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Computational systems pharmacology analysis of cannabidiol:
a combination of chemogenomics-knowledgebase network
analysis and integrated in silico modeling and simulation
Yue-min Bian1,2,3, Xi-bing He1,2,3, Yan-kang Jing1,2,3, Li-rong Wang1,2,3, Jun-mei Wang1,2,3 and Xiang-Qun Xie1,2,3,4

With treatment benefits in both the central nervous system and the peripheral system, the medical use of cannabidiol (CBD) has
gained increasing popularity. Given that the therapeutic mechanisms of CBD are still vague, the systematic identification of its
potential targets, signaling pathways, and their associations with corresponding diseases is of great interest for researchers. In the
present work, chemogenomics-knowledgebase systems pharmacology analysis was applied for systematic network studies to
generate CBD-target, target-pathway, and target-disease networks by combining both the results from the in silico analysis and
the reported experimental validations. Based on the network analysis, three human neuro-related rhodopsin-like GPCRs, i.e.,
5-hydroxytryptamine receptor 1 A (5HT1A), delta-type opioid receptor (OPRD) and G protein-coupled receptor 55 (GPR55), were
selected for close evaluation. Integrated computational methodologies, including homology modeling, molecular docking, and
molecular dynamics simulation, were used to evaluate the protein-CBD binding modes. A CBD-preferred pocket consisting of a
hydrophobic cavity and backbone hinges was proposed and tested for CBD-class A GPCR binding. Finally, the neurophysiological
effects of CBD were illustrated at the molecular level, and dopamine receptor 3 (DRD3) was further predicted to be an active target
for CBD.
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INTRODUCTION
There is a history of >4000 years of medical and recreational uses
of cannabis by humans [1]. In addition to the adoption of cannabis
by young adults for recreational purposes, the medical use of
cannabis has drawn increasing attention from the public.
California passed Proposition 215 in 1996, as the first state in
the US to legalize the medical use of cannabis. According to “State
Medical Marijuana Laws” from the National Conference of State
Legislatures published on 9/14/2017, currently 29 states in the US
plus the District of Columbia, Guam, and Puerto Rico allow
comprehensive public medical marijuana programs.
Delta-9-tetrahydrocannabinol (THC) is the major contributor in

cannabis preparations that causes psychoactive effects [2]. THC
targets cannabinoid receptors including cannabinoid receptor
1 (CB1) and cannabinoid receptor 2 (CB2) in the brain [3,4]. The
psychoactive effects associated with THC include schizophrenia-like
positive and negative symptoms, increased anxiety, and euphoria
[2]. Unlike THC, cannabidiol (CBD) shows limited affinities towards
cannabinoid receptors [5–7]. Instead, CBD is the major nonpsy-
choactive ingredient in cannabis, and studies have shown beneficial

effects of CBD in neurological diseases [8]. Recently, Aso et al. [9]
showed a therapeutic profile of CBD for treating neurodegenerative
diseases in AβPP/PS1 mouse models. Cheng et al. [10] reported that
CBD reversed the cognitive deficits of Alzheimer’s Disease
transgenic mice. Devinsky [11] studied the relevance of epilepsy
and the neuroprotective effects of CBD. Costa [12] demonstrated
that CBD alleviated inflammation pain in a rat model.
One of the major research obstacles regarding CBD is the

unclear mechanisms behind its promising treatment potentials.
Given that CBD has a low-binding affinity towards traditional
cannabinoid receptors (CB1 and CB2), the determination of the
major active target(s) of CBD is a demanding and challenging
task. Great efforts have been devoted towards this area of
study by researchers [7,8,13–16], and further progress is still in
urgent demand. In the present work (Fig. 1), chemogenomics-
knowledgebase systems pharmacology analysis was performed
for CBD. Both the data from the in silico results and the reported
experimental validations were combined to generate a network of
CBD targets. Pathway analysis was performed to bridge the gap
between the targets and specific diseases. Integrated
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computational methodologies, including homology modeling,
molecular docking, and molecular dynamics simulation were then
used to evaluate the protein-CBD binding modes. According to
the network analysis, three human neuro-related rhodopsin-like
(class A) G protein-coupled receptors (GPCRs), 5-
hydroxytryptamine receptor 1A (UniProt ID: 5HT1A_HUMAN or
5HT1A as an abbreviation), delta-opioid receptor (UniProt ID:
OPRD_HUMAN or OPRD as an abbreviation), and G protein-
coupled receptor 55 (UniProt ID: GPR55_HUMAN or GPR55 as an
abbreviation), were closely evaluated. A hydrophobic cavity and
backbone hinge model was proposed and tested for CBD-class A
GPCR binding. Dopamine receptor 3 was further predicted to be a
potential target for CBD.

MATERIALS AND METHODS
Chemogenomics databases and tools
Chemogenomics databases including the Cannabinoid Ligand
Database (http://cbligand.org/cbid), Chemogenomics Database for
Alzheimer’s Disease [17] (http://cbligand.org/AD/), and Chemoge-
nomics Database for Drug Abuse Research [18] (http://cbligand.
org/CDAR/) were used for target prediction. Specifically, the
incorporated chemogenomics tools used for CBD target mapping
were the integrated TargetHunter [19] and HTDocking programs.
TargetHunter is an in silico target identification tool for predicting
therapeutic targets and off-targets of small molecules. The inquiry
compound was cannabidiol (2-[(1R,6R)-6-isopropenyl-3-methylcy-
clohex-2-en-1-yl]-5-pentylbenzene-1,3-diol), with R confirmation
for both chiral centers exhibited by CBD extracted from the
marijuana plant. The fingerprint type was set as Extended-
connectivity fingerprints 6 (ECFP6) [20]. The threshold for 2D
similarity was set to be 60%. HTDocking is an in silico algorithm
to perform high-throughput molecular docking studies between
a compound and the protein targets in the chemogenomics
databases with available crystal structures. CBD was the inquiry
compound, and its affinity towards a total of 607 protein targets
was screened and evaluated.
Cytoscape 3.5.1 [21] was used for constructing the networks

by combining the in silico results and the reported experimental

validations. The layout format was set to the Degree Sorted
Circle layout.

