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Patterns of neural activity in response to threatening faces are
predictive of autistic traits: modulatory effects of oxytocin
receptor genotype
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Autistic individuals generally demonstrate impaired emotion recognition but it is unclear whether effects are emotion-specific or
influenced by oxytocin receptor (OXTR) genotype. Here we implemented a dimensional approach using an implicit emotion
recognition task together with functional MRI in a large cohort of neurotypical adult participants (N= 255, male = 131, aged 17–29
years) to establish associations between autistic traits and neural and behavioral responses to specific face emotions, together with
modulatory effects of OXTR genotype. A searchlight-based multivariate pattern analysis (MVPA) revealed an extensive network of
frontal, basal ganglia, cingulate and limbic regions exhibiting significant predictability for autistic traits from patterns of responses
to angry relative to neutral expression faces. Functional connectivity analyses revealed a genotype interaction (OXTR SNPs
rs2254298, rs2268491) for coupling between the orbitofrontal cortex and mid-cingulate during angry expression processing, with a
negative association between coupling and autistic traits in the risk-allele group and a positive one in the non-risk allele group.
Overall, results indicate extensive emotion-specific associations primarily between patterns of neural responses to angry faces and
autistic traits in regions processing motivation, reward and salience but not in early visual processing. Functional connections
between these identified regions were not only associated with autistic traits but also influenced by OXTR genotype. Thus, altered
patterns of neural responses to threatening faces may be a potential biomarker for autistic symptoms although modulatory
influences of OXTR genotype need to be taken into account.
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INTRODUCTION
Individuals with autism spectrum disorder (ASD) typically exhibit
general problems in discriminating and responding appropriately
to face emotions [1–3], although it is unclear whether problems
are generalized or emotion-specific [4, 5]. While several meta-
analyses demonstrate impaired recognition across all face
emotions in ASD [1, 3], findings are not consistent, with some
studies reporting problems with only negative [6, 7] or positive [8]
emotions while others have found no evidence for impairments
[9–12]. This may reflect differences in tasks and the analytical
approaches used [4, 5]. Additionally, a recent large study has
reported that face emotion recognition impairments in ASD may
be primarily due to a low functioning sub-group [13].
Face emotion recognition engages diverse psychological

processes involving both subcortical and cortical circuitry
[14–16]. Studies on face emotion processing distinguish a ‘core
system’ implicated in visual processing and an ‘extended system’
for cognitive functions. The ‘core system’ is comprised of occipito-

temporal regions while the ‘extended system’ includes the parietal
cortex, orbitofrontal cortex (OFC), inferior frontal gyrus (IFG),
medial prefrontal cortex (mPFC), amygdala, insula, anterior
cingulate cortex (ACC), ventral striatum, and basal ganglia
[14, 15]. Both ‘core’ and ‘extended’ processing systems exhibit
atypical responses during face emotion recognition in ASD, with
hypo- and hyper-activation being reported to all or specific
emotional faces, particularly in the amygdala, fusiform face area,
superior temporal sulcus and mPFC [13, 17–21]. On the other
hand, some studies have found no differences in neural responses
to emotional faces in ASD [10, 22] or in only in a sub-type of ASD
individuals who also showed low face emotion recognition
abilities and more severe symptoms [13].
The variability in both behavioral and neuroimaging findings for

emotional face processing impairment in ASD may reflect the
large heterogeneity in this disorder as well as task and analytical
differences. For example, while the estimated heritability of ASD is
around 60–70%, over 200 specific risk genes identified [23, 24] and
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heterogeneity in neural responses to social or other stimuli in ASD
may therefore be contributed to by differences in genotypic as
well as experiential contributions. In recent years there has been
increasing interest in the role of the hypothalamic neuropeptide
oxytocin in social cognition and ASD [25] with a number of studies
having reported modulation of face emotion processing following
intranasal administration of oxytocin in neurotypical individuals as
well as those with ASD [25–27]. Peripheral oxytocin concentrations
are decreased in children with ASD [28], and some clinical trials
have reported improved social symptoms following chronic
treatment with intranasal oxytocin [27, 29–31] and increased
visual attention towards emotional faces [27]. A number of single
nucleotide polymorphisms (SNPs) of the oxytocin receptor (OXTR)
are associated with ASD symptoms, and risk genes identified as
contributing to ASD influence oxytocin signaling [32, 33]. Evidence
has repeatedly linked the polymorphisms of the OXTR gene,
particularly the rs2254298, rs2268491, rs2268498, and rs53576
SNPs with autism, empathy, and social and emotional processing
[34–42]. The OXTR rs53576 SNP is also associated with general
sociability [43] and variations in rs2254298 may represent a trans-
diagnostic biomarker for social dysfunction [44]. Finally, reduced
amygdala and arousal responses to intranasal oxytocin are
modulated by OXTR genotype (both rs53576 and rs22542980)
[45].
Given the variability of both behavioral and neural findings

