
ARTICLE OPEN

Amygdalar neurotransmission alterations in the BTBR mice
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Autism Spectrum Disorders (ASD) are principally diagnosed by three core behavioural symptoms, such as stereotyped repertoire,
communication impairments and social dysfunctions. This complex pathology has been linked to abnormalities of corticostriatal
and limbic circuits. Despite experimental efforts in elucidating the molecular mechanisms behind these abnormalities, a clear
etiopathogenic hypothesis is still lacking. To this aim, preclinical studies can be really helpful to longitudinally study behavioural
alterations resembling human symptoms and to investigate the underlying neurobiological correlates. In this regard, the BTBR T+

Itpr3tf/J (BTBR) mice are an inbred mouse strain that exhibits a pattern of behaviours well resembling human ASD-like behavioural
features. In this study, the BTBR mice model was used to investigate neurochemical and biomolecular alterations, regarding Nerve
Growth Factor (NGF) and Brain-Derived Neurotrophic Factor (BDNF), together with GABAergic, glutamatergic, cholinergic,
dopaminergic and noradrenergic neurotransmissions and their metabolites in four different brain areas, i.e. prefrontal cortex,
hippocampus, amygdala and hypothalamus. In our results, BTBR strain reported decreased noradrenaline, acetylcholine and GABA
levels in prefrontal cortex, while hippocampal measurements showed reduced NGF and BDNF expression levels, together with
GABA levels. Concerning hypothalamus, no differences were retrieved. As regarding amygdala, we found reduced dopamine levels,
accompanied by increased dopamine metabolites in BTBR mice, together with decreased acetylcholine, NGF and GABA levels and
enhanced glutamate content. Taken together, our data showed that the BTBR ASD model, beyond its face validity, is a useful tool to
untangle neurotransmission alterations that could be underpinned to the heterogeneous ASD-like behaviours, highlighting the
crucial role played by amygdala.
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INTRODUCTION
Autism Spectrum Disorders (ASD) are a group of neurodevelop-
mental disorders, generally diagnosed by three core behavioural
symptoms, such as stereotyped repertoire, communication
impairments and social withdrawal [1]. In addition, ASD are
characterized by a wide range of additional symptoms, including
cognitive dysfunctions, restricted interests, hyperactivity and
impulsivity, thus showing comorbidities with different neuropsy-
chiatric disorders, such as schizophrenia, attention-deficit/hyper-
activity disorder, anxiety and obsessive-compulsive disorder [2, 3].
ASD prevalence has increased dramatically during the last decade,
reaching the 1% estimation from the World Health Organization,
that only accounts for approximately 16% of the global paediatric
population; while European and US reports estimated around 1.4-
2.5% in children of 8 years old on average based on population
studies [4–7]. The complex etiopathogenesis underlying ASD
onset and development is still unknown, since beyond the mostly
hypothesized genetic and environmental involvement, multiple
factors, regarding immune, dietary, metabolic and gastrointestinal
systems, have recently been implicated [8, 9]. Considering that
studies involving humans are often polluted by uncontrollable
variables and biases and some contrasting results and

inconsistencies in clinical evaluations have also been denounced,
animal models can be really helpful to longitudinally study
behavioural alterations resembling human symptoms in a
translational way and to investigate the underlying neurobiologi-
cal mechanisms [10, 11]. To this aim, the BTBR T+ Itpr3tf/J (BTBR)
mice are an inbred mouse strain that well resembles the principal
behavioural deficits of ASD [2, 12]. Among the different ASD mice
models, the BTBR mouse strain shows robust and pronounced
deficits in reciprocal social interactions, altered ultrasonic vocaliza-
tion and repetitive stereotyped repertoire [13, 14]. In addition,
BTBR mice display cognitive and emotional abnormalities to the
psychiatric comorbidity of ASD [15, 16]. Considering their unique
behavioural profile, BTBR mice might be a helpful tool to
disentangle the neurobiological alterations that give rise to the
heterogeneity of ASD symptoms, to identify putative biomarkers
and, ultimately, to develop efficacious pharmacological treatments
[17]. Regarding repetitive and restricted behaviours, BTBR mice
were able to display both “lower-order” motor stereotypies and
“higher-order” cognitive stereotypies [18], making this animal
model suitable to study the neurobiological pathways related to
these behavioural dysfunctions. Pharmacological treatments to
ameliorate repetitive behaviours are mainly focused towards
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impulsivity and irritability, by using typical and atypical anti-
psychotics, thus they are employed in limited cases. Currently,
there are no drugs approved to successfully treat ASD repetitive
symptoms [19–22]. Hence, unravelling the burden of underlying
mechanisms related to stereotypies would provide a valuable step
forward to the development of novel pharmacological interven-
tions to target ASD repetitive repertoire. Although the pathophy-
siology of ASD is still cryptic, several imaging and post-mortem
studies reported the crucial involvement of corticostriatal and
limbic circuits, by showing cortical, hippocampal and amygdalar
anatomical abnormalities and functional alterations [23–27].
Indeed, a number of genes related to ASD are known to alter