Homology modeling
Modeller 9.19 [22,23] was used for building protein models
for GPR55 and 5HT1A given that no crystal structures were
available for them. A multiple template-based modeling module
was adopted with loop refinement. Templates were selected
based on three criteria, E-values [24], sequence similarity, and
resolution. The conserved residues were marked according to
the Ballesteros–Weinstein numbering system. The constructed
models were evaluated with the Discrete Optimized Protein
Energy (DOPE) [25] measurement and Ramachandran plot [26].
DOPE reflects the energy profile of each individual residue,
making a comparison between the templates and the target
easier to perform. The Ramachandran plot measures the dihedral
angles ψ against φ of amino acid residues on the backbone
structure of the protein. The Ramachandran plot was created
through the web server RAMPAGE (http://mordred.bioc.cam.ac.uk/
~rapper/rampage.php) [27].
Protein sequence information for target proteins GPR55 and

5HT1A was acquired from UniProt (http://www.uniprot.org) [28].
For GPR55, residues 1–10 and 299–319 were truncated
to reduce the length of irrelevant loops on both the
extracellular and intracellular parts. For 5HT1A, residues 1–30,
220–340, and 407–422 were truncated to reduce the length
of irrelevant loops. The crystal structures of human OPRD
(PDB entry: 4N6H; resolution, 1.8 Å; method, X-ray diffraction)
[29], human dopamine D3 receptor (PDB entry: 3PBL;
resolution, 2.89 Å; method, X-ray diffraction) [30], human
adenosine A2A receptor (PDB entry: 5IU4; resolution, 1.72 Å;
method, X-ray diffraction) [31], and human CXCR chemokine
receptor type 4 (PDB entry: 3ODU; resolution, 2.5 Å; method,
X-ray diffraction) [32], as well as 11 template protein structures
for building GPR55 and 5HT1A models, were downloaded from the
Protein Data Bank (http://www.rcsb.org). SYBYL-X 1.3 was used
for the preparation of the crystal structure, including energy
minimization and residue repair. SYBYL-X 1.3 and PyMol (http://

Fig. 1 A schematic representation of the workflow in this study
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www.pymol.org) were used for molecular visualization, structural
superimposition, and data analysis following our usual operation
routine [33].

Molecular docking between CBD and GPR55, 5HT1A, OPRD1, DRD3,
ADORA2A, and CXCR4 proteins
Molecular docking studies were performed using Surflex-Dock
GeomX, the suite implemented in SYBYL-X 1.3. A conserved
orthosteric binding pocket among rhodopsin-like GPCRs was
defined by selecting corresponding surrounding residues. The
Kollman all atom approach was used to calculate atomic charges
for the protein [34] and the Gasteiger–Hückel approach for
the ligand [35] following our usual operation routine [33]. The
hydrogen atoms of the protein were allowed to move.
The number of additional starting conformations per molecule
was set to 20. The distance to expand search grid was set to 6 Å.
The maximum number of poses per ligand was set to 200, and
the minimum RMSD between final poses was set to 0.05 Å. The
optimized pose was selected and reported based on six criteria,
hydrophobic (positive atomic contacts and atomic interpenetra-
tion), polar (hydrogen bonds and salt bridges), repulsive
(unfavorable polar contacts), entropic (loss of translational and
rotational entropy), solvation (difference between the potential
and actual numbers of hydrogen bond), and crash (inappropriate
penetration into the protein). The naltrindole was first extracted
from the OPRD-naltrindole crystal structure (PDB entry: 4N6H) and
then docked back to the binding pocket to function as a control to
validate the docking algorithm. The naltrindole fits well inside the
binding pocket (Supplementary Figure 1). The hydrogen bonds
with ASP128 and TYR129 were able to recur, as well as the
hydrophobic interactions towards VAL281 and TRP274. There was
a good overlap between the docking result and the crystallized
complex with the RMSD of ~ 0.2 Å, indicating a reliable docking
process.

Enrichment test for GPR55 and 5HT1A models
Approximately 500 compounds were randomly selected from
Clean Drug-like Zinc database (http://zinc.docking.org) [36]. In
total 10 active compounds for the corresponding targets were
downloaded from ChEMBL (https://www.ebi.ac.uk/chembl/) [37].
Random compounds and active compounds were mixed together
to be screened using the homology protein models of GPR55 and
5HT1A. Surflex-Dock Screen, the suite implemented in SYBYL-X 1.3,
was used for the in silico screening. The system settings were the
same as those in the previous section except for the following: the
movements of hydrogen atoms of the protein were not allowed;
no additional starting conformation was allowed for the ligand;
the distance to expand the search grid was set to 6 Å; the
maximum number of poses per ligand was set to 3; the minimum
RMSD between final poses was set to 0.05 Å.

