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Mood disorders (MDs) are among the leading causes of disease burden worldwide. Limited specialized care availability remains a
major bottleneck thus hindering pre-emptive interventions. MDs manifest with changes in mood, sleep, and motor activity,
observable in ecological physiological recordings thanks to recent advances in wearable technology. Therefore, near-continuous
and passive collection of physiological data from wearables in daily life, analyzable with machine learning (ML), could mitigate this
problem, bringing MDs monitoring outside the clinician’s office. Previous works predict a single label, either the disease state or a
psychometric scale total score. However, clinical practice suggests that the same label may underlie different symptom profiles,
requiring specific treatments. Here we bridge this gap by proposing a new task: inferring all items in HDRS and YMRS, the two most
widely used standardized scales for assessing MDs symptoms, using physiological data from wearables. To that end, we develop a
deep learning pipeline to score the symptoms of a large cohort of MD patients and show that agreement between predictions and
assessments by an expert clinician is clinically significant (quadratic Cohen’s κ and macro-average F1 score both of 0.609). While
doing so, we investigate several solutions to the ML challenges associated with this task, including multi-task learning, class
imbalance, ordinal target variables, and subject-invariant representations. Lastly, we illustrate the importance of testing on out-of-
distribution samples.
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INTRODUCTION
Mood disorders (MDs) are a group of diagnoses in the Diagnostic
and Statistical Manual 5th edition [1] (DSM-5) classification system.
They are a leading cause of disability worldwide [2] with an
estimated total economic cost greater than USD 326.2 billion in
the United States alone [3]. They encompass a variety of symptom
combinations affecting mood, motor activity, sleep, and cognition
and manifest in episodes categorized as major depressive
episodes (MDEs), featuring feelings of sadness and loss of interest,
or, at the opposite extreme, (hypo)manic episodes (MEs), with
increased activity and self-esteem, reduced need for sleep,
expansive mood and behavior. As per the DSM-5 nosography,
MDEs straddle two nosographic constructs, i.e., Major Depressive
Disorder (MDD) and Bipolar Disorder (BD), whereas MEs are the
earmark of BD only [4].
Clinical trials in psychiatry to this day entirely rely on clinician-

administered standardized questionnaires for assessing symp-
toms’ severity and, accordingly, setting outcome criteria. With

reference to MDs, Hamilton Depression Rating Scale-17 [5] (HDRS)
and Young Mania Rating Scale [6] (YMRS) are among the most
widely used scales to assess depressive and manic symptoms [7],
quantifying behavioral patterns such as disturbances in mood,
sleep, and anomalous motor activity. The low availability of
specialized care for MDs, with rising demand straining current
capacity [8], is a major barrier to this classical approach to
symptom monitoring. This results in long waits for appointments
and reduced scope for pre-emptive interventions. Current
advances in machine learning (ML) [9] and the widespread
adoption of increasingly miniaturized and powerful wearable
devices offer the opportunity for personal sensing, which could
help mitigate the above problems [10]. This can involve a near-
continuous and passive collection of data from sensors, with the
aim of identifying digital biomarkers associated with mental
health symptoms at the individual level, therefore backing up
clinical evaluation with objective and measurable physiological
data. Personal sensing holds great potential for being translated
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into clinical decision support systems [11] for the detection and
monitoring of MDs. Specifically, it could be particularly appealing
to automate the prediction of the items of the HDRS and YMRS
scales as they correlate with changes in physiological parameters,
conveniently measurable with wearable sensors [12–14].
However, so far, the typical approach has been to reduce MDs

detection to the prediction of a single label, either the disease state
or a psychometric scale total score [15, 16], which risks over-
simplifying a much more complex clinical picture. Figure 1
illustrates this issue: patients with different symptoms and thus
(potentially very) different scores on individual HDRS and YMRS
items are “binned together” in the same category, leading to a loss
of actionable clinical information. Predicting all items in these scales
can instead align with everyday psychiatric practice where the
specialist, when recommending a given intervention, considers the
specific features of a patient, including their symptom patterns,
beyond a reductionist disease label [17, 18]. Figure 1 illustrates a
case in point where knowledge of the full symptom profile might
enable bespoke treatment: on the face of it, patient (a) and (b) (top
row) share the same diagnosis, i.e., MDE in the context of MDD;
however, considering their specific symptom profile patient (a)
might benefit from a molecule with stronger anxiolytic properties
whereas patient (b) might require a compound with hypnotic
properties. Furthermore, an item-wise analysis can lead to the
identification of drug symptom specificity in clinical trials [19, 20].
Table 1 summarizes previous works in personal sensing for MDs

and shows that all previous tasks collapsed the complexity of MDs
to a single number. Côté-Allard et al. [21] explored a binary
classification task, that is distinguishing subjects with BD on an ME
from different subjects with BD recruited outside of a disease
episode, when stable. The study experimented with different
subsets of pre-designed features from wristband data and
proposed a pipeline leveraging features extracted from both
short and long segments taken within 20-hour sequences.