the neural structure, function and connectivity, as well as
neurotransmission and neurotropism [28, 29]. In this regard, the
neurotrophin family, notably Brain-Derived Neurotrophic Factor
(BDNF) and Nerve Growth Factor (NGF), plays a pivotal role in
neurodevelopmental processes which are atypical in ASD
pathology [30]. In particular, BDNF, being an essential actor for
the proper cerebral development and importantly associated to
synaptic plasticity, has been recently proposed as a possible
diagnostic marker in children suffering from ASD and different line
of evidence have reported its involvement in ASD onset and
development [31–33]. As regarding Nerve Growth Factor (NGF),
such neurotrophin plays a key role in the regulation of nerve-cell
growth, survival and differentiation, being markedly expressed in
the central nervous system, particularly in the cerebral cortex,
hippocampus (HIPP) and amygdala (AMY) [34]. Research linking
NGF and ASD is limited. Few studies report an involvement of the
NGF signalling pathway in the pathogenesis of ASD [30, 35], also
considering the critical role of this neurotrophin in the immune
modulation and in the induction of the release of different
neuropeptides and neurotransmitters [36], such as glutamate and
dopamine (DA) [37]. On the other hand, cathecolamines are
known to increase NGF content [38], thus resulting in a continuous
crosstalk between these two pathways. In this regard, cathecola-
mines, such as DA and noradrenaline (NA) are known to play a
pivotal role in the modulation of executive functions, attention,
impulsivity and emotional state, which are all processes disrupted
in ASD [39, 40]. Indeed, recent studies report a possible
implication of DA neurotransmission and metabolism in ASD
development [41–43] while a number of evidence demonstrated
that neuropathological changes related to the noradrenergic
system often occur in ASD [44–46]. In addition, the imbalance of
the excitatory-inhibitory synaptic transmission has also been
linked to ASD pathology [47]. In this regard, alterations of
glutamate and gamma-aminobutyric acid (GABA) receptors
expression have been reported in post-mortem brains of ASD
patients [48] and a decrease in GABA levels have been observed in
different brain regions of ASD children [49]. Furthermore, brain
regions with dense cholinergic innervation, such as prefrontal
cortex (PFC), hippocampus (HIPP) and amygdala (AMY), are linked
to social cognition, thus resulting crucially involved in ASD
pathophysiology [50]. In this regard, it has been reported that
low acetylcoline (ACh) levels in mice displayed reduced social
interactions and that, by administrating acetylcholinesterase
inhibitors, such impairment might be relieved [51]. Converging
evidence have revealed that ASD patients show an atypical social
brain circuitry and that, in this important network, AMY is one of
the regions with major interest [52]. In this regard, it has been
reported that ASD patients showed reduced connectivity between
AMY and PFC that was correlated with the severity of social
dysfunctions [53]. In addition, a weaker functional connectivity
was also found between AMY and occipital cortex [54], suggesting
that such region, being the core of social brain network, deserves
deeper investigations.
To summarize, a number of molecular alterations, in terms of

neurotrophin, cathecolamines and aminoacids have been
reported in both animal and human ASD studies, and, from an

anatomical point of view, tendency towards overgrowth of PFC
and AMY have been detected in individuals with ASD compared
to neurotypical controls [55–57]. Moreover, data from structural
magnetic resonance imaging highlighted widespread cerebral
abnormalities in ASD patients, that involve total brain volume,
fronto-parieto-temporal and cerebellar regions [58]. Nonetheless
the above mentioned alterations, ASD continue to be purely
defined by behavioural dysfunctions, thus to unravel the under-
pinning mechanisms beyond behavioural traits still represents a
demanding task.
To this aim, we employed the BTBR mice model to investigate

neurochemical and biomolecular alterations underpinning ASD
behavioural dysfunctions. In particular, we quantified NGF and
BDNF expression levels, together with GABAergic, glutamatergic,
dopaminergic, noradrenergic and cholinergic neurotransmissions
in PFC, HIPP, AMY and hypothalamus (HYP).

MATERIALS AND METHODS
Animals
In this study, we focused on male sex since ASD shows a male prevalence,
being males three times more diagnosed than females [59]. A total of 20
(2–3 per litter, randomly distributed) 10-weeks-old male mice, C57/BL6J
(BL6) (Envigo, San Pietro al Natisone, Italy) and BTBR (Charles-River Italia,
Milan, Italy), were used in this experimental study. They were raised at
constant room temperature (22 ± 1 °C) with relative humidity (55 ± 5%),
under a 12 h light/dark cycle (lights on from 7:00 AM to 7:00 PM) and free
access to water and food. All experiments on animals and their care were
carried out in accordance with the institutional guidelines of the Italian
Ministry of Health (D.Lgs. n. 26/2014), the Guide for the Care and Use of
Laboratory Animals: Eight Edition, the Guide for the Care and Use of
Mammals in Neuroscience and Behavioral Research (National Research
Council, 2004), the Directive 2010/63/EU of the European Parliament and of
the Council of 22 September 2010 on the protection of animals used for
scientific intents, as defined by Animal Research: Reporting of In Vivo
Experiments (ARRIVE) guidelines 2.0. The experimental protocol was
approved by the Italian Ministry of Health (protocol nr. B2EF8.24). Animals’
health state was checked daily during experimental period. Moreover, to
accomplish the 3 R’s principles, we performed the behavioural test battery
on the same group of animals; in order to reduce as much as possible the
number of animals used and every procedure was performed with the aim
to minimize their suffering.

