]. Identifying the signaling
pathway panel in live cells provides important information about
the laws and mechanisms of the underlying transduction process,
which is required for developing targeted drugs. Marcelo Behar
and colleagues pioneered the development of stimulus-specific
drug targeting in the IKK-NFκB signaling hub, both in silico and
in vivo. They concluded that the dynamics of molecules at the
pleiotropic signaling hub may serve as a pharmacological target
[27]. Such breakthrough technology platforms are required to
establish a signaling pathway panel strategy for drug discovery.

USING FLUORESCENT PROBES TO EVALUATE INTRACELLULAR
SIGNALING CASCADES
The visualization of biological events can provide critical insights
to clarify pharmacological and toxicological mechanisms. Chemi-
cal fluorescent probes are now used widely to locate and
quantitate key biomolecules. The method utilizes a small-
molecule fluorescent probe as a detection agent. It must be
capable of undergoing a specific chemical reaction with a target
molecule in a complex biological environment to provide a unique
alternation of fluorescence signal (such as intensity and color),
which indicates the functional response of the target biomolecule.
Chemical fluorescent probes are generally nondestructive and
have excellent sensitivity, high selectivity, low cytotoxicity, and
time-efficient. Accordingly, they are highly desirable for the real-
time tracking of trace metabolites in live cells to monitor
pathophysiological processes and to study the role of biomole-
cules both in vitro and in vivo. Classical approaches to study the
function/activity of cell signaling transduction mainly rely on
biochemical endpoint assays, which do not allow for characteriza-
tion of their dynamic activity with a high spatial resolution in their

native environment. The development of fluorescent probes has
provided a whole new avenue of research for studying cell
signaling transduction and regulation in living cells in real-time
with high spatial and temporal resolution [28–30]. The use of
fluorescent probes to identify pathway and cell signaling analysis,
including reactive oxygen and reactive nitrogen species (ROS/RNS)
detection [30, 31], cell viability and apoptosis [32, 33], and
organelle functional dynamics [34, 35], is well established (Fig. 1).
For instance, 2,3-naphthotriazole (NAT) serves as a powerful
imaging tool to monitor the generation of nitric oxide (NO) and
superoxide, which trigger nitrosative stress [36]. Fluorescence
probes are practical tools to detect specific molecules involved in
signal transduction. They are becoming indispensable for under-
standing pathological and toxicological cellular processes.

EXISTING PROBES FOR DETECTING MOLECULAR EVENTS IN
PATHOLOGY AND TOXICOLOGY
Probes for the detection of energy metabolism and metabolites
The normal homeostasis of living organisms relies on the balance
between cellular energy intake and cellular energy expenditure. A
comprehensive study of the metabolic network requires the use of
sensitive fluorescent probes. Adenosine triphosphate (ATP) is the
principal energy source for cellular metabolism. Kim et al reported
a novel fluorescent method to measure cellular ATP based on a
dansyl fluorophore and a long cetyl chain [37]. The probe forms
self-assembled, micelle-like aggregates at low concentrations in
aqueous solution that can selectively recognize ATP among
various bioactive anions and can be detected by an enhancement
in fluorescence emission to image cellular ATP in live cells. Wang
and colleagues developed an affinity profiling strategy by taking
advantage of the quantitative capability of an isotope-coded
probe [38]. This strategy revealed not only information about
novel ATP-binding proteins but also a previously unknown ATP-
binding site. Furthermore, a novel, dual-function, fluorescent
probe has been developed and shown capable of detecting the
two hypoxia-sensitive species nitroreductase and ATP [39].
Recently, an ADP-selective fluorescent probe that can monitor

and quantify the consumption/production of ATP/ADP during
phase I of glucose metabolism was identified [40]. The probe can

Fig. 1 The schematic figure illustrates the design strategy for using fluorescent probes to evaluate intracellular signaling cascades
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indicate the biological and medicinal significance of glucose
metabolism through monitoring the enzymatic phosphorylation
of glucose, the phosphorylation of fructose-6-phosphate, the
formation of 3-phosphoglycerate and the conversion of phos-
phoenolpyruvate to pyruvate [40]. Additionally, Yue and collea-
gues developed a coumarin derivative that is a dual-site
fluorescent probe for visualizing the metabolism of Cys and,
thereby, quantifying the redox dynamic in living cells. This probe
was validated by demonstrating a reversible response toward
thiols with the addition of a thiol-scavenging reagent [41]. This
may be a major advance in quantifying intracellular redox balance.