Molecular dynamics simulation
The Membrane builder in CHARMM-GUI [38,39] was used for
building up the CBD-protein-membrane complex. The ratio for
DOPC: DOPE: CHL was set to 2:2:1 following the established
simulation membrane systems [40–42]. The membrane was
placed on the X–Y plane, and the Z axis was normal to the
membrane. The water thickness was at least 17.5 Å on the top and
bottom of the system. Na+ and Cl− ions were added to make a
0.15 M ion concentration. The whole system for the CBD-GPR55
complex included the GPR55 homology model, CBD, 80 DOPC
molecules, 79 DOPE molecules, 41 CHL molecules, 13512 water
molecules, 36 Na+ ions, and 42 Cl− ions. The size of the box for
this system was ~85 × 85 × 103 Å3. The disulfide bond between
CYS84 and CYS158 was specified. The whole system for the CBD-
5HT1A complex included the 5HT1A homology model, CBD, 82
DOPC molecules, 80 DOPE molecules, 40 CHL molecules, 12317
water molecules, 33 Na+ ions, and 35 Cl− ions. The size of the box

for this system was ~85 × 85 × 107 Å3. The disulfide bond between
CYS79 and CYS157 was specified. The whole system for the
CBD–OPRD complex included the crystal OPRD model, CBD, 82
DOPC molecules, 81 DOPE molecules, 41 CHL molecules, 14633
water molecules, 39 Na+ ions, and 55 Cl− ions. The size of the box
for this system was ~86 × 86 × 107 Å3. The disulfide bond between
CYS121 and CYS198 was specified.
The AMBER ff14SB force field [43] was applied to proteins, and

the AMBER Lipid17 force field [44] was applied to lipids. Water
molecules were treated with the TIP3P water model [45]. The
partial atomic charges of ligands were derived by the restrained
electrostatic potential (RESP) method [46] to fit the HF/6-31G*
electrostatic potentials generated using the GAUSSIAN 16 software
package [47]. The other force field parameters came from GAFF in
AMBER16 [48]. The residue topologies for ligands were prepared
using the ANTECHAMBER module [49].
The MD simulations were carried out using the PMEMD.mpi and

PMEMD.cuda modules in the AMBER16 [50–52] package. First, the
systems were relaxed to remove possible steric crashes by a set of
minimization steps. The water and ions were relaxed first, followed
by the lipids and then the protein and ligand complex. The
harmonic restraint force constants decreased from 20 to 10, 5, and
1 kcal/mol/Å2, progressively. Finally, the whole systems were
further minimized without any restraints. After the minimization
stages, each system was gradually heated from 0 K to 300 K at the
heating stages, and then the temperature was kept at 300 K at the
following equilibrium and production stages. A time step of 1 fs
was used for the heating and the first part of equilibrium and 2 fs
for the rest of equilibrium and the following production stages.
The periodic boundary condition was employed to produce the
constant temperature and pressure (NPT) ensembles. The pressure
was set at 1 atm and was controlled by the anisotropic (x-, y-, z-)
pressure scaling protocol applied in AMBER [50] with a pressure
relaxation time of 1 ps. The temperature was regulated using
Langevin dynamics with the collision frequency of 5 ps−1 [53,54].
The Particle Mesh Ewald (PME) method [55,56] was adopted to
handle the long-range electrostatics, and a 10 Å cutoff was set to
treat real-space interactions. All the covalent bonds involving
hydrogen atoms were constrained with the SHAKE algorithm [56].
The simulations time for each system was 200 ns, and the
coordinates of simulated systems were saved every 0.1 ns.

RESULTS
CBD target mapping
Three chemogenomics databases and two chemogenomics tools,
TargetHunter and HTDocking, were used here for retrieving the
information for protein targets as detailed in the Materials and
Methods. Twenty-seven targets were predicted to be associated
with CBD, as shown in Fig. 2. The size of each balloon represents
the predicted affinity of CBD towards the corresponding target.
The larger the size, the stronger the predicted affinity. Literature
reviews were used to distinguish known, experimentally identi-
fied, and purely predicted targets [5,7,8,15,16,57–64]. Table 1 gives
the annotation for the abbreviated protein representatives, the
activity data from the literature for known compounds, and the
information source for these targets. Bilin-binding protein (BBP),
beta-amylase (AMYB), UDP-N-acetylglucosamine 1-
carboxyvinyltransferase (MURA), dihydropteroate synthase (DHPS),
and neuraminidase (NRAM) were identified as protein targets for
non-human species. CBD has effects in numerous species, but the
effects on the human body remain the major focus of this paper.
Therefore, the following pathway and disease analysis exclude the
non-human targets.
Signaling pathways and processes associated with the targets

were analyzed to bridge the gap between the CBD targets and the
involvement in specific diseases (Fig. 3). As a result, a total of 33
nodes of pathways or processes were found to be connected with
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the targets through 62 edges. The network exhibits polypharma-
cology of CBD, which is consistent with the wide spectrum of
physiological responses that can be triggered by CBD. Specific
signaling is specified for immune response and inflammation
signals if possible. Nine pathways or processes with three or more
edges connected are placed in the center for emphasis. Four of
them (cannabinoid signaling, nicotine signaling, GPCR signaling,
and neurophysiological process) are associated with neuro-related
normal functions or disorders. CNS regulation can be a promising
application of CBD. On the other hand, neurological side effects
can be a major concern for CBD treatment.
A target-disease network was constructed with the bridge of