Battery of behavioural tests
Hole board test. During day 1, BTBR and BL6 animals performed the
Hole Board task. This test was carried out in a wooden box (40 × 40 x
35 cm) having 16 holes with a diameter of 3 cm on the ground and
placed 5 cm from the floor, as previously described [60]. The test lasted
10 min and an automatic counter registered the number of times the
animals poking the hole for a duration of at least 1 sec, reported as
number of poking holes.

Open Field test. During day 2, the Open Field test was carried out. The test
was performed according [61]. Briefly, the animals were left to explore an
open field arena (40 × 40 x 35 cm) for 5 min. ANY-maze tracking software
version 7 (Ugo Basile-Varese, Gemonio, Italy) recorded and analyzed the
locomotory activity of each mouse by measuring the distance travelled,
the duration and the frequency of freezing behaviour and the time spent
in the center and in the wall of the arena. Between one test and another, a
solution at 70% of ethanol was used to clean arena floor and avoid inter-
assay bias.

Social Interaction test. During day 3, the Social Interaction test was
performed, as previously described [62]. The animals, after 2 days of
individual housing, were left in the same large box used for the Open Field
arena and let free to explore one plastic object, one paper cylinder, one
ball and an unfamiliar stimulus mouse (same strain, sex and age of subject
mouse) for 5 min. A camera recorded the test and a blind observer scored
the frequency and duration of social behaviours from an investigative and
affiliative point of view and also frequency and duration of non-social
behaviour, considering the attitude towards objects, like sniffing, exploring
and playing with the objects. [63, 64].
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Elevated Zero Maze test. During day 4, the Elevated Zero Maze test was
carried out, as previously described [65]. Precisely, a maze built in black
acrylic in a circular track 10 cm wide, 105 cm in diameter and 72 cm high
was used. Two opposed closed quadrants and two opposed open
quadrants with black acrylic walls 28 cm high composed the maze. On
the test day the animal was placed at a casually chosen boundary between
an open and a closed zone, facing the closed area. After each trial, the
maze was cleaned with a 70% ethanol solution. The test lasted 5 min and a
blind observer evaluated the time spent in the open and in the closed
corridors, expressed in seconds.

Post-mortem tissues analyses
After behavioural tests, the mice were sacrificed by cervical dislocation and
brains were randomly divided for ex vivo analysis. PFC, HIPP, HYP and AMY
were removed from brains, in accordance with the mouse brain atlas of
Paxinos and Franklin, and frozen, stored at −80 °C for subsequent analyses.
To perform biomolecular studies, the tissues were homogenated and
diluted 1:10 w/v in PBS buffer with 1:100 protease and phosphatase
inhibitor (HALT inhibitors, Thermo Fisher Scientific, Cleveland, OH, USA) at
4 °C; while for neurochemical analyses, the samples were homogenated
and diluted 1:10 w/v in perchloric acid 0.1 M at 4 °C. In both cases, after
dilution, a centrifuge at 10.000 x g at 4 °C for 10min was carried out and
the supernatants were analysed.

Western blotting quantification
In this procedure, protein extracts were generated from fresh frozen PFC,
HIPP and AMY tissues following samples homogenization with a Halt™
Protease and Phosphatase Inhibitor Single-Use Cocktail, EDTA-Free
(Thermo Fisher Scientific, Cleveland, OH, USA). Subsequently, lysates were
measured for total protein concentration using a Pierce™ BCA protein
assay kit (Thermo Fisher Scientific, Cleveland, OH, USA) and the Multiskan™
FC Microplate spectrophotometer (Thermo Fisher Scientific, USA) at
570 nm. For SDS-PAGE the total amount of samples protein (forty µg)
loaded in to the 4–15% Mini-PROTEAN™ TGX Stain-Free™ Protein Gels (Bio-
Rad Laboratories Inc, Segrate (MI), Italy) for electrophoresis and then
transferred on the Nitrocellulose membrane (Bio-Rad Laboratories Inc,
Segrate (MI), Italy) by Pierce™ Power Blotter (Thermo Fisher Scientific,
Cleveland, OH, USA). Then, the membranes were blocked in the 5%
skimmed milk for 1 h at room temperature followed the incubation with
rabbit monoclonal antibodies against NGF (ab52918; 1:1000, Abcam,
Cambridge, UK), BDNF (ab226843; 1:1000, Abcam, Cambridge, UK) and
mouse monoclonal antibodies against β-actin (ab8226; 1:1000, Abcam,
Cambridge, UK) overnight at 4 °C. In add to this, the incubation (1 h at
room temperature) with horseradish peroxidase-conjugated specific (Goat
anti-rabbit (ab6721; 1:5000, Abcam, UK) and goat anti-mouse (ab205719;
1:5000, Abcam, UK)) secondary antibodies were used. Clarity™ Western ECL
Substrate (Bio-Rad Laboratories Inc, Segrate (MI), Italy) was used for protein
bands visualization. ChemiDoc™ XRS+ system (Bio-Rad Laboratories Inc,
Segrate (MI), Italy) was used to detect chemiluminescence and ImageJ
software (version 1.52a; National Institutes of Health, USA) was utilized to
quantify the optical densities of the bands that were then normalized
versus bands of β-actin.

