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The characteristic patterns of individual brain susceptibility
networks underlie Alzheimer’s disease and white matter
hyperintensity-related cognitive impairment
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Excessive iron accumulation in the brain cortex increases the risk of cognitive deterioration. However, interregional relationships
(defined as susceptibility connectivity) of local brain iron have not been explored, which could provide new insights into the
underlying mechanisms of cognitive decline. Seventy-six healthy controls (HC), 58 participants with mild cognitive impairment due
to probable Alzheimer’s disease (MCI-AD) and 66 participants with white matter hyperintensity (WMH) were included. We proposed
a novel approach to construct a brain susceptibility network by using Kullback‒Leibler divergence similarity estimation from
quantitative susceptibility mapping and further evaluated its topological organization. Moreover, sparse logistic regression (SLR)
was applied to classify MCI-AD from HC and WMH with normal cognition (WMH-NC) from WMH with MCI (WMH-MCI).The altered
susceptibility connectivity in the MCI-AD patients indicated that relatively more connectivity was involved in the default mode
network (DMN)-related and visual network (VN)-related connectivity, while more altered DMN-related and subcortical network (SN)-
related connectivity was found in the WMH-MCI patients. For the HC vs. MCI-AD classification, the features selected by the SLR were
primarily distributed throughout the DMN-related and VN-related connectivity (accuracy= 76.12%). For the WMH-NC vs. WMH-MCI
classification, the features with high appearance frequency were involved in SN-related and DMN-related connectivity
(accuracy= 84.85%). The shared and specific patterns of the susceptibility network identified in both MCI-AD and WMH-MCI may
provide a potential diagnostic biomarker for cognitive impairment, which could enhance the understanding of the relationships
between brain iron burden and cognitive decline from a network perspective.
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INTRODUCTION
Iron plays a central role in many basic biological processes in the
central nervous system, such as oxidative phosphorylation,
neurotransmission and myelin synthesis [1]. Emerging evidence
suggests that excessive iron accumulation in cortical and
subcortical gray matter (GM) increases the risk of cognitive
deterioration [2, 3]. Previous studies have focused on local brain
iron deposition with region-based approaches [2, 3]. However,
interregional relationships (referred to as susceptibility connectiv-
ity) of local brain iron in individuals have not been explored, which
might provide additional information for further understanding
the neuromechanism of cognitive decline.
Quantitative susceptibility mapping (QSM) is a validated and

noninvasive technique for detecting brain iron concentrations
in vivo via tissue susceptibility values [4, 5]. The regulation of iron
homoeostasis is crucial to normal brain function, whereas
dysregulation can lead to neurotoxicity through different mechan-
isms. During ageing, abnormal iron burden occurs in specific brain
regions, including the basal ganglia, hippocampus, and other

subcortical brain regions related to cognitive impairment [6].
Several studies on QSM have reported elevated brain magnetic
susceptibility in Alzheimer’s disease (AD) [2, 7, 8]. Across the
spectrum of AD with positive amyloid-β (Aβ) load, higher
susceptibility in the hippocampal cortex could predict accelerated
deterioration of episodic memory, executive function, and
attention function [8]. This finding indicated that brain iron might
bind to Aβ to accelerate clinical progression. In contrast to those in
AD, the presence and pattern of iron accumulation in vascular
cognitive impairment (VCI) are less consistent. Using QSM, Moon
et al. proposed that individuals with VCI exhibit elevated iron
accumulation in the caudate and putamen nuclei [9]. However,
another study reported no differences in the iron content in the
postmortem brains of patients with VCI compared with that in the
brains of healthy elderly individuals [10]. Previous brain iron-
related studies have mainly concentrated on iron deposition via
region-based approaches. Indeed, the brain functions as a
complex system that allows information to be segregated and
integrated efficiently at low wiring costs. Recent studies have
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modeled the brain as complex networks that are linked by
structural connectivity (i.e., constructed by diffusion tensor
imaging [DTI] or 3D T1 imaging), functional connectivity (i.e.,
constructed by rs-fMRI) or metabolic connectivity (i.e., constructed
by positron emission tomography [PET]). To date, the concept of
the individual “susceptibility network” based on QSM data has not
been mentioned, which may provide a more comprehensive
understanding of the metabolic function of the brain from a
network perspective.
Inspired by morphological brain networks based on Kullback‒

Leibler divergence similarity estimation (KLSE) [11–13], we
developed a new analytic method for constructing an
individual-level susceptibility network related to brain iron
deposition using QSM imaging. Technically, brain iron levels can
be effectively determined from susceptibility values in a specific
brain region via QSM images. KLSE could quantify the inter-
regional relationships (i.e., susceptibility connectivity) for a single
participant by estimating the similarity of brain iron distributions.
We suppose that the relatively high similarity of brain iron
distributions in any two regions reflects relatively more inter-
regional information transmission. This framework provides a
potential approach to explore intra- and inter-individual differ-
ences in susceptibility networks in individuals with cognitive
disorders.
In this study, our team used KLSE to construct a brain

susceptibility network at the individual level from QSM data and
further evaluated its reproducibility and reliability. Moreover, a
graph-based analysis was used to explore and compare the
pattern and presence of abnormal connectivity and topological
organization of the susceptibility network between AD-related
and vascular-related cognitive impairment. Finally, we combined
machine learning methods with the susceptibility network to
assess the classification performance of disease diagnosis. This
study may offer the opportunity to further understand the
mechanisms underlying different types of cognitive impairment
and provide a potential diagnostic biomarker from the perspective
of susceptibility networks.