reported by studies in clinical populations of ASD individuals in
relation to emotion processing, and the likely contribution that
the well-known heterogeneity of such individuals diagnosed with
this disorder could have, the current study aimed to utilize a
Research Domain Criteria (RDoc) inspired dimensional approach
[46]. To this end we aimed to establish firstly whether autistic traits
per se in a large sample of neurotypical individuals (n= 255), not
diagnosed with ASD, are associated with general or emotion-
specific behavioral and neural responses to face expressions
(angry, fear, happy, neutral and sad) and secondly if there are
modulatory influences of their OXTR genotype. For the face
emotion recognition task we used an implicit task approach where
participants only had to identify the sex of individual displayed to
help avoid participants trying to consciously identify face
emotions during presentations in the MRI scanner rather than
simply process face emotion stimuli. By including a simple
requirement to identify the sex of the face presented we ensured
that participants paid attention to the stimuli. Explicit face
emotion recognition, where participants were required to actually
identify specific face emotions, was also tested subsequently
outside of the scanner to provide a measure of recognition
accuracy and speed. Neuroimaging analyses based on univariate
approaches have inherent limitations since they can only measure
associations between activity changes for specific voxels or
regions, so we therefore chose to use multivariate pattern analysis
(MVPA) [47]. MVPA can decode the multivariate information
contained in functional patterns using a classifier. By employing a
searchlight strategy with machine learning it can determine
differences in the patterns of activation exhibited which are
predictive of specific features of individuals using the patterns of
their neural responses to stimuli and without the potential bias of
prior voxel selection [47]. We therefore used MVPA to extract
information from locally distributed fMRI-based patterns of
activation during performance of a face emotion task to permit
a powerful fine-grained analysis of differences in extensive neural
activation patterns which are predictive of autistic traits. This
MVPA approach has been used in several previous studies
comparing small numbers of ASD and neurotypical individuals
[10, 22] but not in large scaled ones. Given that differences in
patterns of neural responses across multiple brain regions
identified by MVPA are likely to be influenced their functional
connectivities, we additionally used a univariate analysis to
investigate these. To assess potential modulatory effects of

multiple OXTR genotypes on these ASQ-associated functional
connectivities we then investigated whether the ASQ associations
were modulated by individual OXTR genotype by examining the
influence of four SNPs associated with autism and social cognition
(rs2254298, rs2268491, rs2268498, rs53576) to determine whether
autistic trait (Autism spectrum quotient (ASQ)) [48, 49] associations
were genotype-dependent.
Overall, we hypothesized that there would be a negative

association between autistic traits and accuracy in identifying the
expressions but not the sex of emotional faces and that MVPA
would reveal that there are patterns of activity in both ‘core’ and
‘extended’ face processing regions in response to specific
emotions which are predictive of autistic trait scores. We also
hypothesized further analysis would reveal that the strength of
functional connectivity between regions identified by the MVPA as
predictive of autistic trait scores would be associated with these
scores in an OXTR genotype-dependent manner.

MATERIALS AND METHODS
Participants
255 neurotypical Han Chinese (male = 131; age range = 17–29 years,
mean age ± SD= 21.62 ± 2.339 years) participants were enrolled (for
inclusion criteria see Supplementary). Sample size was not pre-determined
but post-hoc analysis showed that this sample size achieved >90% power
for a medium effect size in all types of statistical tests used in the data
analysis (calculated by G*Power v3.1.9.4). Participants reported being free
from current or past medical, neurological, or psychiatric conditions, and
no history of head injury or MRI contraindications. All volunteers were
required to abstain from alcohol, caffeine-containing drinks, cigarettes or
other psychoactive substances during the 24 h prior to the experiment.
Before the experiment all participants provided written informed consent.
The study was approved by the local ethics committee (Institutional
Review Board, University of Electronic Science and Technology of China)
and in accordance with the latest revision of the Declaration of Helsinki.
The study was part of a large-scale fMRI project composed of multiple task-
based paradigms investigating diverse questions including inhibitory
control [50, 51], imitation and the mirror neuron system [52] and pain
empathy [53, 54]. In contrast to these previous studies, the current one
aimed to establish associations between autistic traits and neural and
behavioral responses to specific face emotions, along with modulatory
effects of OXTR genotype.
A total of 26 participants were excluded due to failure to complete the

study (n= 6), head movement (n= 12; see fMRI data preprocessing for
details) or technical failures (incomplete data, n= 8), leaving a final
experimental cohort of 229 participants (males = 114).