Neurochemical quantifications
The neurochemical quantifications were carried out in PFC, HIPP and AMY
of BTBR and BL6 animals. In particular DA, NA, 3,4-dihydroxyphenylacetic
acid (DOPAC), homovanillic acid (HVA) were measured by using high-
performance liquid chromatography coupled with an electrochemical
detector (Ultimate ECD, Dionex Scientific, Milan, Italy). LC18 reverse phase
column (Kinetex, 150mm × 3.0mm, ODS 5 µm; Phenomenex, Castel
Maggiore-Bologna, Italy) was utilized to separate the catecholamines that
were detected by a thin-layer amperometric cell (Dionex, ThermoScientific,
Milan, Italy) with a 5-mm diameter glassy carbon electrode by using
400mV as working potential vs. Pd. An aqueous buffer (pH 3.0) composed
of 75mM NaH2PO4, 1.7 mM octane sulfonic acid, 0.3 mM EDTA,
acetonitrile 10%, was used as mobile phase and an isocratic pump
(Shimadzu LC-10 AD, Kyoto, Japan) worked at 0.7 ml·min-1 as flow rate. To
perform the data acquisition and integration, Chromeleon software
(version 6.80, Dionex, Thermo Scientific, San Donato Milanese, Italy) was
utilized. Moreover, GABA and glutamate amounts were quantified by high-
performance liquid chromatography with fluorescence detection, after
derivatization with ophthalaldehyde/mercaptopropionic acid (emission
length, 460 nm; excitation length, 340 nm) by using an OD column

(Kinetex, 150 mm×3.0mm, ODS 5 µm; Phenomenex, Castel Maggiore-
Bologna, Italy). The mobile phase used was a gradient phase of 50mM
sodium acetate buffer, pH 6.95, with methanol increasing linearly from 2 to
30% (v/v) over 40min. A pump (JASCO, Tokyo, Japan) maintained the flow
rate at 0.5 ml/min and the Borwin software (version 1.50; Jasco) was used
to analyze the results. Results, after being normalized for total area weight,
were expressed as concentration/mg of tissue.

Acetylcholine (ACh) assay
The levels of ACh were quantified in tissue homozenaized by using the
commercially available kit (Catalog Number MAK435, Sigma-Aldrich,
Milano, Italy), following the manufacturer’s instructions. Tissue has been
prepared by homogenization in cold 1× PBS and centrifugation (5 min at
14,000 × g). In the assay utilized, acetylcholine is hydrolysed by
acetylcholinesterase to choline which is oxidized by choline oxidase to
betaine and H2O2. H2O2 reacts with a specific dye to form a colored
product. The color intensity was analysed by the Multiskan™ FC Microplate
spectrophotometer (Thermo Fisher Scientific, USA) at 570 nm and it is
directly proportional to the acetylcholine concentration in the sample.
Results were expressed in accordance to the linear detection range for the
acetylcholine assay method (10-200 μM). Each sample analysis was
performed in duplicate to avoid intra-assay variations.

Blindness of the study
For each test, scoring process and analysis, the experimenters were blind
with respect to the experimental groups.

Statistical analyses
Sample size calculation has been performed a priori by using G power
software. Statistical analyses were carried out by GraphPad Prism software
(version 9.5.0; San Diego, CA, USA). In particular, Shapiro-Wilk test for
normality and ROUT method to identify statistical outliers were performed
for each group. Subsequently, Unpaired Student’s t-test two-sided, with
Welch’s correction when needed, was used to analyze data that were
expressed as mean ± standard error of the mean (SEM). Correlation
between behavioural outcomes and ex vivo results were analyzed by
using Pearson correlation. Differences between groups were considered
significant with a P value less than 0.05.

RESULTS
BTBR mice showed increased repetitive behaviour and
novelty-induced hyperlocomotion
In order to evaluate repetitive behaviours, we performed the
Hole Board task. Our results showed that BTBR mice reported a
significant increase in the number of poking holes compared to
control mice (Supplementary Fig. 1A, Unpaired Student’s t-test,
P < 0.001 BTBR vs. BL6). Furthermore, the locomotor activity in a
novel environment was investigated in the Open Field
paradigm. We observed an increase of the distance travelled
in meters in the arena, index of novelty-induced hyperlocomo-
tion, in BTBR mice compared with control animals (Supplemen-
tary Fig. 1B, Unpaired Student’s t-test, P < 0.0001 BTBR vs. BL6).
Furthermore, BTBR also showed a decrease in freezing duration
(Supplementary Fig. 1C, Unpaired Student’s t-test, P < 0.05 BL6
vs. BTBR) and freezing frequency (Supplementary Fig. 1D,
Unpaired Student’s t-test, P < 0.05 BL6 vs. BTBR) compared with
BL6 animals.