MATERIALS AND METHODS
Participants
This cross-sectional study was approved by the Ethics Committee of
Nanjing Drum Tower Hospital, and informed consent was obtained from all
participants (clinical trial registration number: ChicTR-00C-17010562). After
checking the data integrity of the cognitive assessments and multimodal
MRI, 76 healthy controls (HC), 58 patients with mild cognitive impairment
due to probable Alzheimer’s disease (MCI-AD), and 66 participants with
moderate to severe WMH (aged 50–80 years) were included. Participants
with moderate to severe WMH were categorized as WMH with normal
cognition (WMH-NC, n= 31) and WMH with MCI (WMH-MCI, n= 35) based
on cognitive evaluation. The diagnostic criteria of cognitive impairment
was described in the Supplementary Materials. Moderate to severe WMH
were identified according to WMH Fazekas scale 2 or 3. The MCI-AD
individuals were diagnosed according to the recommendations of
Petersen et al. [14] and the National Institute on Aging-Alzheimer’s
Association [15]. Notably, the MCI-AD individuals with moderate to severe
WMH were excluded, with the aim of minimizing the possibility of mixed
dementia. The exclusion criteria included multiple cerebral infarctions,
multiple cerebral microbleeds, nonvascular WMH, and other neurological/
psychiatric diseases.

Cognitive function measurement
All participants underwent a standardized neuropsychological examina-
tion. General cognitive performance was evaluated by the Mini-Mental
State Examination (MMSE) and the Beijing version of the Montreal
Cognitive Assessment (MoCA-BJ). Multiple cognitive domain tests included
memory function, visuospatial function, language function, executive
function and information processing speed, which are described in the
Supplementary Materials.

MRI scanning
The multimodal neuroimaging data were acquired using a Philips Medical
Systems 3.0 T machine. The protocol included high-resolution 3D T1
imaging, 3D fluid-attenuated inversion recovery (FLAIR) imaging and 3D
fast field-echo imaging. The detailed scanning sequence is described in the
Supplementary Materials.

Segmentation and volume determination
WMH segmentation was conducted based on the lesion prediction
algorithm in the Lesion Segmentation Tool (LST 2.0.15; https://
www.statistical-modelling.de/lst.html) [16]. The extracted lesion probability
map of each individual was visually inspected against the corresponding
FLAIR image.
Brain tissue segmentation was performed with the Computational

Anatomy Toolbox (http://dbm.neuro.uni-jena.de/cat/). The main proces-
sing steps included correction for bias-field inhomogeneities, spatial
normalization with Diffeomorphic Anatomical Registration using the
Exponentiated Lie algebra (DARTEL) algorithm and tissue segmentation
into white matter (WM), GM and cerebrospinal fluid (CSF). The total
intracranial volume (TIV) was obtained by summing the volumes of the
GM, WM and CSF. To normalize the head size of each individual, we
defined the normalized GM volume (GMV) as the ratio of GMV divided by
TIV (GMV/TIV ratio). Due to the potential effect of GMV on the susceptibility
value, we assessed the GMV/TIV in each participant.

Susceptibility map reconstruction and normalization
The individual susceptibility map was reconstructed from the magnitude
and phase images using the STI Suite (https://people.eecs.berkeley.edu/
~chunlei.liu/software.html). First, a single-subject brain mask was extracted
from the magnitude image. Second, phase unwrapping was conducted by
using a Laplacian-based phase unwrapping algorithm [17]. Third, the
variable-kernel sophisticated harmonic artifact reduction for phase data
algorithm was applied to remove the background field from the phase
images [18]. Finally, an individual susceptibility map was obtained using
the streaking artefact reduction algorithm to calculate dipole inversion and
reduce streaking artefacts [19].
The Statistical Parametric Mapping analysis package (SPM12, http://

www.fil.ion.ucl.ac.uk/spm/software/spm12/) was used to normalize the
individual susceptibility map to standard MNI space [20, 21]. First, a
magnitude image acquired from 3D fast field-echo imaging was
coregistered to the 3D T1 image. The susceptibility map was transformed
based on the coregistration between the magnitude image and the 3D T1
image. Second, the coregistered susceptibility map was spatially normal-
ized to the MNI space using the normalized transformation matrix of the
3D T1 image. Then, the spatially normalized susceptibility map was
smoothed with the Gaussian kernel (8 mm full width at half-maximum).
Finally, the smoothed susceptibility map was multiplied by the GM mask
generated from GM segmentation processing (using the DARTEL
algorithm) to obtain the individual susceptibility map of the GM for
subsequent susceptibility network analysis.

Susceptibility network construction
In this study, the similarity of magnetic susceptibility in any two brain
regions from QSM images based on Kullback‒Leibler divergence was used
to delineate individual susceptibility connections [11, 12]. By estimating
the similarity of iron distributions, this framework is able to quantify the
susceptibility connectivity for a single participant. First, we extracted the
susceptibility values of each region of interest (ROI), which were applied to
estimate the probability density function (PDF) via nonparametric kernel
density estimation (KDE). This KDE analysis was conducted based on a
public MATLAB script (http://www.mathworks.com/matlabcentral/
fileexchange/14034-kernel-density-estimator). Second, the symmetric Kull-
back‒Leibler divergence based on the PDFs was computed according to
the following mathematical equation:

DKL I; Jð Þ ¼
Z

X
ðI xð Þ log I xð Þ

J xð Þ þ JðxÞ log JðxÞ
IðxÞÞ (1)

where I and J are the two PDFs of ROIi and ROIj. Subsequently, the KLSE
(i.e., the susceptibility connectivity) between ROIi and ROIj is computed by
the Kullback‒Leibler divergence as follows:

KLSEðI; JÞ ¼ e�DKLðI;JÞ (2)
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where e is the nature exponential. The KLSE ranges from 0 to 1, where 1 is
for two identical distributions. Two parcellation schemes, the Anatomical
Automatic Labelling atlas (AAL) and the Brainnetome atlas (BNA), were
used to define the nodes (Supplementary Tables 1 and 2) [22]. Finally,
KLSE-based 90 × 90 and 246 × 246 weighted susceptibility matrices were
constructed for each subject. In addition to the weighted susceptibility
network, we constructed a binary network derived by sparsity thresholds
(from 0.05 to 0.4, interval= 0.01) to assess the stability of our findings [23].
A flowchart describing the main construction process of the susceptibility
network is shown in Fig. 1.