Experimental procedures
The experimental protocols are presented in Fig. 1a. Autistic traits were
assessed by the ASQ [48, 49] with Cronbach’s α scores in the present
sample being 0.744. The ASQ is a widely used measure of autistic traits in
both neurotypical and ASD individuals and comprises 50 self-report
questions. It is not intended as a diagnostic tool per se and total scores for
the level of autistic traits are calculated from responses to questions in five
different sub-domains (social skills, social communication, attention to
detail, attention switching and imagination). Total ASQ scores range from 0
and 50 with higher scores representing greater autistic traits and a
suggested clinical threshold of scores above 32 [48]. All participants
provided buccal swaps for analysis of OXTR (rs2254298, rs2268491,
rs2268498, rs53576) genotype (see Supplementary and [35]).
An event-related design implicit emotional face recognition task was

implemented during fMRI scanning. Fifty grayscale facial stimuli displaying
angry, fear, happy, neural or sad expressions (n= 10 per category, 50%
male, each from different identities) were presented twice in two runs with
a different pseudorandom sequence for all participants for discrimination
of sex (see Fig. 1a for paradigm and Supplementary). About forty minutes
after fMRI scanning participants completed a surprise explicit face
recognition memory test to establish if they remembered the facial stimuli
presented during fMRI. This was used to assess possible associations
between autistic trait scores on the ASQ and accuracy and corresponding
response times (RT), but was not used in the analysis of the previous fMRI
responses (see supplementary and Fig. S1).
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MRI data acquisition and preprocessing
MRI data were acquired on a 3T GE MR750 system (General Electric,
Milwaukee, WI, USA). High-resolution whole-brain T1-weighted structural
MRI data were acquired to improve normalization of the functional images.
Task-based fMRI data were acquired during the implicit face recognition
task (lasted around 12min, two sessions were implemented, each session
consisted of 173 volumes). Functional MRI data were preprocessed using
SPM12 (Statistical Parametric Mapping; http://www.fil.ion.ucl.ac.uk/spm)
(see Supplementary for details).

Analytic approach for behavioral data
During the fMRI implicit emotion recognition task, discrimination accuracy
for the sex of faces and RT were calculated. For the post-fMRI test,
recognition accuracy and RT for both the surprise face memory test and
explicit emotion recognition task, as well as ratings of arousal and intensity
were calculated. All RTs were calculated only for trials where accurate
identification of face sex or emotion was shown. Repeated measures
ANOVAs with emotion expression (angry, fear, sad, neutral, and happy) as
the within-subject factor were conducted to explore the main effect of

Fig. 1 Experimental protocol and the searchlight-based multivariate pattern analysis (MVPA). a The experimental protocols and event-
related implicit emotion recognition fMRI paradigm. b Illustration of the searchlight-based multivariate pattern analysis (MVPA). Three-voxel
radius spherical searchlights around center voxels were employed for each contrast separately, with individual beta maps as features to
predict participants’ ASQ scores. The optimal hyperplane was computed based on the multivariate pattern for 10 different iterations of a
training cohort of a sub-set of participants and another excluded subset (test set). Regional activation patterns which could robustly predict
autistic traits, pattern maps were corrected for multiple comparisons and a Pearson correlation analysis used to measure the correlation
between actual and predicted ASQ scores and those predicted by the MVPA.
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emotion expression on behavioral indices. To further investigate if autistic
traits were associated with behavioral indices, correlational analyses
(Pearson) were conducted.

Analytic approach for MRI data
General linear model (GLM) analyses. First-level general linear models
(GLMs) for the task-based fMRI data included condition-specific regressors
of the 5 emotions (angry, fear, happy, neutral, and sad) were modelled to
generate main contrasts of interest (angry > neutral, fear > neutral, happy
> neutral, sad > neutral) and the six movement parameters were included
as nuisance regressors.