Probes for detecting ionic homeostasis
Changes in the intracellular ion concentration are a critical
component of numerous diseases [2, 7, 42]. Pathological changes
in intracellular Ca2+ homeostasis underline many pathophysiolo-
gical signaling pathways. Two 1,2-bis(2-aminophenoxy) ethane-N,
N,N’,N’-tetraacetic acid (BAPTA)-based fluorescent chemosensors
for Ca2+ were developed by the Nobel Laureate Roger Y. Tsien in
1980. These probes greatly improve the selectivity and sensitivity
of chemosensors [43] that have been a key step in advancing
calcium signaling research. Various Ca2+ fluorescent probes based
on this theory have been developed, greatly expanding the choice
in photophysical properties and organelle-targeting ability [44].
Probe 1 was developed for the visualization of cytoplasmic Ca2+,
which is suitable for multicolor imaging for the simultaneous
detection of metal ions or proteins in the monitoring
of cytoplasmic Ca2+ oscillation in cultured cells [45]. The Ca2+-
sensitive fluorescent probe fura-2 [46]. has been used to detect
the anti-inflammatory compound NPC-14686, which can induce a
Ca2+ increase, and the inhibition of phospholipase C can abolish
NPC-14686-induced Ca2+ rise. This has illuminated a pathway
whereby NPC-14686 induces cellular Ca2+ releases
from the endoplasmic reticulum and Ca2+ stores via protein
kinase C-regulated Ca2+ channels [46].
Potassium ion (K+) is the most abundant cellular metal cation

and, thereby, plays essential roles in cardiac and neuronal
excitability and cellular ionic homeostasis. Photoluminescent
Carbon dots have been used as a fluorescent probe for the
label-free detection of the potassium level in serum and red blood
cells [47]. This fluorescent probe was reported to have an
outstanding selectivity for K+/Na+ and to be a suitable fluorescent
tool to measure the physiological level of K+ levels in the range of
10–80 mmol/L in vitro [48]. Another probe, TLSHalo, is useful to
examine the K+ transition in cells with high resolution and
sensitivity, capable of visualizing dramatic changes of K+ in cells
[49]. The fluorescent signal generated by TLSHalo increased
abruptly in the presence of ionomycin, whereas it was abolished
by preincubation with the cytosolic Ca2+ chelator BAPTA-AM or
the selective BK channel inhibitor iberiotoxin (IBTX) [49].

PROBES RELATED TO CELL DAMAGE
Redox signaling and oxidative stress
Oxidative stress refers to an imbalance between intracellular free
radicals and antioxidants, which are linked to a myriad of
pathologies. The dynamic cellular change of ROS provides
abundant physiological and pathological information [30]. There-
fore, analytical methods for ROS have received increasing
attention.
Redox chemistry underlies much of the progression of vascular

diseases [7, 9, 50]. Hydrogen peroxide (H2O2) is generated by
superoxide spontaneously and is a primary product of NADPH
oxidase/NOX4 following dismutation (or partitioning) by super-
oxide dismutase [51]. Accumulating evidence shows that H2O2

induces a severe oxidative stress that leads to cell injury [50, 51].
Recent findings have implicated it in pro-survival cell signaling
[52]. In addition to vascular disease, abnormal concentrations

of H2O2 may accelerate aging, Alzheimer's disease, and cancer
[53, 54]. The gold standard for H2O2 detection mainly depends on
electrochemical methods, electron spin resonance (ESR) and HPLC.
By contrast, fluorescence probes have the advantages of high
sensitivity, good selectivity, and suitability for live cell detection
[55–57]. Following the pioneering report of the use of aryl-
boronate-based fluorescent probes for imaging H2O2 in live cells
[58], various detection methods have been developed. Theranos-
tic probe AP established new experimental strategies that not only
detects H2O2 with high specificity but is also capable of reducing
the H2O2–initiated oxidative damage (Fig. 2). Cells normally emit
only a low level of fluorescence, but during H2O2 overproduction,
the bond between the aspirin moiety and the fluorophore is
cleaved, releasing both to fulfill their therapeutic or signaling
function. The protective effect of probe AP against H2O2-induced
endothelial cell apoptosis was confirmed by reduced phosphor-
ylation of JNK, ERK, and p38 in H2O2-AP-treated cells [52]. Notably,
the probe also protected the vasculature from thrombotic damage
in zebrafish [52].
MitoHCy-NH2 [59] is a fluorescent probe that can detect the

activity of Monoamine oxidase (MAO)-B and the byproduct ROS in
replicative aging models. MAO-B and its catalytic production of
ROS recognized as an important biomarker for maintaining
biogenic amine homeostasis. The pharmacological treatment of
pargyline or selegiline could inhibit MAO-B activity as demon-
strated by obviously decreasing the fluorescence intensity of the
probe. These studies illustrate the use of fluorescent probes for
efficacy evaluation and drug screening [59].