Susceptibility network analysis
Topological properties of the susceptibility network. We applied the
Graph Theoretical Network Analysis Toolbox (GRETNA, http://
www.nitrc.org/projects/gretna/) to analyze the topological properties
of the susceptibility network [24]. The global network properties
included small-world metrics [clustering coefficient (Cp), normalized
clustering coefficient (γ, Gamma), characteristic path length (Lp),
normalized characteristic path length (λ, Lambda) and small-worldness
(σ, Sigma)] and network efficiency metrics [global efficiency (Eglob) and
local efficiency (Eloc)]. In addition, betweenness centrality, degree
centrality, nodal global efficiency and nodal local efficiency were used
to evaluate the regional properties. Their definitions and mathematical
equations have been described in previous studies, and we also
mentioned this in Supplementary Table 3 [25, 26]. A network is regarded
as small-worldness (i.e., σ= γ/λ) if it meets the following criterion: σ > 1
[27]. Moreover, we computed the area under the curve (AUC) over a
range of sparsities for each network metric [23].

Rich-club organization analysis. The characteristics of rich-club organiza-
tion in terms of both binary and weighted susceptibility networks were
evaluated. To identify the existence of significant rich-club organization,
the rich-club coefficient φ(k) and the weighted rich-club coefficient φw(k)
were normalized relative to a set of 1000 random networks. By definition,
the normalized φ(k) and φw(k) [φnorm(k) and φw

norm(k)] > 1 over a range of k
are indicative of a rich-club organization within a network [28].
The top 12% nodes with the highest degree in the HC group based on

the individual susceptibility network were defined as hub nodes [29–31].
Based on this categorization, the whole brain regions were classified into
hub and peripheral nodes. The connections of each individual’s suscept-
ibility network were divided into three types: “rich-club connections”,
which linked hub nodes to other hub nodes; “feeder connections”, which
linked hub nodes to peripheral nodes; and “local connections”, which
linked peripheral nodes to other peripheral nodes [26, 32].

Feature construction and pattern classification. To conduct both feature
selection and classification, we employ sparse logistic regression (SLR)
based on the l1-norm regularization (https://www.public.asu.edu/~jye02/
Software/SLEP). Let xi 2 Rd be the input feature with d dimension, yi 2
�1; 1f g be the binary label of the i-th sample and W2Rd be the weighted
coefficient. The sparse logistic regression is defined as follows:

1
n

Xn
i

log 1þ exp �yi W
Txi þ b

� �� �� �þ λjjWjj1 (3)

where the sparse level of the W is controlled by the hyperparameter λ. b is
the intercept, jj�jj1 is the l1-norm and n is the number of participants. In

Fig. 1 A flowchart illustrating the main construction process of the susceptibility network. QSM quantitative susceptibility mapping, MNI
Montreal Neurological Institute, KLS Kullback-Leibler divergence similarity, PDF probability density function.
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particular, a leave-one-out cross-validation strategy is conducted to
validate its result, where the hyperparameter is empirically setting to
0.01. The resulting optimization problem is convex and nonsmooth. We
also reported the selection feature, in which the parameter Wj ≠ 0. The
Accuracy, sensitivity, specificity, and AUC of the receiver operating
characteristic curve (ROC) were applied to evaluate the classification
performance.

Statistical analysis
Demographic and neuroimaging characteristics and cognitive assessments
were compared among the HC, MCI-AD, WMH-NC, and WMH-MCI groups
using chi-square tests, Mann‒Whitney U tests and one-way analysis of
variance (ANOVA) when appropriate using the Statistical Package for Social
Sciences (SPSS V22).
The group differences in the global and nodal metrics of the

susceptibility network between the HC and MCI-AD groups were assessed
by two-sample t tests, while those among the HC, WMH-NC, and WMH-MCI
groups were examined by ANOVA after controlling for potential
confounders (including the effect of age, gender and years of education).
The statistically significant differences in the regional properties and edges
were determined using the nonparametric permutation test (5000
permutation times) based on FSL’s Randomise program. To characterize
the distribution patterns of these altered susceptibility connectivity, brain
regions from the BNA were mapped into the subcortical network (SN) and
another seven functional networks proposed by Yeo et al. [33] based on an
in-house Matlab script. Indeed, each voxel in the BNA corresponds to a
network label of Yeo-7 networks. The Yeo-7 networks atlas do not include
the SN, so the subcortical areas of new atlas are as same as it from the BNA.
The eight intrinsic brain networks included the visual network (VN),
somatomotor network (SMN), dorsal attention network (DAN), salience/
ventral attention network (SVAN), limbic network (LN), frontoparietal
network (FPN), default mode network (DMN) and SN.
Mediation analyses were used to assess whether altered susceptibility

connections mediated the relationships between WMH and cognition after
controlling for the effects of age, gender, and years of education. We
computed bias-corrected 95% confidence intervals (CI) for the size of the
mediating effects with bootstrapping (k= 5000 samples). The mediation
analyses were conducted by using the PROCESS package (http://
www.afhayes.com/) in SPSS software.
Furthermore, functional and genetic annotation analyses were also

preliminarily performed to provide a biological interpretation of the altered
susceptibility connectivity by using the Brain Annotation Toolbox (https://
github.com/zhaowenliu/BAT). For a subnetwork, the extent of activation
for a given functional term from the Neurosynth database (https://
www.neurosynth.org/) was defined as the mean coactivation ratio. Gene
expression data were acquired from the Allen Human Brain Atlas (AHBA,
https://human.brain-map.org/), which provides normalized microarray
gene expression data for six postmortem adult brains. Finally, enrichment
analyses for genes consistently associated with susceptibility connectivity
alterations were performed with ToppGene software (https://
toppgene.cchmc.org/).

Validations: reproducibility and test-retest reliability
Brain parcellation effects. Two widely used brain templates (i.e., the AAL
and BNA) defined network nodes, which could validate our findings in
different brain parcellation templates.

Network type effects. The similarity matrices were thresholded into both
binary and weighted networks to reduce the effects on topological
properties.