Pattern-based MVPA analyses and thresholding. To determine if local
activation patterns were predictive of autistic traits (ASQ scores), a whole-
brain (restricted to a grey matter mask) searchlight-based multivariate
machine-learning pattern analysis was implemented (see Fig. 1b for
illustration). Specifically, we employed a support vector regression (SVR)
algorithm implemented in the Spider toolbox (http://
people.kyb.tuebingen.mpg.de/spider) (linear kernel, C= 1) with three-
voxel radius spherical searchlights around center voxels employed for each
contrast separately, with individual beta maps as features to predict
participants’ ASQ scores. The accuracy with which the significant neural
activation patterns in response to different face emotions identified by the
MVPA could be predictive of actual ASQ scores was determined by a
Pearson correlation analysis between the actual ASQ scores and those
predicted by the MVPA. The prediction performance was evaluated by a
tenfold cross-validation procedure during which all participants were
randomly assigned to 10 subsamples of 22 or 23 participants using
MATLAB’s cvpartition function. The optimal hyperplane was computed
based on the multivariate pattern of the labeled 206 or 207 participants
(training set) and then evaluated using the excluded 22 or 23 participants
(test set). This procedure was repeated 10 times with each subsample
being the testing set once. To identify regional activation patterns which
could robustly predict autistic traits, pattern maps were corrected for
multiple comparisons, within a grey matter mask based on false discovery
rate (FDR) and additionally taking into account multiple comparisons
involving the different face emotions (i.e. 4 contrasts) resulting in a
corrected threshold at a whole-brain voxel level of q= 0.0125 FDR
corrected (two-sided).

Functional connectivity (FC) analyses and thresholding. To further explore
associations between autistic traits and FC in face-emotion processing
networks, and modulatory effects of OXTR genotype, seed-to-whole-brain
FC analyses with the contrasts exhibiting significant results from the MVPA
analyses were computed using generalized psychophysiological interac-
tions (gPPI) [55]. Seeds (6-mm spheres) were placed at peak coordinates of
significant clusters from the MVPA analyses. FC analysis firstly employed a
whole brain approach with a significance threshold of p < 0.05 peak-level
family-wise error (FWE) correction and a minimum voxel size of k > 10. To

take into account the three different face emotions for which the MVPA
showed significant effects Bonferroni corrections (×3) were additionally
applied. Brain regions were identified using the Automated Anatomic
Labelling atlas 3 (AAL3) [56] as implemented in the WFU Pick Atlas (School
of Medicine, Winston-Salem, North Carolina).

Influence of OXTR genotype. Seed-region-specific connectivity maps were
entered into two-sample t-test models, with genotype group (i.e.,
rs2254298- A+ vs. A- carriers), ASQ score as well as their interaction terms
as covariates. When significant genotype × ASQ interactions were found,
parameter estimates from the significant clusters were extracted to
visualize the interaction effects. Bonferroni corrections were applied for the
number of SNPs and alleles (i.e. 4 × 2= 8).

RESULTS
Sample and genotyping
A total of 229 right-handed neurotypical Han Chinese participants
(male = 114; mean age ± SD= 21.58 ± 2.343) were included in the
final analysis (see Fig. S2 for exclusion flowchart). Distribution of
the 4 OXTR (rs2254298, rs2268491, rs2268498, and rs53576)
genotypes were in the Hardy-Weinberg equilibrium (HWE) and
alleles of the SNPs were divided into two groups as in previous
studies [39, 45] to increase statistical power and avoid statistical
inference errors (see Table S1). Mean ± SD total scores on the ASQ
were 21.44 ± 5.60 (range 9–35). These ASQ scores are in good
agreement with our previous large-scale (n= 280) study on
Chinese adult neurotypical individuals and there were also no
significant differences in ASQ scores between males (21.56 ± 5.42,
range 10–35) and females (21.32 ± 5.80, range 9-35) [37] (t-test
p= 0.747).

Behavioral results
Two participants were additionally excluded due to incomplete
data for the implicit emotion recognition task, leading to 227
participants (male = 112; mean age ± SD= 21.57 ± 2.351 years)
included for behavioral data analyses. ANOVA results for the
implicit emotion recognition task showed a main effect of face
emotion for both accuracy (F(4,226)= 21.257, p < 0.01, ηp

2= 0.086)
and RTs (F(4,214)= 24.747, p < 0.01, ηp

2= 0.099). Post-hoc Bonfer-
roni corrected tests revealed that participants were less accurate
for discriminating the sex of individuals with negative emotional
expressions (angry, fear, and sad) compared to neutral and happy
faces (all ps < 0.049) (Fig. 2a). The RTs for all face emotions (angry,
fear, sad and happy) were significantly longer than for neutral
expressions (all ps < 0.002) (Fig. 2b). Overall these results suggest