Pedrelli et al. [22], expanding on Ghandeharioun et al. [23], used
pre-designed features from a wristband and a smartphone to infer
HDRS residualized total score (that is total score at time t minus
baseline total score) with traditional ML models. Tawaza et al. [24]
employed gradient boosting with pre-designed features from
wristband data and pursued case-control detection in MDD and,
secondarily, HDRS total score prediction. Similarly, Jacobson et al.
[25] predicted case-control status in MDD from actigraphy features
with gradient boosting. Nguyen et al. [26] used a sample including
patients with either schizophrenia (SCZ) or MDD wearing an
actigraphic device and explored case-control detection where SCZ
and MDD were either considered jointly (binary classification) or
as separate classes (multi-class classification). Of notice, this was
the first work to apply artificial neural networks (ANNs) directly on
minimally processed data, showing that they outperformed
traditional ML models. Lastly, the multi-center study of Lee et al.
[27] investigated mood episode prediction with a random forest
and pre-designed features from wearable and smartphone data.
Further to proposing a new task, our work stands out for a sample
size larger than all previous works by over 2 dozen patients, with
the exception of a multi-center study by Lee et al. [27], where,
however, clinical evaluation was carried out retrospectively,
thereby inflating chances of recall bias [28] and missing out on
the real-time clinical characterization of the acute phase. Indeed,
collecting data from patients on an acute episode, using specialist
assessments and research-grade wearables, is a challenging and
expensive enterprise. Relatively to previous endeavors, the
contribution of this work is two-fold: (1) Taking one step beyond
the prediction of a single label, which misses actionable clinical
information, we propose a new task in the context of MDs
monitoring with physiological data from wearables: inferring all
items in HDRS (17 items) and YMRS (11 items), as scored by a
clinician, which enables a fine-grained appreciation of patients’
psychopathology therefore creating opportunity for tailored

Fig. 1 The same severity level can be realized from different symptom combinations, underlying different treatment needs. Top row: a
pair of patients with Major Depressive Disorder on a Major Depressive episode; while both share the same severity levels, total Hamilton
Depression Rating Scale (HDRS) ≥ 23 [33]. Patient (a), with total HDRS= 24, exhibits high levels of anxiety (H9, H10, H11), whereas patient (b),
with total HDRS= 26, displays a marked insomnia component (H4, H5, H6). Bottom row: a pair of patients with Bipolar Disorder on a Manic
Episode with a total Young Mania Rating Scale (YMRS) ≥ 25. Patient (c), with total YMRS= 30, has an irritable/aggressive profile (Y2, Y5, Y9)
whereas patient (d), with total YMRS= 30, has a prominently elated/expansive presentation (Y1, Y3, Y7, Y11). Knowing what specific
symptoms underlie a given state may allow clinicians to tailor treatment accordingly: e.g., a molecule with a stronger anxiolytic profile such as
paroxetine or a short course of a benzodiazepine as an antidepressant is introduced may be appropriate in patient (a) whereas patient (b)
might benefit from a compound with marked hypnotic properties such as mirtazapine.
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treatment (Fig. 1). (2) We investigate some of the methodological
challenges associated with the task at hand and explore possible
ML solutions. c1: inferring multiple target variables (28 items from
two psychometric scales), i.e., multi-task learning (MTL, see Section
3.4.1). c2: modeling ordinal data, such are HDRS and YMRS items
(see Section 3.4.1). c3: learning subject-invariant representations,
since, especially with noisy data and sample size in the order of
dozens, models tend to exploit subject-idiosyncratic features
rather than learning disease-specific features shared across
subjects, leading to poor generalization [29] (see Section 3.4.2).
c4: learning with imbalanced classes, as patients on an acute
episode usually receive intensive treatment and acute states
therefore tend to be relatively short periods in the overall disease
course [30, 31] thereby tilting items towards lower ranks.

METHODS
Data collection and cohort statistics
The following analyses are based on an original dataset, TIMEBASE/
INTREPIBD, being collected as part of a prospective, exploratory,
observational, single-center, longitudinal study with a fully pragmatic
design embedded into current real-world clinical practice. A detailed
description of the cohort is provided in Anmella et al. [32]. In brief, subjects
with a DSM-5 MD diagnosis (either MDD or BD) were eligible for
enrollment. Those recruited on an acute episode had up to four
assessments: T0 acute phase (upon hospital admission or at the home
treatment unit), T1 response onset (50% reduction in total HDRS/YMRS), T2
remission (total HDRS/YMRS ≤7), and T3 recovery (total HDRS/YMRS
continuously ≤7 for a period of ≥8 weeks) [33]. On the other hand, subjects
with a historical diagnosis but clinically stable at the moment of study
inclusion (euthymia, Eu) were interviewed only once. At the start of each
assessment, a clinician collected clinical demographics, including HDRS
and YMRS, and provided an Empatica E4 wristband [34] which participants
were required to wear on their non-dominant wrist until the battery ran
out (~48 h). A total of 75 subjects, amounting to a total of 149 recording
sessions (i.e., over 7000 h), were available at the time of conducting this
study. An overview of the cohort clinical-demographic characteristics is
given in Table 2 and the number of recordings available per observation
time (T0 to T3) by diagnosis is given in Supplementary Figure (SF) 1;