Test–retest reliability. We explored the test-retest (TRT) reliability of this
method in constructing the susceptibility network based on different
cortical parcellation approaches from the group level and individual level.
The test-retest dataset consisted of 15 participants (mean age: 64.38 ± 8.35
years; HC= 7, MCI-AD= 2, WMH-NC= 5, WMH-MCI= 1) who were each
scanned twice with an average interval of 11 months. In addition, their
cognitive performance remained unchanged, and no neuropsychiatric
disease occurred between the two MRI sessions. At the group level,
quantitative spatial correlation analyses were used to assess the similarity
of mean susceptibility network matrices (i.e., KLSE matrices) between the
first session and the second session. Specifically, for each cortical
parcellation approach, a scatter diagram and pearson correlation
coefficient showed the correlation between the two 90 × 90 or 246 × 246

matrices. At the individual level, the reliability of each connectivity element
was estimated using the intraclass correlation coefficient (ICC, two-way
mixed single measures testing for consistency) for each cortical parcella-
tion scheme as defined as follows [34]:

ICC ¼ MSB �MSE
MSB þ k � 1ð ÞMSE

(4)

where k is the number of repeated sessions (i.e., k= 2), MSB is the between-
subjects mean square and MSE is the error mean square. The ICC is close to
1 if the measurements of two sessions are consistent for each subject in
the sample and 0 otherwise. The ICC was calculated based on a MATLAB
function (https://ww2.mathworks.cn/matlabcentral/fileexchange/22099-
intraclass-correlation-coefficient-icc).

RESULTS
Demographic and clinical characteristics
The demographic and clinical data of the HC and those in the MCI-
AD, WMH-NC, and WMH-MCI groups are shown in Table 1. One-
way ANOVA or the χ2 test indicated that the four groups were not
matched for age (F= 12.699, p < 0.001), years of education
(F= 3.782, p= 0.011), and gender distribution (χ2= 14.150,
p= 0.003). It should be noted that the effects of age, gender
and years of education were controlled for in the following
network analyses. There were no significant differences in the
GMV/TIV ratio among the four groups (F= 1.403, p= 0.243) or
WMH volume between the WMH-NC and WMH-MCI groups
(Z=−0.010, p= 0.990). In addition, MMSE (F= 22.226,
p < 0.001), MoCA-BJ (F= 46.485, p < 0.001), episodic memory
(F= 25.539, p < 0.001), visuospatial processing function
(F= 21.111, p < 0.001), information processing speed (F= 18.319,
p < 0.001), language function (F= 21.690, p < 0.001) and executive
function (F= 26.410, p < 0.001) were significantly lower in the MCI-
AD group and WMH-MCI group.

The TRT reliability of KLSE-based susceptibility connectivity
matrices
The test-retest dataset consisted of 15 subjects (mean age:
64.00 ± 8.50 years; HC= 7, MCI= 2, WMH-NC= 5, WMH-MCI= 1)
who were each scanned twice with an average interval of
11 months. At the group level, the quantitative spatial correlation
analysis showed that the mean susceptibility network matrices
were highly similar between the first scan and the second scan
regardless of the different parcellation schemes (AAL: r= 0.97,
p < 0.001; BNA: r= 0.94, p < 0.001; Fig. 2A). At the individual level,
ICC-based TRT reliability analysis of the susceptibility network
matrices indicated good reliability for interregional KLSE values
(AAL: 0.70 ± 0.20; BNA: 0.62 ± 0.22; Fig. 2B).

Small-world property of the susceptibility network
As shown in Fig. 2C, over the threshold range of 0.05 to 0.4, the
susceptibility network in the HC group fulfilled Gamma (γ) > 1,
Lambda (λ) ≈ 1, and Sigma (σ) > 1 independent of the network
type and brain parcellation template. These findings demon-
strated the small-world property of the brain susceptibility
network.

Altered global properties of the susceptibility network
The significant differences in small-world properties and network
efficiency between the MCI-AD group and the HC group are
shown in Fig. 3. The MCI-AD group showed a significantly
increased clustering coefficient (t= 5.878, p= 0.017; Fig. 3A),
global efficiency (t= 6.463, p= 0.012; Fig. 3B) and local efficiency
(t= 1.403, p= 0.010; Fig. 3B) relative to the HC group. The
characteristic path length was shorter in the MCI-AD group than in
the HC group (t= 7.081, p= 0.009; Fig. 3A). However, no
significant difference in global properties was found between
patients with WMH and controls (Fig. 3). These results were
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obtained under the binary networks constructed by the BNA
template. The results obtained based on the AAL template and the
weighted networks were similar to these findings (Supplementary
Materials).

Altered regional properties of the susceptibility network
Nonparametric permutation tests (p < 0.05, uncorrected) were
used to preliminarily reveal the abnormal regional metrics of the
susceptibility network in the MCI-AD and WMH-MCI groups (Fig.
4). The MCI-AD group showed significantly altered nodal proper-
ties predominantly located in the DMN and VN, such as the
superior frontal gyrus, precuneus, middle temporal gyrus and
occipital gyrus (Fig. 4A). In contrast, alterations in regional
properties in the SN, LN, and VN were identified in patients with
WMH (Fig. 4B). However, these results did not survive multiple
comparison correction (e.g., Bonferroni or false discovery rate

correction [FDR]). Interestingly, there was a significant trend
toward exhibiting different patterns of regional properties
between MCI-AD and WMH individuals. These results were
obtained under the binary networks constructed by the BNA
template. The results obtained based on the AAL template and the
weighted networks are also shown in the Supplementary
Materials.

Rich-club organization analysis
As shown in Fig. 5A, B, rich-club organization was evident in the
susceptibility network of the human brain, with normalized φ(k) > 1
over a range of sparsity from 0.05 to 0.4. These hub regions were
primarily located in the bilateral superior frontal gyrus, middle
frontal gyrus, inferior parietal lobule, precuneus, and precentral and
postcentral gyrus, which were similar to previous research (Fig. 5C)
[35]. In the MCI-AD group, the strength and degree of the rich-club

Table 1. Demographic and neuropsychological data.