Fig. 2 Behavioral results. Discrimination of face sex (a) accuracy rate and (b) response time (RT) during the implicit emotion recognition task
during fMRI scanning. *p < 0.05, **p < 0.01.
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that participants attentively processed the facial stimuli (i.e.
discriminated the sex of individual faces accurately) and that
presentation of negative emotional faces resulted in a lower
accuracy and longer RTs.
For the post fMRI emotion recognition memory task an ANOVA

revealed a significant main effect of emotion expression
(F(4,226)= 24.359, p < 0.01, ηp

2= 0.097) (F(4,226)= 24.359, p < 0.01,
ηp

2= 0.097). Post-hoc Bonferroni-corrected comparisons showed
participants remembered fearful, sad, and happy emotional faces
better than neutral and angry ones, and fearful faces better than
happy ones (see Supplementary Fig. S3). There was no main effect
of emotion for RTs (F(4,226)= 1.206, p= 0.305, ηp

2= 0.005).

For emotion discrimination accuracy, an ANOVA revealed a
significant main effect of emotion expression (F(4,226)= 105.298,
p < 0.01, ηp

2= 0.318). Post-hoc Bonferroni-corrected comparison
showed participants exhibited the highest discrimination accuracy
for happy faces and the lowest for fearful faces. For RTs there was
also a main effect of emotion expression (F(4,226)= 140.011,
p < 0.01, ηp

2= 0.383) with the shortest RTs for neutral expression
faces and the longest for fearful ones. For arousal and intensity
ratings, ANOVAs revealed significant main effects of emotion
expression (Arousal: F(4,226)= 258.318, p < 0.01, ηp

2= 0.533; Inten-
sity: F(4,226)= 319.985, p < 0.01, ηp

2= 0.586) with post-hoc com-
parisons showing participants rated angry faces as the most

Fig. 3 Results of MVPA analyses. Local brain regions that predict individual autistic traits revealed by MVPA analyses in a angry versus
neutral, b fear versus neutral, and c sad versus neutral contrasts. Statistical significant results were thresholded at whole-brain voxel level FDR
p < 0.0125 (two-sided). Color bar denotes prediction-outcome correlation. MVPA multivariate pattern analyses, dmPFC dorsal medial prefrontal
cortex, MFG middle frontal gyrus, OFC orbitofrontal cortex, PoCG postcentral gyrus, SFG superior frontal gyrus, L left, R = right.
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arousing and intense with neutral ones as the least. Arousal
ratings for sad faces were significantly lower compared with both
fearful and happy ones. (see Supplementary Fig. S4).
However, no significant associations were found between

explicit face emotion recognition accuracy or RTs or recognition
memory for faces or arousal or intensity ratings and ASQ scores
(see Supplementary).

Findings from MVPA analyses
The SVR-based MVPA analysis revealed activity patterns of the right
midbrain (extending into limbic areas) comprising the ventral
tegmental area (VTA), anterior cingulate cortex (ACC), hypothalamus
(MNIxyz = 3/−3/−18, k= 40), the left anterior orbitofrontal cortex
(OFC) (MNIxyz=−39/57/−9, k= 11), left caudate (MNIxyz=−3/−6/
0, k= 20), right dorsal medial frontal cortex (dmPFC; MNIxyz = 3/42/
42, k= 12), left postcentral gyrus (PoCG; MNIxyz=−45/−33/51,
k= 45), and the left superior frontal gyrus (SFG; MNIxyz=−21/63/0,
k= 6) could accurately predict individual autistic traits during
processing of angry (versus neutral) expressions (Fig. 3a). Addition-
ally, during processing fear (versus neutral) expressions, individual
autistic trait scores could be decoded from activity in the left MFG
(MNIxyz=−36/18/42, k= 8) (Fig. 3b). Individual autistic-trait scores
could also be decoded from neural activity towards sad (versus
neutral) expressions in the left MFG (MNIxyz=−36/24/33, k= 7), the
right midbrain (MNIxyz=−3/−30/−9, k= 13), and left hypothalamus
(MNIxyz=−3/−3/−15, k= 30) (Fig. 3c).