observation times (T0 to T3) merely reflect how the data collection
campaign was conducted and were not used (or implicitly assumed) as
labels for any of the analysis herewith presented. Given the naturalistic
study design, medications were prescribed as part of the regular clinical
practice: subjects on at least one antidepressant, lithium, an antic-
onvulsant, or at least one antipsychotic were respectively 37.83%, 70.94%,
34.45%, 12.16% of the cohort. The median (interquartile range) time since
disease onset was 6 (14) years.
The E4 records the following sensor modalities (we report their

acronyms and sampling rates in parentheses): 3D acceleration (ACC,
32 Hz), blood volume pressure (BVP, 64 Hz), electrodermal activity (EDA,
4 Hz), heart rate (HR, 1 Hz), inter-beat interval (IBI, i.e., the time between

Table 1. This work is the first in personal sensing for MDs attempting to infer the full symptom profile, providing actionable clinical information
beyond a single reductionist label, and it also stands out for the relatively large sample size (the largest among studies where MD acute phase clinical
evaluation was not retrospective).

Device(s) Num. Patients Patients Features Task

This work Empatica E4 75 MDD, BD; Mage= 44.16
SDage= 14.42 F%= 56

HDRS and YMRS
items multi-task
regression

Côté-Allard et al. [21] Empatica E4 47 BD; Mage= 44 SDage= 15 F%= 67.24 Mania vs Euthymia
binary classification

Ghandeharioun et al. [23] Empatica E4 and
Android Phone

12 MDD; Mage= 37 SDage= 17 F%= 75 HDRS total score
regression

Pedrelli et al. [22] Empatica E4
and Smartphone

31 MDD; Mage= 33.7 SDage= 14 F%= 74 HDRS total score
regression

Jacobson et al. [25] Actiwatch 23 MDD; Mage= 48.2 SDage= 11.0 F%= 43 Depression
detection binary
classification

Tazawa et al. [24] Silmee W20 45 MDD, BD; Mage= 52.1
SDage= 13.2 F%= 46.7

Depression detection
binary
classification

Nguyen et al. [26] Actiwatch 45 MDD, SCZ; Mage= 44.70
SDage= 11 F%= 73.33

Disease detection
binary/multi-class
classification

Lee et al. [27] Fitbit Charge Hr 2 or 3
and
Smartphone

270 MDD, BD; Mage= 23.3
SDage= 3.63 F%= 54.5

Mood episode prediction
binary
classification

Previous studies recruiting patients with either a DSM or an International Classification of Diseases (ICD) MD diagnosis and using passively collected wearable
data are reported. F%: Percent Females; Mage: mean age; SDage: standard deviation age.

Table 2. Clinical-demographic characteristics of the study population
(N= 75).

MEAN (SD) MEDIAN (IQR)

AGE 44.66 (14.42) 45.00 (24.50)

HDRS (TOTAL) 7.27 (6.94) 4.00 (6.00)

YMRS (TOTAL) 7.21 (8.75) 3.00 (10.00)

NUMBER OF SUBJECTS (%)

SEX male: 33 (44) female: 42 (56)

MOOD STATE MDE-MDD: 9 (12) EU-MDD: 3 (4) MDE-
BD: 12 (16) ME: 28 (37) MX: 7 (9) EU-BD:
16 (21)

ASSESSMENT(S) 1: 75 (100) 2: 44 (59) 3: 22 (29) 4: 8 (11)

According to the DSM-5, an MD can be categorized as either a major
depressive episode or a manic episode. As a bridge between these two, the
DSM-5 admits a mixed symptoms specifier (MX) to cases where symptoms
from both polarities are present.
EU-BD euthymia in bipolar disorder, EU-MDD euthymia in major depressive
disorder, HDRS Hamilton Depression Rating Scale, IQR inter-quartile range,
MDE-BD major depressive episode in bipolar disorder, MDE-MDD major
depressive episode in major depressive disorder, ME manic episode, MX
mixed symptoms episode, SD standard deviation, YMRS Young Mania
Rating Scale.
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two consecutive heart ventricular contractions) and skin temperature
(TEMP, 1 Hz). IBI was not considered due to extensive sequences of missing
values across all recordings. This is likely due to high sensitivity to motion
and motion artifacts, as observed previously [35].