BTBR mice showed reduced social behaviours and increased
non-social behaviours
To investigate social dysfunctions, the Social Interaction test was
performed. During Social Interaction test, BTBR mice performed
significantly less social duration time (sec) compared to BL6 mice
(Supplementary Fig. 2A, Unpaired Student’s t-test, P < 0.05 BTBR
vs. BL6). Moreover, the time (sec) spent performing non-social
interactions in BTBR animals was significantly increased com-
pared to controls (Supplementary Fig. 2B, Unpaired Student’s t-
test, P < 0.0001 BTBR vs. BL6). As regarding the frequency of such
behaviours, BTBR social frequency measurements were
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significantly reduced (Supplementary Fig. 2C, Unpaired Student’s
t-test, P < 0.05 BL6 vs. BTBR), while there was a significant
enhancement in non-social frequency compared to BL6 animals
(Supplementary Fig. 2D, Unpaired Student’s t-test, P < 0.0001
BTBR vs. BL6).

BTBR mice showed reduced anxiety-like behaviours
To evaluate the anxiety-like behaviours, we used the Elevated Zero
Maze and the Open Field tests. We found that BTBR animals
showed an increase in the time spent exploring the open corridors
compared to controls (Supplementary Fig. 3A, Unpaired Student’s
t-test, P < 0.001 BTBR vs. BL6). Accordingly, the time spent in
closed quadrants of BTBR mice was significantly decreased
compared to BL6 (Supplementary Fig. 3B, Unpaired Student’s t-
test, P < 0.001 BTBR vs. BL6). Moreover, results from Open field test
showed that the time spent in the center in BTBR animals was
significantly increased compared to control animals (Supplemen-
tary Fig. 3C, Unpaired Student’s t-test, P < 0.0001 BTBR vs. BL6),

while the time spent in the wall was a significantly reduced,
respectively (Supplementary Fig. 3D, Unpaired Student’s t-test,
P < 0.0001 BTBR vs. BL6).
Subsequently, we performed ex vivo analyses in PFC, HIPP, HYP

and AMY tissues to quantify NA, DA and DA metabolites (DOPAC
and HVA) levels, together with Acetylcholine (ACh), Glutamate and
GABA, and NGF and BDNF expression levels in both experimental
groups.

BTBR mice showed reduced NA, ACh and GABA levels in PFC
Our results reported a significantly decrease of NA levels in the
PFC of BTBR animals compared to BL6 (Fig. 1A, Unpaired
Student’s t-test, P < 0.0001 BTBR vs. BL6), together with ACh and
GABA levels, respectively (Figs. 1E, G, Unpaired Student’s t-test,
P < 0.05 BTBR vs. BL6). As regarding DA, DOPAC, HVA, NGF,
BDNF and glutamate content, our results did not show any
difference between the two groups (Fig. 1, Unpaired Student’s
t-test, n.s.).

Fig. 1 NA, DA, DOPAC, HV, Ach, Glutamate, GABA, NGF and BDNF levels in PFC of BTBR (black bar) and BL6 (white bar) mice. A NA levels
(fmol/mg) of BL6 (n= 5) and BTBR (n= 5) mice. Unpaired Student’s t-test, ***P= 0.0008 BTBR vs. BL6; B DA amount (fmol/mg) in the PFC of
BL6 (n= 5) and BTBR (n= 5) mice. Unpaired Student’s t-test, n.s.; C DOPAC levels (fmol/mg) in the PFC of BL6 (n= 5) and BTBR (n= 5) mice.
Unpaired Student’s t-test, n.s.; D HVA levels (fmol/mg) in the PFC of BL6 (n= 5) and BTBR (n= 5) mice. Unpaired Student’s t-test, n.s.; E Ach
levels (uM) in the PFC of BL6 (n= 5) and BTBR (n= 4) mice. Unpaired Student’s t-test, *P= 0.0176 BTBR vs. BL6; F Glutamate levels (uM/mg) of
BL6 (n= 5) and BTBR (n= 5) mice. Unpaired Student’s t-test, n.s.; G GABA levels (uM/mg) of BL6 (n= 5) and BTBR (n= 5) mice. Unpaired
Student’s t-test, *P= 0.0290 BTBR vs. BL6; H NGF expression levels of BTBR (n= 5) and BL6 (n= 4). Unpaired Student’s t-test, n.s. Quantification
of the optical band density of NGF normalized for optical band density of β-actin housekeeping gene; I BDNF expression levels of BTBR (n= 5)
and BL6 (n= 4). Unpaired Student’s t-test, n.s. Quantification of the optical band density of BDNF normalized for optical band density of
β-actin housekeeping gene.
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BTBR mice showed enhanced DOPAC and decreased NGF,
BDNF and GABA levels in HIPP
As regards HIPP, we did not find any difference in NA, DA, HVA, ACh
and glutamate levels between BTBR and BL6 mice (Fig. 2, Unpaired
Student’s t-test, n.s.). Moreover, analysis of DOPAC content reported a
significant increase in BTBR animals compared to controls (Fig. 2C,
Unpaired Student’s t-test, P< 0.05 BTBR vs. BL6), while NGF and BDNF
expression levels, together with GABA content were decreased
(Figs. 2G–I, Unpaired Student’s t-test, P< 0.05 BTBR vs. BL6).