Analysis of FC associations with ASQ and influence of OXTR
genotype
The gPPI analyses using a seed-to-whole brain approach (seeds
defined according to the MVPA analyses) revealed no significant
(pFWE < 0.05) FCs associated with trait autism during processing of
specific emotional faces irrespective of OXTR genotype. However,
there were significant interaction effects of ASQ and genotype for
rs2268491 and rs2254298 on FC during processing of angry
expressions.
Examination of rs2268491 genotype (T+/T−) × ASQ score

interactions revealed effects for the angry > neutral contrast in
coupling of left OFC (seed, x=−39, y= 57, z=−9) with bilateral
MCC (MNIxyz = 0/−9/45, k= 24, T= 5.11, pFWE-peak= 0.005;
pcorrected for number of significant face expressions= 0.015) (Table
1). Parameter estimates from the significant clusters extracted to
visualize interaction effects found opposite effects of ASQ scores
on FC strengths in the T+ and T- groups. Pearson tests (p values
Bonferonni corrected for the number of SNPs and alleles i.e. 4 ×
2= 8) revealed a positive association between ASQ and the FC
strength in the T- group and a negative association in the T+
group (T-: r= 0.318, pcorrected= 0.004; T+: r=−0.321,

pcorrected= 0.005) (Fig. 4). Additionally, ASQ and rs2268491
interactively impacted FC strengths between the right midbrain
(seed, x= 3, y=−3, z=−18) and right supramarginal gyrus
(SMG) (MNIxyz = 63/−39/30, k= 14, T= 4.92, pFWE-peak= 0.012,
pcorrected for number of significant face expressions= 0.036) (Table
1). Parameter estimates were subsequently extracted and showed
a positive association between ASQ and the FC strength in the T−
group but negative association in the T+ group (T−: r= 0.263,
pcorrected for number of SNPs and alleles = 0.035; T+: r=−0.356,
pcorrected= 0.011) (Fig. 4).
Significant interaction effects of genotype of rs2254298

(A+/A−) × ASQ scores were also observed during processing
angry face emotion in FC between left OFC (seed, x=−39, y= 57,
z=−9) and left MCC (extended to the right MCC) (MNIxyz = 0/
−9/45, k= 23, T= 5.05, pFWE-peak= 0.007, pcorrected for number of
significant face expressions= 0.021), and additional clusters located
in the right MCC (MNIxyz = 15/−21/42, k= 14, T= 5.10, pFWE-

peak= 0.006, pcorrected= 0.018) (Table 1). Parameter estimates
were extracted and further revealed opposite effects of ASQ on
these two couplings in A+ and A- carriers. ASQ was positively
associated with the left OFC - left MCC coupling in A- carriers while
A+ carriers exhibited a negative correlation (A-: r= 0.329,
pcorrected for number of SNPs and alleles = 0.003; A+:
r=−0.311, pcorrected= 0.006) (Fig. 4). Likewise, for A- carriers
there was a positive correlation between autistic trait scores and
left OFC - right MCC coupling but a negative correlation was in A+
carriers (A-: r= 0.399, pcorrected < 0.001; A+: r=−0.247, pcor-
rected= 0.032 one-tailed) (Fig. 4).
No significant interaction effects were observed for other seeds

nor during processing fear or sad expressions. The analyses for
SNPs rs53576 and rs2268498 did not yield any significant effects.

DISCUSSION
The current study aimed to identify the neural pattern predictive
of autistic traits during processing of different emotional faces and
potential modulatory effects of OXTR genotype. There were no
associations between trait autism and either implicit or explicit
face emotion recognition accuracy. However, the SVR-based MVPA
identified activity patterns that strikingly predicted individual
autistic traits during processing of angry emotional expressions in
regions involved in emotion, reward and salience, but not in early
visual, processing. As such, they indicate that higher autistic traits
tend to impact the ‘extended’ rather than the ‘core’ face emotion
processing system. A seed-based FC analyses revealed that two
OXTR SNPs (rs2254298, rs2268491) showed a modulatory effect on
OFC-MCC coupling during processing of angry faces. Overall,
these findings indicate that trait autism is predicted from

Table 1. FC modulated by OXTR genotype during processing of angry > neutral face emotion.

Region k t-value pFWE-0.05 pcorrected x y z

rs2254298

seed: OFC (−39/57/−9)

MCC, R 14 5.10 0.006 0.018 15 −21 42

MCC, L/ MCC, R 23 5.05 0.007 0.021 0 −9 45

rs2268491

seed: OFC (-39/57/-9)

MCC, L/ MCC, R 24 5.11 0.005 0.015 0 −9 45

seed: Midbrain (3/−3/−18)