Items HC (n= 76) MCI-AD (n= 58) WMH F/χ2/Z p value

NC (n= 31) MCI (n= 35)

Demographics

Age (years) 61.882 ± 7.811 62.500 ± 8.925 69.258 ± 7.421 70.029 ± 8.049 12.699 <0.001a,b

Education (years) 12.013 ± 4.675 10.414 ± 2.702 9.419 ± 5.835 9.357 ± 4.059 3.782 0.011a,b

Gender (male/female) 47/29 22/36 12/19 10/25 14.150 0.003c,b

Neuroimaging characteristics

GMV/TIV ratio 0.352 ± 0.036 0.361 ± 0.037 0.353 ± 0.032 0.346 ± 0.040 1.403 0.243a

WMH (ml) – – 11.240 (6.080, 17.630) 10.750 (6.220, 20.130) −0.010 0.990d

General cognition

MMSE 28.513 ± 1.400 27.603 ± 1.643 27.484 ± 2.515 24.457 ± 4.488 22.226 <0.001a,b

MoCA-BJ 25.895 ± 2.595 21.293 ± 2.791 24.613 ± 3.905 18.829 ± 4.508 46.485 <0.001a,b

Composition Z scores of each cognitive domain

Episodic memory 0.458 ± 0.763 −0.388 ± 0.693 0.308 ± 0.753 −0.624 ± 0.716 25.539 <0.001a,b

AVLT-DR 5.237 ± 2.274 3.483 ± 1.740 4.903 ± 2.022 3.029 ± 1.618 14.666 <0.001a,b

VR-DR (WMS) 9.303 ± 2.643 6.293 ± 3.335 8.806 ± 3.301 5.400 ± 2.851 19.768 <0.001a,b

Visuospatial function 0.332 ± 0.474 −0.051 ± 0.809 0.242 ± 0.451 −0.851 ± 1.215 21.111 <0.001a,b

CDT 3.763 ± 0.513 3.362 ± 0.810 3.677 ± 0.541 2.686 ± 1.078 18.553 <0.001a,b

VR-C 13.763 ± 0.671 13.328 ± 1.751 13.645 ± 0.608 12.114 ± 2.386 10.922 <0.001a,b

Information processing
speed

0.435 ± 0.775 −0.182 ± 0.696 −0.002 ± 0.762 −0.641 ± 0.754 18.319 <0.001a,b

TMT-A (inverse) 0.021 ± 0.009 0.017 ± 0.006 0.017 ± 0.007 0.014 ± 0.007 8.198 <0.001a,b

Stroop A (inverse) 0.060 ± 0.015 0.049 ± 0.015 0.054 ± 0.015 0.041 ± 0.016 13.506 <0.001a,b

Stroop B (inverse) 0.051 ± 0.014 0.040 ± 0.014 0.044 ± 0.014 0.034 ± 0.014 15.278 <0.001a,b

Language function 0.498 ± 0.712 −0.347 ± 0.753 0.067 ± 0.727 −0.566 ± 0.871 21.690 <0.001a,b

CVF 19.079 ± 4.931 14.052 ± 4.415 16.613 ± 3.694 14.257 ± 4.395 16.779 <0.001a,b

BNT 52.987 ± 5.587 47.966 ± 6.308 50.290 ± 7.313 44.486 ± 8.340 14.904 <0.001a,b

Executive function 0.434 ± 0.671 −0.268 ± 0.520 0.140 ± 0.764 −0.623 ± 0.643 26.410 <0.001a,b

DST-backward 5.079 ± 1.283 4.069 ± 0.934 4.677 ± 1.107 3.314 ± 1.301 20.752 <0.001a,b

TMT-B (inverse) 0.012 ± 0.005 0.009 ± 0.004 0.010 ± 0.005 0.007 ± 0.003 10.504 <0.001a,b

Stroop C (inverse) 0.036 ± 0.011 0.027 ± 0.009 0.033 ± 0.012 0.026 ± 0.013 9.890 <0.001a,b

Values are presented as the mean ± standard deviation (SD) or median (interquartile ranges).
aThe p value was obtained by one-way ANOVA.
bIndicates a statistical difference between groups, p < 0.05.
cThe p value was obtained by χ2 test.
dThe p value was obtained by Mann–Whitney U test.
HC health control, NC normal cognition, MCI-AD mild cognitive impairment due to Alzheimer’s disease, GMV gray matter volume, TIV total intracranial volume,
WMH white matter hyperintensities, MMSE mini mental state examination, MoCA-BJ Beijing version of the Montreal Cognitive Assessment, AVLT-DR Auditory
Verbal Learning Test-delayed recall, VR-DR visual reproduction-delay recall, WMS Wechsler Memory Scale, CDT Clock Drawing Test, VR-C visual reproduction-
copy, CVF category verbal fluency, BNT Boston Naming Test, DST Digit Span Test, TMT-A and TMT-B Trail Making Test-A and B, Stroop A, B and C Stroop Color and
Word Tests A, B, and C.
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and feeder connections were significantly lower (strength: rich-club
p < 0.001, feeder p= 0.002; degree: rich-club p < 0.001, feeder
p= 0.002), while the strength and degree of the local connections
were significantly greater than those in the HC group (strength:
local p= 0.001; degree: local p= 0.001) (Fig. 5D, E). In addition,
individuals with WMH exhibited a pattern of rich-club organization
similar to that of the MCI-AD group. These results were obtained
under the binary networks constructed by the BNA template. The

detailed data are described in Supplementary Table 4. The results
obtained based on the AAL template and the weighted networks
are also shown in the Supplementary Materials.

The distinct pattern of susceptibility connectivity in
individuals with cognitive impairment
Figure 6A displays the altered susceptibility connectivity in the
MCI-AD group. The MCI-AD group showed 24 decreased

Fig. 2 TRT reliability and small-worldness of KLSE-based susceptibility network. A The overall patterns of mean susceptibility network
matrices were highly similar between the first session and the second session regardless of the different parcellation schemes. B Good
reliability for interregional KLSE values in the different parcellation schemes. C The susceptibility network in the HC group fulfilled Gamma
(γ) > 1, Lambda (λ) ≈ 1, and Sigma (σ) > 1 under each analytical combination of network type and brain parcellation scheme. AAL Anatomical
Automatic Labeling, BNA Brainnetome atlas, QSM quantitative susceptibility mapping, KLS Kullback-Leibler divergence similarity, ICC intra-
class correlation coefficient, Cp clustering coefficient, Lp characteristic path length.