BTBR mice did not show any difference in HYP
Concerning HYP analysis, no differences in NA, DA, DOPAC, HVA,
ACh, NGF, BDNF, glutamate and GABA levels were found between
groups (Fig. 3, Unpaired Student’s t-test, n.s.).

BTBR mice showed reduced DA, NA, ACh, NGF and GABA and
increased DA metabolism and glutamate content in AMY
Our results showed that NA, DA, ACh, NGF and GABA levels in
AMY were substantially reduced in BTBR compared to BL6 animals
(Fig. 4, Unpaired Student’s t-test, P < 0.05 BTBR vs. BL6). In
addition, DOPAC, HVA and glutamate content in AMY of BTBR
animals showed a significant enhancement compared to controls
(Figs. 4C, D and F, Unpaired Student’s t-test, P < 0.001, P < 0.05
BTBR vs. BL6), while BDNF did not exhibit any differences (Fig. 4I,
Unpaired Student’s t-test, n.s.).

BTBR mice showed negative correlation between repetitive
behaviours and hyperlocomotion with amygdalar NA levels
and between non social behaviours and amygdalar
GABA amount
In order to investigate the presence of correlations between ASD
behaviours and ex vivo parameters in amygdala, we performed
Pearson correlation in mice from both groups. We did not find any
significant correlation (data not shown), except for the following
reported results; we found a significant negative correlation between
the number of poking holes in the Hole Board task and the levels of
amygdalar NA (Fig. 5A Pearson correlation, r=−0.8857; P< 0.01),
together with a significant negative correlation between the distance
travelled in the Open Field test and the levels of amygdalar NA (Fig.
5B, Pearson correlation, r=−0.8608; P< 0.01). Moreover, frequency
of non-social behaviours in the Social Interaction test and GABA
levels in AMY were also negatively correlated (Fig. 5E, Pearson
correlation, r=−0.7203; P< 0.05).

DISCUSSION
In the present study, the BTBR mice model reported ASD-like
behavioural features, accompanied by several neurochemical
alterations, in particular concerning the amygdalar area.
In this regard, we characterized the BTBR strain from a

neurochemical point of view, by analysing dopaminergic,

Fig. 2 NA, DA, DOPAC, HV, Ach, Glutamate, GABA, NGF and BDNF levels in HIPP of BTBR (black bar) and BL6 (white bar) mice. A NA
amount (fmol/mg) of BL6 (n= 5) and BTBR (n= 5) mice. Unpaired Student’s t-test, n.s.; B DA levels (fmol/mg) of BL6 (n= 5) and BTBR (n= 5)
mice. Unpaired Student’s t-test, n.s.; C DOPAC amount (fmol/mg) of BL6 (n= 5) and BTBR (n= 5) mice. Unpaired Student’s t-test, *P= 0.0323
BTBR vs. BL6; D HVA amount (fmol/mg) of BL6 (n= 5) and BTBR (n= 5) mice. Unpaired Student’s t-test, n.s.; E Ach levels (uM) of BL6 (n= 5) and
BTBR (n= 4) mice. Unpaired Student’s t-test, n.s.; F Glutamate levels (uM/mg) of BL6 (n= 5) and BTBR (n= 5) mice. Unpaired Student’s t-test,
n.s.; G GABA levels (uM/mg) of BL6 (n= 5) and BTBR (n= 5) mice. Unpaired Student’s t-test, *P= 0.0221 BTBR vs. BL6; H NGF expression levels
of BTBR (n= 5) and BL6 (n= 4). Unpaired Student’s t-test, *P= 0.0361 BTBR vs. BL6. Quantification of the optical band density of NGF
normalized for optical band density of β-actin housekeeping gene; I BDNF expression levels of BTBR (n= 5) and BL6 (n= 4). Unpaired
Student’s t-test, *P= 0.0352 BTBR vs. BL6. Quantification of the optical band density of BDNF normalized for optical band density of β-actin
housekeeping gene.
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noradrenergic and cholinergic, together with excitatory-inhibitory
neurotransmissions and NGF and BDNF expression levels, in four
different brain areas that are involved in ASD and that are strictly
interplayed among each other. As regards PFC, our results showed
a decrease in NA, ACh and GABA levels, while the HIPP was
characterized by enhanced DA metabolism and reduced NGF,
BDNF and GABA content. Concerning HYP, no differences were
retrieved among the different neurotransmitters analysed. Inter-
estingly, we found significant alterations in the AMY, in which
there was a decrease in NA, DA, ACh, GABA and NGF levels,
together with an increase in DA metabolites and glutamate
content, thus denoting massive dysfunctions in this brain region.
According to our results, it has been reported that a significant
activation of the DA turnover in AMY exacerbated the ASD-like
behaviours in BTBR mice [66] and that a reduction in the DA
release in AMY was associated with an enhancement in grooming
episodes [67]. Moreover, it has been reported that impairment
during AMY development is a crucial component of the
neurophenotype of ASD, occurring certain time before beha-
vioural diagnosis of ASD can reliably be made [68]. In addition, the
increased AMY growth in ASD children has been associated with
an enhancement of social dysfunctions [68]. Furthermore, it has
been demonstrated that lesions in the AMY altered fear response
and reduced anxiety [69]. However, it has to be taken into account