SMG, R 14 4.92 0.012 0.036 63 −39 30

Statistical significance thresholding was applied with whole-brain peak level at pFWE < 0.05 and a minimum voxel size of k > 10. Bonferroni corrections (x3)
were additionally applied for the three different face emotions with significant patterns identified by MVPA.
OFC orbitofrontal cortex, MCC middle cingulate cortex, SMG supramarginal gyrus, L left, R right.
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extensive altered patterns of neural activity and reduced
responses during processing of angry expressions in motivation,
reward and salience processing networks. The association
between FC of the OFC and MCC and angry faces is also OXTR
genotype-dependent.
Although we found overall evidence for negative emotional

expressions influencing recognition accuracy of sex and emotion

expression as well as arousal and intensity ratings, there was no
evidence for associations between implicit or explicit face emotion
recognition performance and ASQ scores. This is in line with a
number of studies comparing autistic and neurotypical individuals
[9–12], although other studies have either reported general
impairment across face expressions or for negative or positive
emotions in ASD [1, 3]. Overall, the absence of any significant

Fig. 4 Interaction of autistic traits (ASQ) and OXTR genotype (rs2268491-top panel; rs2254298-bottom panel) on whole-brain FC during
the process of angry versus neutral emotion. a Seeds of interest, i.e. Midbrain and OFC. b Regions exhibiting significant effect of autistic trait
(measured by ASQ) on FC strength as a function of rs2268491 (Top panel) and rs2254298 (Bottom panel) genotypes respectively. c Parameter
estimates from the significant interaction clusters extracted for visualization purpose. Statistical significance thresholding was applied with
whole-brain peak level at pFWE < 0.0125 and a minimum voxel size of k > 10 Bonferroni corrections (×3) were additionally applied for the three
different face emotions with significant patterns identified by MVPA. The p-value for A+ rs2254298 is one-tailed. ASQ autism spectrum
quotient, FC functional connectivity, OFC orbitofrontal cortex; MCC middle cingulate cortex, SMG supramarginal gyrus.
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association between face emotion recognition and trait autism
may reflect our use of a dimensional approach, but it should also
be noted that discrimination accuracies were very high (>90%
except for fear), and associations with trait autism might have
been revealed with an increased task difficulty (see [50]). Another
possibility is that autistic traits have less of an effect on
discrimination/decoding of emotional faces and more on sub-
sequent cognitive and emotional processing. The absence of any
associations between trait autism and responses to emotional
faces in early visual processing regions may support this
interpretation.
The SVR-based MVPA revealed whole-brain neural representa-

tive relevant for autistic traits across all negative face emotion
expressions, although particularly for anger. Trait autism scores
were predicted by patterns across a wide network of cortical and
subcortical regions engaged in the ‘extended’ face emotion
network including those involved in emotion, motivation, reward
and salience processing. Predictive patterns were mainly found in
limbic regions (hypothalamus), the social salience system (ACC)
and most notably fronto-basal ganglia-midbrain reward systems
(dmPFC, SFG, MFG, OFC, caudate and VTA). The MVPA thus
revealed evidence for their spatial patterns of activity being
predictive of dimensional autistic traits. Notably, the MVPA was
not predictive of trait autism in the “core” occipital and temporal
cortex face emotion processing systems. This supports the
conclusion that later cognitive rather than early visual processing
of angry faces is sensitive to autistic traits.
Diminished patterns of activation and responses to angry faces

associated with higher autistic traits in limbic regions may indicate
reduced processing of threatening emotional stimuli [57, 58].
However, our MVPA analysis only revealed hypothalamic rather
than amygdala spatial patterns predicted autistic traits. The
hypothalamus, is involved in emotion processing [59–62], can
function as a valence detector and modulator [60, 63] and is
highly connected with the hippocampus and amygdala [64–66].
Hypothalamic morpho-functional differences have also been
reported in ASD [67].
The ACC in the brain salience network was also predictive of

trait autism during the processing of angry faces suggesting that
higher autistic trait individuals perceive threatening stimuli as less
salient. The ACC plays a central role in processing subjective
evaluation and emotional salience-associated with cognitive
processing, executive control and self-awareness [68–72] and
shows altered structure and function in ASD [72–74]. Two recent
electroencephalography studies have also reported differences in
cingulate and other cortical responses to angry faces in individuals
with ASD both in terms of patterns of synchronization associated
with symptom severity [75, 76] and evoked potentials in cingulate
and other cortical regions, potentially indicating impaired salience
processing.
The ability of patterns of activation in fronto-basal ganglia