Fig. 3 Global properties of the susceptibility network. A The MCI-AD group showed significantly increased clustering coefficient (t= 5.878,
p= 0.017) and decreased characteristic path length (t= 7.081, p= 0.009) compared to the HC group. B The MCI-AD group showed
significantly increased global efficiency (t= 6.463, p= 0.012) and local efficiency (t= 1.403, p= 0.010) relative to the HC group. * indicates a
statistical difference between groups, p < 0.05. Cp clustering coefficient, Lp characteristic path length, Eglob global efficiency, Eloc local
efficiency, HC health control, NC normal cognition, MCI-AD mild cognitive impairment due to Alzheimer’s disease, WMH white matter
hyperintensities.
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Fig. 4 Regional properties of the susceptibility network. A The MCI-AD group showed significantly altered nodal properties predominantly
located in the DMN and VN, such as superior frontal gyrus, precuneus, middle temporal gyrus and occipital gyrus. B Alterations of regional
properties in SN, LN, and VN were identified in patients with WMH. HC health control, NC normal cognition, MCI-AD mild cognitive
impairment due to Alzheimer’s disease, WMH white matter hyperintensities, DMN default mode network, VN visual network, SN subcortical
network, LN limbic network. The abbreviations of 246 brain regions could be seen in Supplemental Table 2.

Fig. 5 Rich-club organization analysis. A, B Rich-club organization was evident in the susceptibility network of human brain, with the
normalized φ(k) > 1 over a range of sparsity from 0.05 to 0.4. C The distribution of hub regions. D, E Significant differences in the strength and
degree of the rich-club, feeder and local connections were identified in the MCI-AD and WMH group. * indicates a statistical difference
between groups, p < 0.05. HC health control, NC normal cognition, MCI-AD mild cognitive impairment due to Alzheimer’s disease, WMH white
matter hyperintensities, RC rich-club connections, FC feeder connections, LC local connections.
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susceptibility edges (p < 0.001, permutation test), which were
primarily involved in DMN-related connectivity. This dysregulated
network of 24 edges was significantly enriched in 2 functional
terms, including ‘mild cognitive’ (p= 0.014, permutation test) and
‘navigation’ (p= 0.042, permutation test). For the genetic analysis,
we selected those connections with associated brain regions that
had more than 5 AHBA samples and whose remaining 7 of the 24
edges were used for genetic analysis. In total, 4944 genes were
significantly coexpressed (p < 0.05, FDR corrected) in the regions
connected by these 7 edges. These genes were significantly
related to biological processes such as ‘negative regulation of
neuron death’ (p= 4.26e−3, FDR corrected), ‘oxidative phosphor-
ylation’ (p= 9.16e−3, FDR corrected) and ‘stress response to metal
ion’ (p= 4.79e−3, FDR corrected). The gene pathway ‘reactome
activation of PPARGC1A by oxidative phosphorylation’
(p= 3.27e−2, FDR corrected) and ‘reactome metallothioneins bind
metals’ (p= 4.86e−2, FDR corrected) were also found to be
significantly enriched.
In contrast, 107 increased susceptibility edges were detected in

the MCI-AD group relative to the HC group (p < 0.001, permutation
test; Fig. 6A). These connections were mainly distributed between
the VN and other networks. The term ‘primary visual’ (p= 0.006,
permutation test) was found to be significantly associated with
these altered susceptibility edges. Sixty of the 107 edges for
genetic analysis and 11568 genes were found to be significantly
overexpressed (p < 0.05, FDR corrected). These genes were
significantly related to biological processes such as ‘synaptic
signaling’ (p= 1.20e−28, FDR corrected), ‘neuron development’
(p= 1.20e−28, FDR corrected) and ‘metal ion transport’
(p= 2.48e−17, FDR corrected). The gene pathway ‘reactome
neuronal system’ (p= 1.58e−9, FDR corrected) and ‘reactome
transmission across chemical synapses’ (p= 1.40e−7, FDR cor-
rected) were also found to be significantly enriched. These genes
are also associated with abnormal mouse phenotypes, such as
‘abnormal synaptic transmission’ (p= 4.49e−7, FDR corrected),
‘abnormal long term potentiation’ (p= 1.21e−7, FDR corrected)
and ‘abnormal neuron morphology’ (p= 1.03e−6, FDR corrected).
Interestingly, the altered susceptibility connectivity (17 edges)

in individuals with WMH was shown by increased connectivity
involved in SN- and DMN-related connectivity (p < 0.001, permu-
tation test; Fig. 6B). This dysregulated network of 17 edges was
significantly enriched in 48 functional terms, including ‘learning
task’ (p < 0.001, permutation test) and ‘gain’ (p < 0.001, permuta-
tion test). In total, 3773 genes were identified to be significantly
coexpressed (p < 0.05, FDR corrected) in the regions connected by
3 of the 17 edges. These genes were significantly related to
biological processes such as ‘regulation of postsynapse organiza-
tion’ (p= 4.47e−3, FDR corrected) and ‘synapse organization’
(p= 6.01e−3, FDR corrected). The gene pathway ‘reactome
mitochondrial translation’ (p= 3.31e−3, FDR corrected) and
‘reactome protein interactions at synapses’ (p= 9.41e−3, FDR
corrected) were also found to be significantly enriched.
In addition, the relationship between WMH volume and MMSE

score was mediated by susceptibility connectivity between the left
superior parietal lobule and right amygdala (indirect effect: 3.05;
95% CI: 0.42, 8.47; Fig. 6B). The indirect effect of WMH volume on
MoCA-BJ score was significantly mediated by susceptibility
connectivity between the left precuneus and right basal ganglia
(indirect effect: −3.45; 95% CI: −8.48, −0.40; Fig. 6B).

Discriminative analysis
In this study, an SLR based on l1-norm regularization was used to
select features of susceptibility connectivity for identifying indivi-
duals with cognitive impairment. For the HC vs. MCI-AD classifica-
tion, 263 edges, as the features selected by the SLR, were primarily
distributed throughout the DMN-related and VN-related connectiv-
ity (Fig. 7A). The cross-validation accuracy and AUC were 76.12%
and 0.83, respectively (sensitivity= 76.32%, specificity= 75.86%;

Fig. 7A). For the WMH-NC vs. WMH-MCI classification, 199 edges as
features were involved in SN-related and DMN-related connectivity
(Fig. 7B). The cross-validation accuracy and AUC were 84.85% and
0.93, respectively (sensitivity= 87.10%, specificity= 82.86%;
Fig. 7B).