signaling pathways and processes (Fig. 4). In total, 25 nodes of
diseases were connected with targets through 62 edges. Specific
cancer types are detailed for carcinoma if possible. Diseases in
both the peripheral and in CNS were observed. Diseases range
from cardiovascular and inflammatory diseases to cancer, neuro-
related diseases, etc. Neuro-related diseases are placed in the
center for emphasis. These diseases are mainly associated with
delta-type opioid receptor (OPRD), dopamine receptor 3 (DRD3), G
protein-coupled receptor 55 (GPR55), hemoglobin subunit alpha
beta (HBA), transient receptor potential cation channel subfamily
V member 1 (TRPV1), cannabinoid receptor 1 (CNR1), cannabinoid
receptor 2 (CNR2), and 5-hydroxytryptamine receptor 1A (5HT1A).
Given that CBD exhibits limited affinities towards CB1 and CB2
receptors, the neurological effects of CBD may be a result of a
“single molecule, multiple targets” effect.

To further probe into the mechanism by which CBD triggers
neurophysiological effects, we selected three targets, GPR55,
5HT1A, and OPRD, for detailed binding mode evaluation. First, we
sought an explanation for the treatment benefits of CBD on
neuro-related diseases at the molecular level. Second, we
expected to identify the conserved binding mode between CBD
and rhodopsin-like GPCR targets. The reasons for selecting these
three targets were that (i) they are all experimentally validated
targets for CBD; (ii) they are all neural disease-related targets at
both pathway and disease levels; (iii) they are all rhodopsin-like
(Class A) GPCRs. Other receptors were not selected due to various
reasons. For example, BBP, HBA, etc. may have better affinities
with CBD according to the prediction compared with the affinities
of the selected three proteins; however, either they are non-
human proteins, or there is currently no experimental data to
support the CBD-protein interaction. Among the proteins that
were experimentally validated, FABPL, CP1A1, CP2C9, etc. are
depicted with relatively larger balloons compared with OPRD and
5HT1A. However, they were not selected since they are metabolism
enzymes, which may affect the pharmacokinetic profiles of the
compounds but will not directly trigger neuro-related physiologi-
cal responses. For proteins that can have neuro-related effects,
transient receptor potential cation channel subfamily V member 1
and 2 (TRPV1 and TRPV2) have been experimentally validated to
interact with CBD and reported to be associated with pain relief.
However, they are transporters, the structures of which vary
dramatically compared to the structures of rhodopsin-like GPCRs.

Fig. 2 Chemogenomics-based targets mapping for CBD. The size of the balloons is correlated with the predicted affinity between the target
and CBD. Balloons with pink color represent the purely predicted targets. Balloons with green color represent the experimentally validated
targets. Balloons with yellow color represent the known targets
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Homology modeling for GPR55 and 5HT1A
The crystal structure for OPRD is currently available from the
Protein Data Bank (PDB entry: 4N6H). For GPR55 and 5HT1A, there
are no available crystal structures. Homology modeling with
Modeller was used to build the protein models. Sequences for
GPR55 and 5HT1A were acquired from the UniProt database.
Non-redundant PDB sequences at 95% sequence identity were

considered for the template search. Sequences with fewer than
30 or >4000 residues were discarded. For the GPR55 model, six
templates were selected, including human protease-activated
receptor 1 (PDB entry: 3VW7, sequence identity: 37%), human
CXCR4 chemokine receptor (PDB entry: 3ODU, sequence identity:
31%), human kappa-opioid receptor (PDB entry: 4DKL, sequence
identity: 30%), house mouse mu-opioid receptor (PDB entry:
4DJH, sequence identity: 48%), human kappa-opioid receptor
(PDB entry: 4EJ4, sequence identity: 45%), and human CC
chemokine receptor 9 (PDB entry: 5LWE, sequence identity:
44%). For the 5HT1A model, five templates were selected,
including human beta-2 adrenergic receptor (PDB entry: 3KJ6,
sequence identity: 48%), wild turkey beta-1 adrenergic receptor
(PDB entry: 4AMJ, sequence identity: 45%), wild turkey beta-1
adrenoceptor (PDB entry: 4BVN, sequence identity: 44%), human
5HT1B receptor (PDB entry: 4IAR, sequence identity: 43%), and
human A2a receptor (PDB entry: 4UG2, sequence identity: 41%).
Align2d, a dynamic programming algorithm that considers the

structural information from the templates, was used to align the
templates and the target sequences. Automodel class was
followed to create one or more target model(s) according to the
structures of templates and the alignment file. Supplementary

Figure 2a, b shows the sequence alignments between the
templates and the targets. The conserved residues were marked
with an asterisk. Gaps can be observed in the loop regions and the
extracellular and intracellular terminus. DOPE evaluation revealed
no positive energies for individual residues (Supplementary
Figure 3a, b). In addition, good correlations between the
templates and the targets were found, and gaps could be
observed for the positions with truncated sequences. The dihedral
angles ψ against φ of amino acid residues on the backbone
structure of the protein were evaluated and reported in the
Ramachandran plot (Supplementary Figure 3c, d). For GPR55, 269
residues (93.7%) are in the favored region, 15 residues (5.2%) are
in the allowed region, and 3 (1%) residues are in the outlier region.
Three outliers, TRP43, SER78, and TYR156, are located on ICL1,
ECL1, and ECL2 respectively, which are not involved in the
orthosteric binding pocket formation. For 5HT1A, 244 residues
(96.1%) are in the favored region, 8 residues (3.1%) are in allowed
region, and 2 (0.8%) residues are in outlier region. Two outliers,
PHE189 and ARG190, are located on ICL3, which is also not
involved in the binding pocket formation.