that the basolateral nucleus of the AMY sends projections to the
PFC and HIPP [70] and that these three areas are in continuous
crosstalk. Indeed, several studies reported a dopaminergic
modulation in widespread forebrain areas of ASD patients
[67, 71–76]. In regards to ACh content, we found a decrease in
PFC and AMY according to neurochemical alterations in the
cholinergic pathway observed in a postmortem study involving
ASD patients [77]. Moreover, it has been reported that ACh
increase could lead to an improvement of cognitive deficits in ASD
and other neuropsychiatric disorders [78]. Interestingly, reduced
ACh in the basal forebrain has been linked to decreased social
interactions and social memory dysfunctions in mice [51].
Furthermore, we also found a decrease in cortical and amygdalar
NA levels in BTBR mice. In this regard, it has been reported that
stereotyped behaviours, considered as derivatives of poor
adaptive behaviours, are principally mediated by the noradrener-
gic system and that the administration of an alpha-2-receptor
agonist might be helpful to improve ASD behavioural dysfunc-
tions [79]. In line with our results, another model of ASD, the
Engrailed-2 knock-out (EN2KO) mice, also reported NA neuro-
transmission alterations in the ventral hindbrain [80]. In addition, it
has been shown that the administration of atomoxetine, a NA
reuptake inhibitor, could be effective in treating hyperactivity in
children with ASD [81]. In addition, we found a significant negative

Fig. 3 NA, DA, DOPAC, HV, Ach, Glutamate, GABA, NGF and BDNF levels in HYP of BTBR (black bar) and BL6 (white bar) mice. A NA
amount (fmol/mg) of BL6 (n= 5) and BTBR (n= 5) mice. Unpaired Student’s t-test, n.s.; B DA levels (fmol/mg) of BL6 (n= 5) and BTBR (n= 5)
mice. Unpaired Student’s t-test, n.s.; C DOPAC amount (fmol/mg) of BL6 (n= 5) and BTBR (n= 5) mice. Unpaired Student’s t-test, n.s.; D HVA
amount (fmol/mg) of BL6 (n= 5) and BTBR (n= 5) mice. Unpaired Student’s t-test, n.s.; E Ach levels (uM) of BL6 (n= 5) and BTBR (n= 4) mice.
Unpaired Student’s t-test, n.s.; F Glutamate levels (uM/mg) of BL6 (n= 5) and BTBR (n= 5) mice. Unpaired Student’s t-test, n.s.; G GABA levels
(uM/mg) of BL6 (n= 5) and BTBR (n= 5) mice. Unpaired Student’s t-test, n.s.; H NGF expression levels of BTBR (n= 5) and BL6 (n= 4). Unpaired
Student’s t-test, n.s. Quantification of the optical band density of NGF normalized for optical band density of β-actin housekeeping gene;
I BDNF expression levels of BTBR (n= 5) and BL6 (n= 4). Unpaired Student’s t-test, n.s. Quantification of the optical band density of BDNF
normalized for optical band density of β-actin housekeeping gene.
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correlation between the number of poking holes (in the Hole
Board test) with the amount of NA in AMY. Moreover, the levels of
NA in AMY were also negatively correlated with the distance
travelled, thus denoting a significant inverse correlation between
repetitive behaviours and hyperactivity with NA levels. Accord-
ingly, an important role of NA in attention-deficit/hyperactivity
disorders has been reported, therefore different treatments for
hyperactivity aim to increase NA brain levels [82]. On the other
hand, the neurobiology of stereotyped behaviours is still
controversial [83]. However, it has been demonstrated that mice
lacking NA expressed excessive grooming behaviour, a well-
known repetitive behaviour [84], and that NA upregulation
reduced both hyperactivity and stereotypic behaviours [44], hence
suggesting that NA alterations might be crucially involved in the
development of such behavioural features and that the targeted
modulation of noradrenergic neurotransmission could result in
improving stereotyped repertoire and hyperactivity.
Furthermore, different studies reported an interplay between

NA neurotransmission and NGF expression [85–87]. In particu-
lar, it has been shown that, in cellular models, monoamine
oxidase inhibitors increased NGF expression [87] and that NA
can exert neuroprotective properties by inducing NGF expres-
sion [85]. In this regard, our results showed that BTBR animals
had decreased NGF and BDNF expression levels in HIPP, a brain
region in which such neurotrophins are mainly present [88].