Data pre-processing
An E4 recording session comes as a collection of 1D arrays of sensory
modalities. We quality-controlled data to remove physiologically implau-
sible values with the rules by Kleckner et al. [36] and the addition of a rule
to remove HR values that exceeded the physiologically plausible range
(25–250 bpm). The median percentage of data per recording session
discarded from further analyses because of the rules above was 8.05 (range
1.95–32.10). Each quality-controlled recording session was then segmen-
ted using a sliding window, whose length (τ, in wall-time seconds) is a
hyperparameter, enforcing no overlap between bordering segments (to
prevent models from exploiting overlapping motifs between segments).
These segments (xi) and the corresponding 28 clinician-scored HDRS/YMRS
items (yi) from the subjects wearing the E4 formed our dataset,
xi ; yið Þf gNi¼1. Note that all segments coming from a given recording

session share the same labels, i.e., the HDRS/YMRS scores of the subject
wearing the E4. HDRS/YMRS items map symptoms spanning mood, sleep,
and psycho-motor activity. Some likely fluctuate over a 48-h session,
especially in an ecological setting where treatments can be administered
(e.g., Y9 disruptive-aggressive behavior may be sensitive to sedative
drugs). To limit this, we isolated segments from the first five hours (close-
to-interview samples) and used them for the main analysis, splitting them
into train, validation, and test sets with a ratio of 70-15-15. Then, to study
the effect of distribution shift, we tested the trained model on samples
from each 30-min interval following the first five hours of each recording
(far-from-interview samples). It should be noted that further to a shift in the
target variables, a shift in the distribution of physiological data collected
with the wearable device is to be expected [37], owing to different
patterns of activity during the day, circadian cycles, and administered
drugs. Details on the number of recording segments in train, validation,
and test splits are given in Supplementary Table (ST) 1.

Evaluation metrics
HDRS and YMRS items are ordinal variables. For instance, H11 anxiety
somatic has ranks 0-Absent, 1-Mild, 2-Moderate, 3-Severe, or 4-

Incapacitating. The item distribution (see SF2) was imbalanced towards
low scores due to patients on an acute episode usually receiving intensive
treatment such that acute states tend to be relatively short-lived periods in
the overall disease course [30, 31]. This can be quantified with the ratio
between the cardinality of the majority rank and that of the minority rank
ρ: e.g., say there are 100, 90, 50, 30, and 10 recording segments with an
H11 rank of respectively 0, 1, 2, 3, and 4, then ρ is 100/10= 10 as 100 is the
cardinality of the H11 rank (0) with the highest number of segments and 10
is the cardinality of the H11 rank (4) with the lowest number of segments.
Metrics accounting for class imbalance should be used when evaluating a
classification system in such a setting to penalize trivial solutions, e.g.,
systems always predicting the majority class in the training set regardless
of the input features. We used Cohen’s κ, in particular its quadratic version
(QCK), since, further to its suitability to imbalanced ordinal data, it is
familiar and easily interpretable to clinicians and psychometrists [38–41]. It
expresses the degree to which the ANN learned to score segments in
agreement with the clinician’s assessments. This is similar to psychiatric
clinical trials where prospective raters are trained to align with assessments
made by an established specialist [42]. Cohen’s κ takes values in [−1,1],
where 1 (−1) means perfect (dis)agreement. In a psychiatric context,
0.40–0.59 is considered a good range while 0.60–0.79 is a very good range
[43]. Cohen’s κ compares the observed agreement between raters to the
agreement expected by chance taking into account the class distributions;
the quadratic weightage in QCK penalizes disagreements proportionally to
their squared distance. As individual HDRS/YMRS items have different
distributions (see SF2), we checked whether item level performance was
affected by sample Shannon entropy (H). To this end, we computed a
simple Pearson correlation coefficient (R) between item QCK and H.

Model design
The task at hand is supervised, specifically, we sought to learn a function
mapping recording segments to their HDRS and YMRS scores: f : xi 7!ŷi .
The model we developed to parametrize f comprised two independent
sub-models (Fig. 2): (a) a classifier (CF), which learns to predict the HDRS/
YMRS scores from patients’ physiological data, and (b) a patient critic (CR),
which penalize CF for learning subject-specific features (i.e., memorize the
patient and their scores), rather than features related to the underlying
disorder shared across patients. Both CF and CR are simply compositions of
mathematical functions, that is layers of the neural network. The CF