Model validation with enrichment test
Enrichment tests were conducted to determine whether these
models could distinguish active compounds from random
compounds. Virtual screening using Surflex-Dock Screen was
performed to determine the binding affinity between small
molecules and protein models.
For the GPR55 model, 10 active compounds were acquired

from the ChEMBL database, and 500 random compounds were

Table 1. Annotation for abbreviated protein targets

Protein name Targets Experimental EC50/IC50 (μM) Information source

Bilin-binding protein (BBP_PIEBR) BBP — HTDocking

Fatty acid-binding protein liver (FABPL_HUMAN) FABPL 0.167 (Ki)* [64] Literature

Hemoglobin subunit alpha beta(HBA_HUMAN/HBB_HUMAN) HBA — HTDocking

Tyrosine-protein kinase CSK(CSK_HUMAN) CSK — HTDocking

Beta-amylase (AMYB_SOYBN) AMYB — HTDocking

G-protein coupled receptor 55 (GPR55_HUMAN) GPR55 0.45 [61] TargetHunter/Literature

UDP-N-acetylglucosamine 1-carboxyvinyltransferase (MURA_ECOLI) MURA — HTDocking

Cytochrome P450 1A1 (CP1A1_HUMAN) CP1A1 0.537 [59] HTDocking/Literature

Tissue-type plasminogen activator (TPA_HUMAN) TPA — HTDocking

Dopamine receptor 3(DRD3_HUMAN) DRD3 — HTDocking

Dihydropteroate synthase (DHPS_ECOLI) DHPS — HTDocking

Carbonic anhydrase 2 (CAH2_HUMAN) CAH2 — HTDocking

Neuraminidase (NRAM_INBBE) NRAM — HTDocking

Cytochrome P450 2C9 (CP2C9_HUMAN) CP2C9 2.67 [58] HTDocking/Literature

Leukocyte elastase (ELNE_HUMAN) ELNE — HTDocking

Transient receptor potential cation channel subfamily V member 1 (TRPV1_HUMAN) TRPV1 1 [62] TargetHunter/Literature

von Willebrand factor (VWF_HUMAN) VWF — HTDocking

Annexin A3 (ANXA3_HUMAN) ANXA3 — HTDocking

Transthyretin (TTHY_HUMAN) TTHY — HTDocking

Delta-type opioid receptor (OPRD_HUMAN) OPRD 10.7 [16] TargetHunter/Literature

Cytochrome P450 3A4 (CP3A4_HUMAN) CP3A4 11.7 [57] HTDocking/Literature

5-Hydroxytryptamine receptor 1A (5HT1A_HUMAN) 5HT1A 8-32 (Conc. range)* [15] TargetHunter/Literature

Plasminogen activator inhibitor 1 (PAI1_HUMAN) PAI1 — HTDocking

Interferon beta (IFNB_HUMAN) IFNB — HTDocking

Transient receptor potential cation channel subfamily V member 2 (TRPV2_HUMAN) TRPV2 31.7 [63] Literature

Cannabinoid receptor 1 (CNR1_HUMAN) CNR1 >30 [7] TargetHunter/Literature

Cannabinoid receptor 2 (CNR2_HUMAN) CNR2 >30 [7] TargetHunter/Literature
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randomly selected from the Zinc database, as specified in
Materials and methods section (Supplementary Table 1). In total,
510 compounds were ranked according to their docking scores.
The compound with highest docking score was ranked No.1,
and the compound with the lowest docking score was ranked
No. 510. In total, 10 active compounds ranked among the top 41
(top 8%), which meant that the active GPR55 compounds are
favored by this GPR55 protein model (Supplementary Figure 4a).
The distribution of docking scores revealed that active com-
pounds tended to achieve higher docking scores than random
compounds (Supplementary Figure 4b). The result of the Mann-
Whitney test showed that the asymptotic significance (two-tailed)
was <0.001. Compared with random compounds, the active
compounds had a distribution of docking scores that was
significantly right shifted.
For the 5HT1A model, the same 500 random compounds from

the Zinc database were retained, and another 10 active
compounds for 5HT1A were acquired from the ChEMBL database
(Supplementary Table 2). Similarly, all of the compounds were
ranked according to their docking scores. Ten active compounds
ranked among the top 67 (top 13%), which means that the 5HT1A
receptor can distinguish the active compounds from the random
ones (Supplementary Figure 4c). The distribution of docking
scores demonstrated that the active compounds tended to have
higher docking scores than the random compounds (Supplemen-
tary Figure 4d). In addition, the Mann–Whitney test showed that
the asymptotic significance (two-tailed) was <0.001.