DISCUSSION
Our study proposed an individual-level susceptibility network
construction approach based on QSM imaging and systematically
revealed the topological organization of the two most common
aetiologies of cognitive impairment (i.e., AD and VCI). We
proposed that the brain susceptibility network was naturally
organized in a small-world manner with highly connected hubs.
More importantly, characteristic patterns of abnormal suscept-
ibility networks were found in both MCI-AD and WMH-MCI and
could be applied to differentiate between individuals with
cognitive impairment and healthy elderly individuals.
Previous studies based on QSM data have concentrated on local

susceptibility alterations via region-based methods in neu-
roscience [8, 36]. However, the interregional relationships in brain
susceptibility have never been investigated. In AD, neuroimaging
studies using PET showed a spatial correspondence between the
spatial distribution of Aβ and the topography of the DMN and FPN
[37–39]. These findings supported the ‘prion-like’ spreading
hypothesis that pathogenic proteins originate as prion-like seeded
aggregations, which then spread along the neuronal pathways
that compose macroscopic brain networks [40]. Previous studies
have reported the positive correlations between iron load and Aβ
accumulation mainly located in the frontotemporal cortex in AD
patients and healthy old-aged adults [2, 8, 41]. Therefore, iron
deposition may be closely related to Aβ load and Aβ load could be
transported to separate brain regions through axons. We infer that
closely connected brain regions exhibit similar patterns of iron
deposition. In this work, we introduced a novel framework to
construct a susceptibility network at the individual level based on
the KLSE model, which estimates the similarity of susceptibility
between any two brain regions. This approach not only
considered the variability and complexity of the brain cortex
structure but also allowed us to quantify the susceptibility
relationships in each individual [11]. We speculate that the
relatively high similarity of iron distributions in any two brain
regions reflects relatively more interregional information transmis-
sion. Based on datasets that were scanned twice, we investigated
the TRT reliability of the KLSE method for constructing suscept-
ibility networks through different cortical parcellation approaches.
Our results showed that the interregional KLSE values exhibited
good TRT reliability independent of brain parcellation and
network type. Therefore, we speculated that KLSE-based brain
susceptibility network analysis could be a plausible approach for
future investigations of the neuroimaging phenotypes of cogni-
tive impairment.
Generally, the small-world attribute of brain networks offers a

structural substrate for functional integration and segregation to
facilitate rapid information communication throughout the whole
brain [25]. Consistent with the findings of other neuroimaging
modalities, the susceptibility network constructed by QSM
imaging globally showed high efficiency, small-worldness, and
rich-club organization in the present study [42–44]. Furthermore,
the hub regions identified in our study were primarily located in
DMN-related regions, which was largely similar to the findings of
previous research [35]. Our findings suggest that the susceptibility
network is a complex but efficient neuronal architecture that
reflects an optimal balance between functional integration and
segregation. In accordance with this observation, KLSE-based
susceptibility network analysis could be considered a potential
approach to investigating topological organization in cognitive
neuroscience and neuropsychology.
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The distinct features of the whole-brain susceptibility network
were explored and compared between the MCI-AD and WMH-MCI
groups. The MCI-AD group exhibited a significantly greater
clustering coefficient and shorter characteristic path length than
did the controls. The global properties exhibited similar but not
significantly different trends in the WMH-MCI group. Consistent

with previous findings in Aβ brain networks, the increased
segregation and preserved integration of the susceptibility
network may reveal a regularization pattern of altered small-
worldness in MCI-AD patients [45]. Duan et al. [45] demonstrated
that the Aβ brain network constructed from PET images exhibited
more noticeable small-world attributes in AD patients than in HC,
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which could be attributed to the Aβ cascade hypothesis. As
proposed in previous research, elevated brain iron deposition
occurs in AD patients and is positively related to Aβ burden [2, 41].
Due to the susceptibility values reflecting the distribution of brain

iron, the altered global properties of the susceptibility network
showed a similar pattern to those of the Aβ brain network.
In addition, increased local connections were found, whereas

decreased rich-club and feeder connections were detected in the

Fig. 6 The distinct pattern of susceptibility connectivity in individuals with cognitive impairment. A The MCI-AD group showed decreased
susceptibility edges (p < 0.001, permutation test), primarily involved in the DMN-related connectivity. The increased susceptibility edges were
found in the MCI-AD group compared with the HC group (p < 0.001, permutation test), mainly distributed between VN and other networks.
Results of functional and genetic annotations were as shown in main manuscript. B The altered susceptibility connectivity in individuals with
WMH was shown by more connectivity involved in SN- and DMN-related connectivity (p < 0.001, permutation test). Results of functional and
genetic annotations were as shown in main manuscript. The relationship between WMH and MMSE and MoCA-BJ was mediated by the
susceptibility connectivity. HC health control, NC nomal cognition, MCI-AD mild cognitive impairment due to Alzheimer’s disease, WMH white
matter hyperintensities, VN visual network, SMN somatomotor network, DAN dorsal attention network, SVAN salience/ventral attention
network, LN limbic network, FPN frontoparietal network, DMN default mode network, SN subcortical network, MMSE Mini-Mental State
Examination, MoCA-BJ Beijing version of the Montreal Cognitive Assessment, CI confidence intervals, SPL_L left superior parietal lobule,
Amyg_R right amygdala, PCun_L left precuneus, BG_R right basal ganglia.