Fig. 2 Analysis workflow. Patients had up to four assessments. At the start of each assessment, a clinician scored the patient on the Hamilton
Depression Rating Scale (H in the figure) and Young Mania Rating Scale (Y) and provided an Empatica E4 device asking the patient to wear it
for ~48 h (i.e., average E4 battery life). An Artificial Neural Network (ANN) model is fed with recording segments and is tasked with recovering
clinician scores. The quadratic Cohen’s κ measures the degree to which the machine scores are in agreement with those of the clinician. The
ANN model is made of Classifier (CF) and Critic (CR). The former comprises three main modules: (1) Encoder (EN), projecting input sensory
channels onto a new space where all channels share the same dimensionality, regardless of the native E4 sampling frequency; (2)
Representation Module (RM), extracting a representation h that is shared across all items; and (3) one Item Predictor IPj for each item. CR is
tasked with telling subjects (S in the figure) apart using h and is pitted in an adversarial game against RM(EN(⋅)), designed to encourage the
latter to extract subject-invariant representations.
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module itself consisted of three sequential modules (or, equivalently,
functions): (a.1) a channel encoder (EN) for projecting sensory modalities
onto the same dimensionality regardless of the modality’s native sampling
rate so that they could be conveniently concatenated, (a.2) a representation
module (RM) for extracting features, and lastly, to address (c1) multi-task
learning, (a.3) 28 parallel (one for each item) item predictors (IP), each
learning the probability distribution over item ranks conditional on the
features extracted with RM. The critic module CR, instead, uses the
representation from RM for telling subjects apart. CR competes in an
adversarial game against EN and RM, designed to encourage subject-
invariant representations. Details on the model’s architecture, the
mathematical form of CF and CR, and the model’s loss are given in
“Supplementary Methods – Model architecture and loss functions”.

Learning from imbalanced data
We adapted to our use case the following three popular imbalance
learning approaches. (i) Focal loss [44]: the categorical cross-entropy (CCE)
loss from the item predictor IPj was multiplied during training by a scaling
factor correcting for rank frequency (such that under-represented ranks
have a similar weight on the loss as over-represented ones) while at the
same item focusing on instances where the model assigns a high
probability to the wrong rank (these are instances the model is very
confident about but its confidence it misplaced as it is outputting the
wrong rank). (ii) Probability thresholding [45]: during inference, probabil-
istic predictions for each rank under the jtℎ item were divided by the
corresponding rank frequency (computed on the training set), plus a small
term to avoid division by zero in case of zero frequency ranks. The new
values were then normalized by the total sum. (iii) Re-sampling and loss re-
weighting: HDRS/YMRS severity bins (defined in [33]) were used to derive a
label which was then used to either random under-sampling (RUS) or
random over-sampling (ROS) segments with, respectively, over-
represented and under-represented labels. The loss of xi was then re-
scaled proportionally to the re-sampling ratio of its class.

Hyperparameter tuning
In order to find the hyperparameters that yield the best QCK in the
validation set, we performed an exhaustive search using Hyperband
Bayesian optimization [46]. ST2 shows the hyperparameters search space
and the configuration of the best model after 300 iterations. We also
computed which hyperparameters were the best predictors of the
validation QCK. This was obtained by training a random forest with the
hyperparameters as inputs and the metric as the target output and
deriving the feature importance values for the random forest. Details on
model training are given in “Supplementary Methods – Model training”.

Baseline model using classical machine learning
Most previous works into personal sensing for MDs (as discussed in the
Introduction) did not use deep learning for automatically learning features
from minimally processed data but deployed classical ML models relying
on hand-crafted features. Thus, we developed a baseline in the same spirit,
in order to better contextualize our deep-learning pipeline performance on
close-to-interview samples. Namely, from the same recording segments
inputted to the ANN we extracted features (e.g., heart rate variability,
entropy of movement) with a commonly used feature extractor for
Empatica E4, named FLIRT [47], and developed random forest classifiers (28
in total, as many as there are HDRS and YMRS items), using random
oversampling to handle class. We opted for random forest since it was a
popular choice in previous relevant works [22, 27]. The hyperparameter
space was explored with a random search of 300 iterations for each
classifier. Details are given in ST3.

Prediction error examination
Towards gaining insights into the best-performing setting among those
explored in the experiments detailed above we computed residuals on
close-to-interview samples and illustrated their distribution across items. For
the sake of better comparability, items with a rank step of two (e.g., Y5
irritability) were re-scaled to have a rank step of one like other items.
Furthermore, towards investigating correlations between residuals, check-
ing for any remarkable pattern in view of the natural correlation structure
of HDRS and YMRS, we estimated a regularized partial correlation network,
in particular a Gaussian graphical lasso (glasso [48]), over item residuals
(“Supplementary Methods – Gaussian Graphical Lasso” for details). Lastly,
towards having a subject-level perspective, we computed the item-

average macro-averaged F1 score (F1M) for each subject, checked for any
pattern of cross-subjects variability in subject performance, and checked
for association with available clinical-demographic variables (age, sex,
HDRS/YMRS total score) using Pearson’s R and independent samples t-test
with Bonferroni correction.

Channels importance
In order to assess each sensory modality contribution to the HDRS-YMRS
items prediction, we took a simple, model-agnostic approach to assess
each individual channel contribution to the task at hand. That is to say, we
selected the system performing best on the task and re-trained it including
all channels (tri-axial ACC, EDA, BVP, HR, and TEMP) but one. For each left-
out channel, we measured the difference in performance across items
relative to the baseline model (the one trained on all channels).