Static CBD-protein binding mode analysis
The homology models of GPR55 and 5HT1A and the crystal
structure of OPRD (PDB entry: 4N6H) were used for evaluating
CBD–protein interactions. The static evaluation was first per-
formed with molecular docking studies. Given the conservation in
sequences and structural features among the rhodopsin-like (class
A) GPCRs, the orthosteric binding pocket is conserved at the
transmembrane (TM) helical bundles facing towards the extra-
cellular matrix.
In GPR55, residues from TM3, TM4, TM5, TM6, TM7, and ECL2 were

found to be involved in orthosteric binding pocket formation
(Fig. 5a). Specifically, the surface of residues GLU88, PHE92, SER143,
ILE146, PHE159, THR166, PHE172, PHE240, ARG243, and LEU260
defined the boundary of the pocket (Fig. 5b). CBD fit well inside the
binding pocket with a cyclohexene group facing the extracellular
matrix and a lipophilic chain facing the intracellular matrix. One
hydrogen bond was observed between the residue THR166 on ECL2
and the hydroxyl group connected to the benzene ring of CBD.
Hydrophobic interactions were observed between the aliphatic
chain of CBD and the lipophilic chain and ring systems from PHE92
on TM3, PHE172 on TM5, PHE240 on TM6, and ILE146 on TM4
(Supplementary Figure 5a).
In 5HT1A, residues from TM2, TM3, TM5, TM6, TM7, and ECL2

were found to be involved in orthosteric binding pocket formation
(Fig. 6a). To be specific, the surface of residues TYR66, PHE82,
ASP86, CYS90, ILE159, ALA173, TRP208, PHE211, PHE212, and
ASN236 defined the boundary of the pocket (Fig. 6b). CBD

Fig. 3 CBD target-pathway network. Blue nodes represent the targets for CBD identified through target mapping. Yellow and orange nodes
represent signaling pathways or processes. In particular, orange nodes are shared by three or more targets and placed in the center for
emphasis. Targets are connected with pathways or processes with edges in the corresponding color
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exhibited a similar binding pose as in GPR55 described above. The
cyclohexene group faced up towards the extracellular region, and
the aliphatic chain stretched inside the pocket. Two hydrogen
bonds were observed between the hydroxyl groups on CBD and
ASP86 on TM3 and ASN236 on TM7. Hydrophobic interactions
were observed between the aliphatic chain of CBD and the
lipophilic ring systems from TRP208, PHE211, and PHE212 on TM6
(Supplementary Fig. 5b).
In OPRD, residues from TM3, TM6, and TM7 were found to be

involved in orthosteric binding pocket formation (Fig. 7a). The
surface of residues LEU125, ASP128, TYR129, MET132, ILE277,
ILE304, and TYR308 defined the boundary of the pocket (Fig. 7b).
CBD fit well inside the pocket. Three hydrogen bonds were
observed between hydroxyl groups on CBD and ASP128 and
TYR129 on TM3 and TYR308 on TM7. Hydrophobic interactions
were observed between the aliphatic chain of CBD and the
lipophilic chain and ring systems from ILE277 on TM6, ILE304,
and TYR308 on TM7 (Supplementary Figure 5c).
As shown in Figs. 5a, 6a, and 7a, a model of hydrophobic cavity

and backbone hinge was proposed by summarizing all three
molecular docking studies. Backbone donors and acceptors on
ECL2, TM3, and TM7 function as hinges to fix and locate CBD,
while hydrophobic cavities formed by residues on TM5, TM6, and
TM7 hold the aliphatic chain of CBD.

Dynamic CBD-protein binding mode analysis
The model of hydrophobic cavity and backbone hinge was
proposed through the molecular docking studies in a static manner.

We then sought to test whether this mode can be maintained in
dynamics studies. Therefore, 200-ns molecular dynamics simulation
was performed for each of the CBD-protein complexes with lipids,
water molecules, and ions, as described in Materials and methods.
For the CBD-GPR55 system (Fig. 8a), the receptor-ligand

interactions between CBD and the surrounding residues were
proven to be stable. The GPR55 model was equilibrated at ~40 ns,
and CBD was equilibrated at ~100 ns (Fig. 8b). The overall root
mean square deviation (RMSD) for the protein was ~2.6 Å, which
was majorly contributed by the loop regions. The coordinate
of the complex at 120 ns was selected to study the potential
interactions and the detailed binding mode, given that the
equilibrium of the system was maintained after 100 ns. CBD
generally preserved the static binding pose with the cyclohexene
group facing the extracellular matrix and the aliphatic chain
facing the intracellular matrix (Fig. 5c). Due to the flipping
and movement of ECL2, the hydrogen bond between CBD and
THR166 was no longer maintained. Another residue, MET162,
on ECL2 formed a hydrogen bond with CBD to function as the
hinge. Hydrophobic interactions with TM3, TM5, and TM6
were preserved. PHE92, PHE172, PHE159, and PHE240 were
involved in the formation of the hydrophobic cavity for holding
the aliphatic chain (Supplementary Figure 6a). Overall, the
proposed binding mode was preserved for the CBD-GPR55
complex in the dynamic view.
For the CBD-5HT1A system (Fig. 8c), stable receptor-ligand

interactions between CBD and 5HT1A were observed. The protein
model was equilibrated at ~30 ns, and CBD was equilibrated

Fig. 4 CBD target-disease network. Blue nodes represent the targets for CBD identified through target mapping. Salmon and pink nodes
represent different diseases. Pink nodes are neurological-related diseases and are placed in the center for emphasis. Targets are connected
with diseases with edges in the corresponding color
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at ~65 ns (Fig. 8d). The fluctuation of RMSD for CBD was observed
at ~140 ns, which was mainly caused by the rotation of the
cyclohexene group. The overall RMSD for the protein was ~2.1 Å,
and the loop regions were the major contributor. The coordinate
of the complex at 100 ns was selected to study the potential
interactions and the detailed binding mode since the overall

equilibrium of the system was consistent after 65 ns. The
hydrophobic cavity and backbone hinge model was preserved
for the protein–ligand complex (Fig. 6c). The hydrogen bond
between CBD and ASN236 was maintained on TM7. An additional
hydrogen bond for CBD with GLY232 on TM7 was also observed.
Meanwhile, the other hydroxyl group could have hydrophilic