Nitrosative stress
Peroxynitrite (ONOO-) is an endogenous reactive molecule that is
highly oxidative. It is formed by the diffusion reaction between
nitric oxide (NO) and the superoxide radical (O2•ˉ). Due to being
extremely active, ONOO- and its secondary radicals (•OH, CO3•Py-
rene, and NO2) can react with proteins, DNA, lipids, and amino
acids, eventually leading to cell death [1, 5, 60]. ONOO- is highly
challenging to detect, which has limited its understanding.
Aminophenyl fluorescein [61] and hydroxyphenyl fluorescein are
two fluorescent probes for ONOO- detection [62]. Tests are limited
by poor selectivity for ONOO- against •OH or ClO- [61, 63]. ONOO-

can oxidize phenols to quinines, Yang and colleagues developed a
series of fluorescent probes with high selectivity based on this
reaction [64–66]. These authors also developed PN600, which
differentiates hypochlorite from ONOO- through a multichannel

Fig. 2 Visualizing endogenous H2O2 formation using a functional
fluorescent probe in a mouse with brain ischemia. Adapted from Ref.
[52]
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signaling mechanism [67]. To track the in situ production of
ONOO- during acute brain vascular injury, one group has recently
reported that NP3 is a two-photon, fluorescent, "switch-on" probe
based on a brain-blood-barrier (BBB)-permeable fluorophore. The
oxygen-glucose deprivation-induced increase of NP3 fluorescence
was reduced in the presence of either the calmodulin inhibitor or
BAPTA, suggesting its specificity for monitoring ONOO-

fluxes
during ischemia [15]. The good BBB permeability and two-photon
absorption provide the probe with excellent temporal and spatial
resolution to track ONOO- in live mice after ischemia-induced
neurovascular damage [15] (Fig. 3). Low-glucose stress induced a
pronounced increase in the formation of ONOO-, which is
confirmation of its sensitivity for detecting nitrosative stress [50].
This signal was abrogated by melatonin treatment [50]. Therefore,
this study led to the finding that dysfunction of the TP53-induced
glycolysis and apoptosis regulator (TIGAR) resulted in tight
junction injury during low-glucose injury via the generation of
ONOO-. Based on the fluorescence resonance energy transfer
(FRET) mechanism, Yuan et al developed a new two-photon,
radiometric, fluorescent probe (MITO-CC) to image mitochondrial
ONOO- [68]. MITO-CC exhibited highly specific targeting of
mitochondrial ONOO- with a fast response rate (within 20 s) and
high sensitivity (detection limit= 11.30 nmol/L) [68].

Mitochondria damage
Mitochondria-dependent cellular respiration is achieved by a
chain of metabolic reactions that convert biochemical energy and
O2 into ATP. A disturbance of oxidative phosphorylation in
mitochondria plays a critical role in the progression of human
diseases. This disturbance usually initiates the apoptosis signaling
pathway, leading to damage to proteins and nucleic acids [5, 52,
69, 70]; however, the complex link between mitochondrial
damage and cellular pathology has not been fully elucidated.
Methods for detecting dynamic changes in mitochondria damage
have been helpful for elucidating the role of mitochondria in
pathophysiology.

A fluorescent carbon-dot (C-dot)-based nanoprobe was devel-
oped that was then covalently conjugated to a mitochondrial-
targeting moiety. The probe was successfully used to detect and
image mitochondrial ONOO- [71]. Shchepinova and colleagues
designed MitoNeoD as a new, dual-purpose, mitochondrial O2•

-

probe comprising a triphenylphosphonium lipophilic cation
moiety, leading to a rapid mitochondria accumulation [72]. In
addition, Han et al reported that Mito-diNO2 is a mitochondrial-
targeting, near-infrared, radiometric, fluorescent probe [73] that
can quickly detect the concentrations of selenocysteine (Sec) and
disulfide (CS2) in mitochondria. Sec elicits a protective role against
CS2-induced acute inflammation and liver damage [74]. Exposure
to CS2 activated ERK phosphorylation and other pro-inflammatory
factors [75], while supplementation with Sec inhibited this
pathway. This validates that the probe is able to monitor Sec
treatment of CS2 liver poisoning.
Rhodamine 123 (RH-123) fluorescence quenching kinetics can

be used to evaluate the mitochondrial membrane potential
(Δψmit). It provides a method to study mitochondrial proton
uptake through the F0-ATPase channel during ATP synthesis [76].
Mitochondrial-targeted redox probe (MitoRP), comprised of a
TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) moiety and cou-
marin 343, is probe that couples complex I and fluorescence
when electron transport is blocked by treatment with rotenone
[77].