Accordingly, hippocampal BDNF and NGF deficiency has been
associated with ASD development [89, 90], however results are
contrasting, since BDNF brain levels fluctuations have been
reported in response to several known, such as brain areas and
age, and unknown factors [91]. In addition, NGF levels were
reduced also in AMY, a brain region in which NGF signalling has
been linked to stress, reward and neuroprotection [92]. More-
over, NGF expression might be modulated also by the
GABAergic system. Indeed, it has been demonstrated that
NGF production is predominantly localized in GABAergic
inhibitory neurons [93]. In our results, we also found impair-
ments of excitatory-inhibitory neurotransmissions. In particular,
we showed an increase in glutamate and a reduction in GABA
levels in the AMY, while in PFC and HIPP we only reported a
decrease in GABA content. Thus, BTBR animals demonstrated a
perturbation of the excitatory-inhibitory balance, by showing
disruptions in the PFC and HIPP and disequilibrium in favour of
glutamate in AMY. These data corroborate with our previous
studies in which BTBR housed in a semi-natural environment
showed a decrease in GABA levels in AMY [94]. Accordingly,
great interest is moving toward GABA involvement in sociability
pathways. Indeed, it has been shown that a reduction in GABA
functions in the basolateral AMY triggered social interaction
dysfunctions [95]. Regarding glutamate, already in 2008 Fatemi
[96] proposed the hyperglutamatergic theory of autism.

Fig. 4 NA, DA, DOPAC, HV, Ach, Glutamate, GABA, NGF and BDNF levels in AMY of BTBR (black bar) and BL6 (white bar) mice. A NA levels
(fmol/mg) of BL6 (n= 5) and BTBR (n= 5) mice. Unpaired Student’s t-test, *P= 0.0221 BTBR vs. BL6; B DA levels (fmol/mg) of BL6 (n= 5) and
BTBR (n= 5) mice. Unpaired Student’s t-test, *P= 0.0266 BTBR vs. BL6; C DOPAC levels (fmol/mg) of BL6 (n= 5) and BTBR (n= 5) mice.
Unpaired Student’s t-test, **P= 0.0100 BTBR vs. BL6; D HVA levels (fmol/mg) of BL6 (n= 5) and BTBR (n= 5) mice. Unpaired Student’s t-test,
*P= 0.0469 BTBR vs. BL6; E Ach levels (uM) of BL6 (n= 5) and BTBR (n= 4) mice. Unpaired Student’s t-test, *P= 0.0286 BTBR vs. BL6;
F Glutamate levels (uM/mg) of BL6 (n= 5) and BTBR (n= 5) mice. Unpaired Student’s t-test, *P= 0.0366 BTBR vs. BL6; G GABA levels (uM/mg)
of BL6 (n= 5) and BTBR (n= 5) mice. Unpaired Student’s t-test, *P= 0.0244 BTBR vs. BL6; H NGF expression levels of BTBR (n= 5) and BL6
(n= 4). Unpaired Student’s t-test, *P= 0.0167 BTBR vs. BL6. Quantification of the optical band density of NGF normalized for optical band
density of β-actin housekeeping gene; I) BDNF expression levels of BTBR (n= 5) and BL6 (n= 4). Unpaired Student’s t-test, n.s. Quantification of
the optical band density of BDNF normalized for optical band density of β-actin housekeeping gene.
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Furthermore, the reduction in GABA levels in AMY has been
associated with decreased sociability, especially considering
that AMY is a crucial component of the social brain [95].
Concerning behavioural alterations, our results confirmed
stereotyped repertoire, social interaction deficits and novelty-
induced hyperlocomotion of BTBR mice [97–100], but also
showed an increase of the time spent performing non-social
exploration, together with the frequency of such behaviour. In
this regard, the exploration of three objects non socially-related
might resemble the absence of interests in people and in
developing relationships, an important behavioural feature of
ASD patients [101]. Moreover, we found a significant negative
correlation between GABA amount in AMY and frequency of
non-social behaviours, which could mimic the indifference and
the lack of interest for the surrounding social stimuli often
described in ASD patients [102]. Lastly, we also showed that
BTBR animals display lower anxiety levels, which could also be
interpreted as enhanced hyperactivity and impulsiveness,
important traits typical of ASD patients [103].
In conclusion, our neurochemical characterization of the BTBR

strain suggested that such idiopathic animal model might be
useful to unravel neurobiological and neurochemical correlates of
ASD behavioural dysfunctions, highlighting the important role of
neurotransmitter alterations in a specific brain region, such as
AMY, and strengthening that, beyond the well-known face
validity, BTBR mice also exhibit a high-grade of construct validity.
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