RESULTS
Best model details – ANN
The loss type is the hyperparameter most predictive of validation
QCK (ST4). The selected model employs the Cohen’s κ loss with
quadratic weightage [39] (c2). The best model uses a (small) critic
penalty (λ= 0.07) added to the main objective, i.e., scoring HDRS/
YMRS (c3). However, the training curve shows that the reduction in
the multi-task loss (each item prediction can be thought of as a task)
across epochs is paralleled by the reduction in the loss (cross-
entropy) paid by CR, tasked with telling subjects apart. Resampling
and loss re-weighting (c4) is the preferred strategy for class
imbalance. We found that a segment length of 16 s yields the best
result. The difference in QCK (ΔQCK) for other choices of τ (in seconds)
relative to the best configuration is−0.092 (8 s),−0.100 (32 s),−0.191
(64 s), −0.246 (128 s), 0.355 (256 s), −0.4431 (512 s), −0.577 (1024 s).
Note that τ was explored among powers of 2 for computational
convenience and that, when segmenting the first 5 hours of each
recording, different τ values produced different sample numbers and
lengths (the lower the τ values, the higher the number of samples,
the shorter the sample). The predictive value of hyperparameter τ
towards validation QCK is fairly low relative to other hyperparameters.

Main results
Our best ANN model achieves an average QCK across HDRS and
YMRS items of 0.609 in close-to-interview samples, a value that can
be semi-qualitatively interpreted as moderate agreement [49],
confidently outperforming our baseline random forest model that
only reached an average QCK of 0.214. Item level QCK correlates
weakly (R= 0.08) with the degree of item class imbalance (ρ) but
fairly (R= 0.42) with item H. Table 3a shows QCK for each item in
HDRS and YMRS. Briefly, QCK is highest for H12 somatic symptoms
gastrointestinal (0.775) and lowest for H10 anxiety psychic (0.492).
H10 has also the highest H (1.370), however, H7 work and
activities, despite having the second highest H (1.213), has a QCK
of 0.629, ranking as the 9th best-predicted item.

Shift over time
When tested on far-from-interview samples, our system overall has
a drop in performance (Table 3b and SF3). The average QCK is
0.498, 0.303, and 0.182 on segments taken respectively from the
first, second, and third thirty-minute intervals. Thereafter, it
fluctuates through the following thirty-minute intervals with
0.061 as the lowest value 15 h into the recording. The items with
the biggest drop in QCK relative to their baseline value across the
first three 30-min intervals are H9 agitation, H10 anxiety somatic,
Y4 sleep, and Y9 disruptive-aggressive behavior. On the other hand,
items that retain their original QCK value the most in the first three
30-min intervals are H1 depressed mood, Y11 insight, H2 feelings of
guilt, and H17 insight. This pattern matches clinical intuition as
items in the former group may be more volatile and reactive to
environmental factors (including medications), whereas items in
the latter group tend to change more slowly.
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Post-hoc diagnostics
In order to gain further insights into the errors that our system made
on close-to-interview holdout samples, we studied the distribution of
residuals, i.e., the signed difference between prediction ŷ and
ground truth y. SF4 illustrates that the model is correct most of the
time, residuals are in general evenly distributed around zero, and
when wrong the model is most often off by just one item rank.
Summing individual items’ predictions, we could get predictions on
HDRS/YMRS total sore (which is indeed simply the sum over the
questionnaire items) which had a Root Mean Squared Error (RMSE)
of 4.592 and 5.854, respectively.
Furthermore, we investigated the correlation structure among

item residuals to check whether any meaningful pattern emerged.
SF5 shows the undirected graphical model for the estimated
probability distribution over HDRS and YMRS item residuals. The
graph only has positive edges, that is, only positive partial
correlations between item residuals and co-variates. HDRS and
YMRS nodes tend to have weak interactions across the two scales,
with the exception of nodes that map the same symptom, e.g., Y11
and H17 both query insight. Within each scale, partial correlations
are stronger among nodes underlying a common symptom
domain, e.g., H1 and H2 constitute “core symptoms of depression”
[50], and speech (Y6) is highly related to mood (Y1) and thought (Y7,
Y8) [51]. Average node predictability for HDRS and YMRS items, a
measure of how well a node can be predicted by nodes it shares an

edge with, akin to R2, is 48.43%. Stability analyses showed that
some edges are estimated reliably (i.e., they were included in all or
nearly 500 bootstrapped samples), but there also is considerable
variability in the edge parameters across the bootstrapped models.
Subjects’ item average F1 macro-averaged F1 score (F1M) score had
a mean value of 0.605 (std = 0.015) with no subjects standing out
for a remarkable high (or low) performance. No associations with
age, sex, HDRS/YMRS total score emerged (SF6).