Fig. 5 Simulated binding mode of CBD on GPR55. The protein is shown as a cartoon. CBD (cyan) and critical residues (yellow) involved in
interactions and pocket formation are shown in sticks. H-bonds are marked as red dashes, and hydrophobic interactions are marked as blue
dashes. a CBD-GPR55 binding follows a hydrophobic cavity and backbone hinge model. Cyan spheres represent the location of the
hydrophobic cavity. Red spheres represent the location of the hinge formation. b Static docking pose and ligand-residue interactions between
the GPR55 protein model and CBD. c Pose and ligand-residue interactions between the GPR55 protein model and CBD for the coordinate
at 120 ns (equilibrium stage) during the molecular dynamics simulation

Fig. 6 Simulated binding mode of CBD on 5HT1A. The protein is shown as a cartoon. CBD (cyan) and critical residues (yellow) involved in
interactions and pocket formation are shown in sticks. H-bonds are marked as red dashes, and hydrophobic interactions are marked as blue
dashes. a CBD-5HT1A binding follows a model of hydrophobic cavity and backbone hinge. Cyan spheres represent the location of the
hydrophobic cavity. Red spheres represent the location of the hinge formation. b Static docking pose and ligand-residue interactions between
the 5HT1A protein model and CBD. c Pose and ligand-residue interactions between the 5HT1A protein model and CBD for the coordinate at
100 ns (equilibrium stage) during the molecular dynamics simulation
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interactions with SER160 on ECL2 through a water bridge. TRP208,
PHE211, and PHE212 on TM6 were involved in hydrophobic cavity
formation, and the hydrophobic interactions for CBD with these
residues were preserved (Supplementary Figure 6b).
For the CBD-OPRD system (Fig. 8e), a relatively stable

complexwas formed. Two equilibrium stages were observed
for OPRD (Fig. 8f). The protein achieved the first equilibrium
stage after ~5 ns and the second equilibrium stage after ~70 ns.
CBD flipping could be found at the beginning of the second
equilibrium stage of the protein, mainly caused by the outside
rotation of TM1, TM6, and TM7 at the extracellular portion. The
orthosteric binding site was increased after the rotation of helix
bundles, which minimized the restrictions of the movement of
CBD and allowed for more drastic movements of CBD. After the
optimized pose was found, CBD possessed a stable RMSD profile
after 160 ns. The coordinates of the complex at 30 ns, as the
representative for the first equilibrium stage, was first selected
to determine the detailed CBD binding pose. The cyclohexene
group of CBD faced the extracellular matrix, and its aliphatic
group faced the intracellular matrix. Hydrogen bonds were
formed between CBD molecules and residues ASP128 (TM3) and
LEU200 (ECL2) through a water bridge, and hydrophobic
interactions were formed between CBD and residues TYP129
and MET132 on TM3 (Fig. 7c and Supplementary Figure 6c). The
outward rotation of TM6 and TM7 made it difficult for CBD to
interact with residues on these helical bundles. Instead, CBD
interacted closely with TM3. The overall model of hydrophobic
cavity and backbone hinge was preserved for this equilibrium
stage. The coordinates of the complex at 160 ns, as the
representative for the second equilibrium stage, were then
selected for detailed examination. Through the extracellular
view of the complex (Fig. 7d), CBD can clearly be seen to lie in
the middle of the pocket parallel to the cell membrane.
Considering the outward rotation of TM3, TM6, and TM7, the
binding pocket was large enough to hold CBD in a parallel pose.

Nevertheless, the hydrogen bond of CBD with ASP128 on TM3
was maintained to function as the hinge. TRP249, ILE277, and
PHE280 on TM6 and LEU300 and ILE304 on TM7 were involved
in the formation of the hydrophobic cavity and its interaction
with the aliphatic chain of CBD (Supplementary Figure 6d).
Despite the change in the confirmation of CBD from vertical to
parallel, the overall model of hydrophobic cavity and backbone
hinge was still preserved for this equilibrium stage.
The 200-ns molecular dynamics simulations for these three

systems verified the proposed model of hydrophobic cavity and
backbone hinge. Consistent binding modes between CBD and
three active rhodopsin-like GPCR targets were observed for both
static molecular docking studies and dynamic molecular
simulations.

Prediction of dopamine receptor 3 as an active target for CBD
Dopamine receptor 3 (DRD3) was predicted to be a potential
target for CBD through chemogenomics-based target mapping
(Fig. 2). The pathway and process analysis associated DRD3
with multiple neuro-related disorders. Currently, there is no
reported experimental activity for CBD with DRD3. Given that
DRD3, which associates with multiple normal neuro-related
functions, is also a rhodopsin-like GPCR, we tested whether
CBD-DRD3 interactions could fit the proposed hydrophobic cavity
and backbone hinge model.
A molecular docking study between CBD and DRD3 (PDB entry:

3PBL) was performed. Residues from TM2, TM3, TM5, TM6, TM7,
and ECL2 were found to be involved in orthosteric binding pocket
formation (Fig. 9a). Especially, the surface of residues VAL86,
PHE106, ASP110, CYS181, ILE183, VAL189, SER193, PHE345,
PHE346, and TYR365 defined the boundary of the pocket. Two
hydrogen bonds, functioning as hinges, were observed between
the residue ASP110 on TM3, TYR365 on TM7, and the two hydroxyl
groups on CBD. Hydrophobic interactions were observed between
the benzene rings from PHE345 and PHE346 on TM6 and the