Autophagy pathway
Macroautophagy is a self-degradative process that delivers
cytoplasmic components to lysosomes for degradation and
recycling [1, 7, 78]. Measuring autophagic activity is critical for
dissecting the molecular mechanism and function of autophagy
but remains challenging due to the lack of a definitive method
[79]. By staining autophagosomes as they are being formed,
chemical probes provide a sensitive and quantitative method to
evaluate autophagic flux in cultured cells and whole organisms,
providing an advantage over conventional genetic approaches.

Fig. 3 Real-time visualization of endogenous ONOO-
fluxes after brain microvessel injury with a combination of the NP3 probe and in vivo

two-photon laser scanning microscopy. Adapted from Ref. [15]
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To assess the translational relevance in treating autophagy-
related diseases, it is vital for the real-time and specific tracing of
autophagy flux under the pathological context of diseases.
MitoTracker Green (MTG) revealed an over two-fold increase of
average mitochondrial digestion time after nutrient deprivation in
the presence of protease inhibitors (pepstatin A, 5μmol/L) [80].
Pharmacological treatment with autophagy inhibitors suppressed
the increase of LysoTracker Red (LTR) uptake, indicating that
increased LTR uptake paralleled with autophagy induction. Further
observations support the notion that mitochondrial autophagy
involves the mitochondrial permeability transition via the PI3
kinase and JNK pathway [80].
Zn-G4 can monitor late-phase autophagy or endosome/

lysosome networks [81], since it stains autolysosomes selectively
due to its high affinity for autolysosome-specific hydrophobic
lipids or proteins [81]. Lyso-OC is a two-photon probe that detects
changes in the polarity of lysosomes [82]. Indeed, the use of
fluorescent probes have allowed the monitoring of the membrane
dynamics of cellular autophagy without the need for genetic
engineering to study autophagic flux [79]. Collectively, the
fluorescence measurement and fluorescence imaging with the
probe should be useful in screening and characterizing various
agents acting on autophagic pathways.

Formaldehyde stress
Formaldehyde (FA) is produced endogenously and has
been suggested to function as a physiological signaling molecule
[83–85]. FA participates in process of cell proliferation and
memory formation; however, excessive FA has an apoptotic
influence on cells [4, 86].
Li’s team has biochemically characterized a fluorescent probe

(PFM) to detect FA in living cells with rapid detection kinetics and
a reversible profile [4]. Probe PFM can track dynamic changes of
endogenous FA in live cells and brain tissue with high spatial
resolution. Aberrant FA was found to accumulate in the cortex and
hippocampus of amyloid precursor protein (APP) transgenic mice
[4], providing the direct evidence for the involvement of
formaldehyde in the pathology of the AD. 1-(4-(1H-phenanthro
[9,10-d]imidazol-2-yl)phenyl) but-3-en-1-amine (PIPBA) has been
character as FA probe and used to demonstrate indirect oxidative
toxicity [87]. The significantly higher fluorescent intensities of
PIPBA indicate the excess elevation of FA in the presence of a
radical initiator, 2,2-azobis[2-(2-imidazolin-2-yl) propane] dihy-
drochloride (AIPH, 1mmol/L) [87]. Consistently, remarkably wea-
kened PIPBA fluorescence was observed following the
pretreatment of zebrafish with the FA scavenger (HSO3

-,
500μmol/L) [87]. The probe PFM was endowed with outstanding
properties, including conformational restraint, a sensitive radio-
metric response, and lysosome targeting ability [88]. When
combined with a pharmacological strategy, Liang and colleagues
highlighted the promise of PFM [4] as a reliable tool for imaging
native formaldehyde at the subcellular level, which is useful in
exploring the pathological mechanism of FA in protein misfolding
and the etiology of neurodegenerative diseases [88].

PROBLEMS AND OUTLOOK
New drug targets are needed for the development of therapies
with novel molecular mechanisms of action to improve patient
outcomes. Fluorescent probes are the cornerstones of chemical
bioimaging. They can be used conveniently for the in situ real-
time monitoring of target molecules and biological processes and
will be useful in acquiring the necessary information on the
pharmacological efficacy, toxicity, mechanisms, and clinical
applications.
Despite many advances, remaining challenges include the

specificity and sensitivity of the probes. Advancing the field of
fluorescent probes requires a collaboration between chemical

biology, pharmacological/toxicological sciences and clinical
pathology. Furthermore, more research efforts should be directed
at expanding the application of these probes to explore
pharmacological/toxicological mechanisms and high-throughput
screening assays, which would convey the translational impact,
since it may provide insights into novel mechanisms and
strategies for drug development.
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