Channels contribution
We were interested in whether physiological modalities contributed
differently towards performance across items. This question, further to
clinical interest, has also practical implications since other devices may
not implement the same sensors as Empatica E4. Figure 3 shows that
while all modalities seem to positively contribute to test performance
across items, this is markedly the case with ACC as the model records
the biggest drop in performance upon removal of this channel from
input features. Specifically, upon zeroing out the contribution of ACC,
the biggest deterioration in performance was observed for items
mapping anxiety (e.g., H11 anxiety somatic ΔQCK=− 0.321),
YMRS4 sleep, and YMRS9 disruptive- aggressive behavior (with a ΔQCK

of −0.371 and −0.281 respectively), and core depression items (e.g.,
H1 depressed mood ΔQCK=− 0.276). On the other hand, the
contribution of BVP was relatively modest since, upon dropping this
channel, items generally had only a marginal reduction in QCK.

Fig. 3 All physiological modalities contributed to the test performance across items, however, this was particularly pronounced for
Acceleration (ACC) and relatively modest for Blood Volume Pressure (BVP). Effect of dropping individual channels on item performance.
The dotted line is at the level of baseline model performance while each bar indicates the performance upon re-training the best model
including all channels but the one corresponding to the bar color code, as shown in the legend.

Table 3. (a) Quadratic Cohen’s κ ranges from 0.775 on “somatic symptoms gastrointestinal” and to 0.492 on “anxiety psychic” (mean of 0.609). (b)
Quadratic Cohen’s κ deteriorated across both Hamilton Depression Rating Scale (HDRS) and Young Mania Rating Scale (YMRS) on segments taken
further away from when the interview took place.

(a)

Item QCK H1 0.642 H2 0.624 H3 0.694 H4 0.534 H5 0.595 H6 0.512 H7 0.629 H8 0.604 H9 0.508 H10 0.492

H11
0.636

H12
0.775

H13
0.582

H14
0.594

H15
0.691

H16
0.637

H17
0.574

Y1
0.602

Y2
0.590

Y3
0.627

Y4
0.629

Y5
0.591

Y6
0.572

Y7
0.582

Y8
0.588

Y9
0.755

Y10
0.602

Y11
0.566

(b)

Item-average QCK 5:01–6:00 6:01–6:30 6:31–7:00 7:01–7:30 7:31–8:00 8:01–8:30 8:31–9:00

HDRS 0.483 0.301 0.183 0.178 0.180 0.177 0.178

YMRS 0.499 0.307 0.182 0.181 0.181 0.173 0.175

Notes for (a): Item level QCK across HDRS and YMRS items. See Supplementary Table 5 for macro-averaged F1 scores.
Notes for (b): Item average QCK is herewith shown,see Supplementary Fig. 3 for a zoom on individual items across all available 30-min intervals.
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DISCUSSION
In this work, we proposed a new treatment of MDs monitoring
with personal sensing: inferring all 28 items from HDRS and YMRS,
the most widely used clinician-administered scales for depression
and mania respectively. Casting this problem as a single-label
prediction, e.g., disease status or the total score on a psychometric
scale, as done previously in the literature, dismisses the clinical
complexity of MDs, thereby losing actionable clinical information,
which is conversely preserved in the task we introduced here.
Furthermore, the predicted total score on a psychometric scale
can always be recovered if item-level predictions are available by
simply summing them out, whereas the other direction, i.e., going
from total score to individual item predictions, is not possible.
We developed and tested our framework with samples taken over

five hours since the start of the clinical interview (close-to-interview
samples), achieving moderate agreement [52] with expert clinician
(average QCK of 0.609) on a holdout set and showing that our deep-
learning pipeline vastly exceeded the performance (average QCK of
0.214) of traditional ML baseline relying on hand-crafted features.
Item level performance showed a fair correlation with item H,
indicating that items with a higher “uncertainty” in their sample
distribution tend to be harder to predict. The difference in H is
partly inherent to the scale design, as different items admit a
different number of ranks. HDRS/YMRS total scores, with the range
of [0–52] and [0–60], were predicted with an RMSE of 4.592 and
5.854, respectively (note that item level error compounds across
items when summing them out). A five and three-point interval are
the smallest bin widths for YMRS and HDRS respectively [53, 54], e.g.,
a YMRS total score in the range of [20–25] is considered a mild
mania and an HDRS total score in [19–22] is considered as severe
depression. This shows that on average our model would be off by
two score bands at most, in case of a true score falling on the edge
of a tight severity bin (i.e., the ones reported above). We recommend
caution in interpreting these results however as metrics suited for
continuous target variables, unlike QCK and F1M, are not robust in
settings where the distribution is skewed (towards lower values in
our case). Furthermore, while these results are comparable to
previous ones (e.g., Ghandeharioun et al. [23] reported a RMSE of 4.5
on the HDRS total score), differences in the sample limit any direct
comparison.
When used on samples collected from thirty-minute sequences