circuitry to predict autistic trait scores is in line with the
“Dopamine Theory of ASD” [77, 78]. According to this theory,
the dysfunctional midbrain dopaminergic system which projects
to the prefrontal cortex and striatum via both mesocorticolimbic
(MCL) and nigrostriatal (NS) circuits leads to impaired reward
processing and motivation-related behavior along with altered
goal-directed motor behavior and habitual behavior, contributing
to core behavioral features of ASD. Although fronto-basal ganglia
circuitry plays an important role in reward and motivation, it also
transmits signals related to salient, but non-rewarding, experi-
ences such as aversive and alerting events and thus additionally
plays a crucial role in motivational control of either approach or
avoidance behavior [79]. Individuals with ASD tend to have
greater problems in recognizing angry expression faces rather
than other emotions independent of alexythmia [80] and children
with ASD exhibit an attentional bias away from angry faces at long
presentation rates with greater avoidance being associated with

greater social communication difficulties [81]. Thus, in ASD, the
basic pre-dispositional mechanisms to allocate attention quickly
towards angry faces may be weaker [82]. However, given that we
only found patterns of activation in response to angry faces were
predictive of autistic trait scores in the ‘extended’ rather than the
‘core’ face processing network this would tend to support the
argument that greater autistic symptoms may primarily lead to
altered interpretation and responses to angry faces rather than
simply to reduced attention towards them. Indeed, in our
behavioral analyses accuracy and response times for identifying
the sex of face emotions did not reveal any problems specific to
angry emotion faces, again suggesting that participants did pay
attention to them. Thus, avoidance of angry faces in ASD may
have more to do with post-attentive cognitive and motivational
processing.
Our initial hypothesis that OXTR genotype would influence

associations between functional connectivity in neural circuitry
identified by the MVPA as predictive of autistic traits was
supported, in line with previous findings [83]. The intrinsic FC of
OFC-MCC and midbrain-SMG was dependent upon both autistic
traits and OXTR genotype (either rs2254298 or rs2268491) for
responses to angry faces. Carriers of the risk alleles of the SNPs (A
+ or T+) associated with social cognition dysfunction and ASD
[32, 39, 84] showed reduced FC in individuals with higher autistic
trait scores but increased connectivity in those carrying the non-
risk allele (A- or T-). The neural coupling of OFC to MCC may be
involved in reward and motivation processing given that the MCC
is known to play a critical role in both reward [58, 85–87] and
emotion [58, 88] processing. Connectivity between midbrain and
SMG may also play an important role in emotion processing [89],
especially for the negative emotions [90, 91]. Both SMG and MCC
are critical for social functioning in the context of ASD such as
empathic processing [43, 92, 93] and self-other distinction [83, 94]
and may contribute to representation and integration of internal
and emotional feeling states. A previous study has also reported a
genotype × autism symptom interaction for SMG responses
during face emotion recognition for rs2254298, rs2268491and
rs53576 OXTR SNPs [37]. The OXTR SNPs rs2268491and rs2254298
exhibit high linkage disequilibrium (LD) [32, 84] which may explain
their common modulatory effects.
There are some limitations to be noted. Firstly, the study

adopted a dimensional approach using only neurotypical indivi-
duals and measurement of trait autism using the ASQ and findings
should be confirmed in a clinical ASD population. Secondly, due to
current limitations of the MVPA model used, we were unable to
investigate whether autistic trait scores and OXTR genotype
interactions could predict neural patterns in response to
emotional faces. Thirdly, for the functional connectivity analysis
we only investigated effects of four OXTR SNPs and other OXTR
SNPs might have revealed additional influences on functional
connectivity. Lastly, although we hypothesized the potential
relevance of our findings to the “dopamine theory” or reduced
reward processing in ASD we did not specifically quantify changes
in dopamine or dopamine receptors in reward processing regions.
In conclusion, we used a validated implicit emotional face

recognition task and dimensional approach in a large cohort of
neurotypical individuals to demonstrate extensive evidence for
patterns of neural responses to angry (threatening) faces in
individuals which could predict autistic trait scores across
“extended” face emotion processing networks involved in
emotion, motivation and reward and salience but not in ‘core’
early visual processing ones. Functional connectivity changes in
the identified reward (OFC - MCC) and emotion (midbrain - SMG)
processing networks during angry face processing were depen-
dent upon OXTR genotype. One of the overall implications of
these findings may be that individuals with ASD process
threatening face expressions, such as anger, differently and
potentially in a way that could lead to inappropriate responses.
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Given that even neurotypical individuals show altered patterns of
neural responses to threatening emotional faces in cognitive and
emotion processing regions which predict their level of autistic
traits this may provide a potential neural diagnostic biomarker for
ASD. However, this needs to be established in future studies
investigating patterns of neural processing of emotional stimuli in
individuals diagnosed with ASD and it may also be important to
consider the modulating influence of OXTR genotype.
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