Fig. 7 Susceptibility connectivity as features for identifying individuals with cognitive impairment. A For the HC vs MCI-AD classification,
263 edges as the features selected by the SLR are primarily distributed throughout the DMN-related and VN-related connectivity. The cross
validation accuracy and AUC were 76.12% and 0.83, with a sensitivity and specificity of 76.32% and 75.86%, respectively. B For the WMH-NC vs
WMH-MCI classification, 199 edges as the features selected by the SLR are primarily distributed throughout the SN-related and DMN-related
connectivity. The cross validation accuracy and AUC were 84.85% and 0.93, with a sensitivity and specificity of 87.10% and 82.86%, respectively.
HC health control, NC normal cognition, MCI-AD mild cognitive impairment due to Alzheimer’s disease, WMH white matter hyperintensities, VN
visual network, SMN somatomotor network, DAN dorsal attention network, SVAN salience/ventral attention network, LN limbic network, FPN
frontoparietal network, DMN default mode network, SN subcortical network, SLR sparse logistic regression, AUC area under curve.
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MCI-AD and WMH-MCI patients. Cascading network dysfunction
was proposed for AD: deterioration begins with local overload and
then transfers to other regions, including hub nodes, eventually
resulting in widespread impairment [46]. Evidence from the brain
structural network suggested that connectivity among peripheral
nodes was predominantly disrupted, but rich-club connectivity
remained relatively preserved in the early stage of AD [47]. Similar
findings were presented in individuals with WMH-MCI, which
revealed apparent disruptions in peripheral morphological con-
nectivity [48]. More importantly, this phenomenon was also
observed in structural connectivity constructed by DTI in AD
patients with WMH [49]. As a result, the MCI-AD and WMH-MCI
patients exhibited similar patterns of rich-club properties in the
susceptibility network from the perspective of rich-club
architecture.
Depicting connectivity patterns in the human brain has become

an important topic in neuroscience. Common and specific
patterns of abnormal susceptibility connectivity were found in
both MCI-AD and WMH-MCI patients. The altered susceptibility
connectivity in the MCI-AD patients indicated relatively more
connectivity involved in VN-related and DMN-related connectivity,
while more altered SN-related and DMN-related connectivity was
found in the WMH-MCI patients. The functional annotation
analyses indicated that these altered susceptibility connectivity
was significantly enriched in cognition-related terms. These
characteristic connectivity might play an important role in
cognitive processing, which were consistent with previous studies
from different neuroimaging modals. Differential diagnosis
between AD and VCI is quite difficult because their pathophysio-
logical mechanisms overlap as well as their concurrence. Notably,
these characteristic patterns of abnormal susceptibility connectiv-
ity could distinguish MCI-AD and WMH-MCI patients from HC
based on the SLR. Voxel-based QSM analyses indicated increased
magnetic susceptibility values mainly in the superior temporal
gyrus, middle frontal gyrus, parahippocampal gyrus, posterior
cingulate, precentral gyrus, and caudate body, which largely
overlapped with the DMN in AD patients compared to HC [21].
Additionally, QSM better differentiated amnestic MCI from HC
than gray matter volume in the regions where iron and Aβ
accumulate in the posterior cingulate cortex, entorhinal cortex,
precuneus and neocortex [21]. Rao et al. [50] reviewed the
relationship between the presence of brain iron burden and
glucose hypometabolism in different brain regions in AD. They
found that a combined pattern of brain iron burden and glucose
hypometabolism predominantly occurred in specific affected
regions (e.g., temporal cortex, hippocampus and parietal cortex),
which largely overlapped with the DMN [50]. These findings from
regional QSM analysis provided potential evidence to support the
hypothesis that altered DMN-related susceptibility connectivity
plays a crucial role in AD pathogenesis. However, no VN-related
QSM abnormalities have been reported in previous studies via
regional susceptibility measures. The gene annotation analysis
revealed that those genes related to altered susceptibility
connectivity were enriched mainly for synaptic function, consis-
tent with previous findings in AD [51]. We speculated that the
susceptibility network could supplement additional information
referring to the interregional associations that are not evident
from regional QSM analysis.
WMH, as the main imaging manifestation of small vessel

disease, is thought to be the primary cause of VCI. Complex
cognitive processing depends on information transmission
through multiple brain networks. Convergent evidence has
indicated that altered brain networks, especially the FPN, DMN,
and SN, are closely associated with cognitive impairment in
individuals with WMH [48, 52–54]. Combining voxel-based lesion-
symptom mapping with ROI-based Bayesian network analyses, a
cohort study of elderly individuals suggested that damage to
frontal-subcortical projection fibers dependent on WMH load was

associated with impaired processing speed performance [52].
Compared with WMH-NC, WMH-MCI showed significantly
decreased functional connectivity between subcortical nuclei
and cortical hub regions of cognitive networks. Furthermore,
these changes in functional connectivity could distinguish WMH-
MCI from WMH-NC well based on a support vector machine
classifier [53]. From the perspective of the morphological
connectome, the altered topological organization related to
WMH-related cognitive decline was primarily involved in the
DMN and LN, which are recognized for their roles in a wide range
of cognitive domains, such as memory function and executive
function [48, 54]. As mentioned in the Introduction, less
consistency in the presence and pattern of iron accumulation in
VCI was reported, which could be due to voxel-based or region-
based approaches. Consistent with and even expanding on
previous results, our findings suggested that WMH-related
cognitive impairment could be attributed not only to functional
and structural-functional disconnections but also to altered DMN-
related and SN-related susceptibility connectivity, and these
characteristic patterns of susceptibility networks may provide
additional evidence to enhance our understanding of the
pathogenesis of WMH-related cognitive decline.
There are several limitations that still need to be further

considered. First, the exact pathological and physiological mean-
ing of the susceptibility network remains unclear. Further research
is warranted to combine different imaging techniques (such as
DTI, rs-fMRI, imaging genetics, animal experiments, and basic
research) to explore the underlying mechanisms involved. Second,
all subjects in our study lacked PET or cerebrospinal fluid
examinations to identify AD pathological biomarkers such as Aβ
or tau deposition, which makes it difficult to distinguish mixed
dementia. Therefore, future studies are needed to supplement the
pathological data to fully verify the applicability of the suscept-
ibility connectome method. Third, the sample size was relatively
small, and group differences in susceptibility connectivity did not
survive multiple comparison corrections. Thus, these results
should be considered exploratory. A multicentre longitudinal
design including an independent cohort is needed to validate the
preliminary findings.

CONCLUSION
This study proposes a novel concept of the susceptibility network
defined as interregional susceptibility relations and explores its
potential application in cognitive impairment diseases. The shared
and specific patterns of the susceptibility network identified in
both MCI-AD and WMH-MCI may provide a potential diagnostic
biomarker for cognitive impairment, which could enhance the
understanding of the relationships between brain iron burden and
cognitive decline from a network perspective.
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