following the first five hours of the recordings (far-from-interview
samples), our model had a significantly lower performance with
average QCK declining down to 0.182 in the third half-hour and
then oscillating but never recovering to the original level.
Consistently with clinical intuition, items suffering the sharpest
decline relative to their baseline performance were those mapping
symptoms that naturally have a higher degree of volatility (e.g., H9
agitation) while items corresponding to more stable symptoms
(e.g., H17 insight) had a gentler drop in performance. Besides (some)
symptoms plausibly changing over time, a shift in the physiological
data distribution is very likely in a naturalist setting.
Residuals on holdout close-to-interview samples showed a

symmetric distribution, centered around zero, thus the model
was not systematically predicting either over- or under-predicting.
The network of item residuals illustrated that our model erred
along the correlation structure of the two symptom scales, as
stronger connections were observed among items mapping the
same symptom or a common domain. An ablation study over
input channels showed that ACC was the most important
modality, lending further support to the discriminative role of
actigraphy with respect to different mood states [14]. Coherently,
items whose QCK deteriorated the most upon removing this
channel were those mapping symptom domains clinically
observable through patterns of motor behavior.
In conclusion, we introduced a new task in personal sensing for

MDs monitoring, overcoming limitations of previous endeavors
which reduced MDs to a single number, with a loss of actionable

clinical information. We indeed advocate for inferring symptoms’
severity as scored by a clinician with the Hamilton Depression
Rating Scale-17 [5] (HDRS) and the YMRS [6]. We developed a deep
learning pipeline inputting physiological data recordings from a
wearable device and outputting HDRS and YMRS scores in
substantial agreement with those issued by a specialist (QCK=
0.609). This outperformed a competitive classical machine
learning algorithm. We illustrated the main machine learning
challenges associated with this new task and pointed to general-
ization across time as our key area of future research.

Limitations
We would like to highlight several limitations in our study. (a) All
patients were scored on HDRS and YMRS by the same clinician.
However, having scores from multiple (independent) clinicians on
the same patients would help appreciate model performance in
view of inter-rater agreement. (b) The lack of follow-up HDRS and
YMRS scores within the same session did not allow us to estimate to
what degree a shift in target variables might be at play. Relatedly,
we acknowledge that the choice of five hours for our main analyses
may be disputable and other choices may have been valid too. Five
hours was an informed attempt to trade off a reasonably high
number of samples with a minimal distribution shift over both target
variables and physiological data; studying the effect of different cut-
offs was not within the scope of this work. (c) Given the naturalist
setting, medications were allowed, and their interference could not
be ruled out. (d) As pointed out by Chekroud et al. [52], the
generalizability of AI systems in healthcare remains a significant
challenge. While we tested our method on out-of-distribution
samples explicitly (close-to-interview vs far-from-interview), other
aspects of generalization that are meaningful to personal sensing,
such as inter-individual and intra-individual performance, have not
yet been tested. For instance, we evaluated our methods on data
obtained in a single centre, and it is unclear how well the model
would perform in a cross-clinic setting.

Future work
(i) The decline in performance over future time points stands out
as the main challenge towards real-world implementations and
suggests that the model struggles to adapt to changes in
background (latent) variables, e.g., changes in activity patterns.
Research into domain adaptation should therefore be prioritized.
We also speculate that MD symptoms and relevant physiological
signals have slow- as well as fast-changing components. A
segment length of 16 s would seem unsuitable for representing
the former and an attempt should be made at capturing both. (ii)
Generalization of unseen patients is a desirable property in real-
world applications and something we consider exploring in the
future. Another approach to tackle this point is to develop (or fine-
tune) a model for each individual patient, as done in related fields
[55]. (iii) Supervised learning systems notoriously require vast
amounts of labeled data for training; as annotation (i.e., enlisting
mental health specialists to assess individuals and assign them
diagnoses and symptoms’ severity scores) is a major bottleneck in
mental healthcare [56], self-supervised learning [57] should be
considered for applications using the E4 device. (iv) For an ML
system to be trustworthy and actionable in a clinical setting,
further research into model explainability and uncertainty
quantification is warranted [58].

CODE AND DATA AVAILABILITY
The software codebase used is available at https://github.com/april-tools/wear-your-
scales. Python 3.10 programming language was used for the symptoms scoring
system, where deep learning models were implemented in PyTorch [59],
hyperparameter tuning and visualization model performance were performed in
Weights and Biases [60], and random forest classifiers were developed in scikit-learn
[61]. Graphical modeling of the residuals and related analyses were performed in R
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4.2.2 using packages qgraph [62] for network estimation and visualization, and
bootnet [63] for bootstrapping. Data in de-identified form may be made available
from the corresponding author upon reasonable request.
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