Fig. 7 Simulated binding mode of CBD on OPRD. The protein is shown as a cartoon. CBD (cyan) and critical residues (yellow) involved in
interactions and pocket formation are shown in sticks. H-bonds are marked as red dashes, and hydrophobic interactions are marked as blue
dashes. a CBD-OPRD binding follows a model of hydrophobic cavity and backbone hinge. Cyan spheres represent the location of the
hydrophobic cavity. Red spheres represent the location of the hinge formation. b Static docking pose and ligand-residue interactions between
the OPRD protein model and CBD. c Pose and ligand-residue interactions between the OPRD protein model and CBD for the coordinate at 30
ns (first equilibrium stage) during the molecular dynamics simulation. d Extracellular view of pose and ligand-residue interactions between
the OPRD protein model and CBD for the coordinate at 160 ns (second equilibrium stage) during the molecular dynamics simulation
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Fig. 8 The 200-ns molecular dynamics simulation for the CBD-protein complexes. a Simulation system for the CBD-GPR55 protein model
complex, with water in red spots, chlorine ions in green balls, sodium ions in yellow balls, membrane in cyan sticks, protein in purple cartoon,
and CBD in cyan sticks. b RMSD change for both CBD and the GPR55 protein model. c Simulation system for the CBD-5HT1A protein model
complex. d RMSD change for both CBD and the 5HT1A protein model. e Simulation system for the CBD-OPRD protein model complex. f RMSD
change for both CBD and the OPRD protein model
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Fig. 9 CBD-D3 protein model binding pose and negative controls. Proteins are shown in cartoon format in green. CBD is marked in cyan.
Critical residues involved in interactions and pocket formation are marked in yellow. a Membrane and extracellular views of docking pose and
ligand-residue interactions between the D3 protein model and CBD. b Membrane and extracellular views of docking pose and ligand-residue
interactions between the A2A protein model and CBD. c Membrane and extracellular views of docking pose and ligand–residue interactions
between the CXCR4 protein model and CBD
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hydrophobic center (benzene ring and aliphatic chain) of CBD. The
proposed binding mode was observed.
Furthermore, we examined whether this proposed model of

hydrophobic cavity and backbone hinge holds true for the
interaction of CBD with all rhodopsin-like GPCRs. Two
rhodopsin-like GPCRs with crystal structures, adenosine A2A
receptor (ADORA2A) and C–X–C chemokine receptor type 4
(CXCR4), were randomly selected for a test of their interaction
profiles with CBD using molecular docking studies. For
ADORA2A (PDB entry: 5IU4), residues from TM1, TM2, TM6,
TM7, and ECL2 were involved in orthosteric binding pocket
formation (Fig. 9b). The surface of residues TYR9, ALA63, SER67,
PHE168, ASP170, LEU249, ASN253, MET270, and ILE274 defined
the boundary of the pocket. CBD fit inside with the aliphatic
chain facing up towards the extracellular space, while the
cyclohexene group faced down. PHE168 on ECL2 formed one
hydrogen bond with CBD. However, the proposed binding mode
was not observed for the protein–CBD complex. For CXCR4 (PDB
entry: 3ODU), residues from TM1, TM2, TM3, TM7, and ECL2 were
involved in orthosteric binding pocket formation (Fig. 9c). The
surface of residues TYR45, TRP94, ASP97, CYS109, HIS113,
TYR116, CYS186, ARG188, SER285, and GLU288 defined the
cavity of the binding pocket. Again, no hydrophobic cavity was
formed by these surrounding residues to hold the aliphatic
chain. One hydrogen bond was formed between CYS109 on
ECL2 and CBD. Therefore, the proposed binding mode was not
observed.

CONCLUSION
Considering the promising treatment potentials of CBD on
multiple neuro-related diseases, efforts are in demand to reveal
the acting target(s) for CBD and the unclear mechanisms behind
the therapeutic potentials. In this study, chemogenomics-
knowledgebase systems pharmacology was combined with
the literature to report a target network analysis on CBD with
both experimentally validated and computationally predicted
molecular targets. Pathway analysis was performed to bridge
the gap between the targets and their involvement in diseases.
Based on the results from the CBD-target, target-pathway,
and target-disease networks, we focused on three reported
neuro-related rhodopsin-like GPCR targets, GPR55, 5HT1A, and
OPRD. A hydrophobic cavity and backbone hinge model was
proposed and tested with both static and dynamic evaluations
to describe the interactions between CBD and active rhodopsin-
like GPCR targets. The proposed model can guide (a) the
identification of CBD targets among receptors in the same
protein family and (b) the design of CBD derivatives and
analogs. Given the close association between neuro-related
diseases, such as epilepsy, psychosis, anxiety, movement
disorder, and neurological pain, and the receptors GPR55,
5HT1A, and OPRD, this study provided evidence that CBD may
act on these receptors to treat these medical conditions at the
molecular level. Moreover, based on the proposed binding
model and the CBD target mapping results, dopamine receptor
3 was further predicted to be a potential target for CBD.
Negative controls for rhodopsin-like GPCRs were also intro-
duced, revealing that the proposed CBD binding model was not
universal but only for active targets.
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