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Treatment effect in clinical trials for major depressive disorders (RCT) can be viewed as the resultant of treatment specific and non-
specific effects. Baseline individual propensity to respond non-specifically to any treatment or intervention can be considered as a
major non-specific confounding effect. The greater is the baseline propensity, the lower will be the chance to detect any treatment-
specific effect. The statistical methodologies currently applied for analyzing RCTs doesn’t account for potential unbalance in the
allocation of subjects to treatment arms due to heterogenous distributions of propensity. Hence, the groups to be compared may
be imbalanced, and thus incomparable. Propensity weighting methodology was used to reduce baseline imbalances between arms.
A randomized, double-blind, placebo controlled, three arms, parallel group, 8-week, fixed-dose study to evaluate efficacy of
paroxetine CR 12.5 and 25mg/day is presented as a cases study. An artificial intelligence model was developed to predict placebo
response at week 8 in subjects assigned to placebo arm using changes from screening to baseline of individual Hamilton
Depression Rating Scale items. This model was used to predict the probability to respond to placebo in each subject. The inverse of
the probability was used as weight in the mixed-effects model applied to assess treatment effect. The analysis with and without
propensity weight indicated that the weighted analysis provided an estimate of treatment effect and effect-size about twice larger
than the non-weighted analysis. Propensity weighting provides an unbiased strategy to account for heterogeneous and
uncontrolled placebo effect making patients’ data comparable across treatment arms.
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INTRODUCTION
The unpredictable high placebo response rate is one of the major
factor associated with the failure of randomized clinical trials in
psychiatric disorders, neuropathic pain, cancer pain, multiple
sclerosis, Parkinson disease, and more [1]. Further, evidence has
shown that placebo responses were increasing over time in some
indications [2–5], without a commensurate increase in response to
active treatment; thus, the necessity to learn how to control and
mitigate the placebo response, in the context of randomized
placebo controlled clinical trials (RCTs), has become
increasingly vital.
Several methods to control the placebo response without

undermining the observed response to active treatment have
been attempted in clinical trials, such as exclusion of placebo
responders during placebo lead-in periods [6], alternative study
designs such as sequential parallel comparative designs (SPCD)
[7, 8], and various methods for detecting and controlling non-
plausible placebo response rates at specific clinical trial sites such
as the band-pass methodology [9, 10]. All these methods attempt
to control the impact of an excessively high placebo response by
identifying and removing from the analysis the subjects in the
recruitment sites with excessively high placebo response. How-
ever, none of these methods propose statistical criteria for

assessing the treatment effect (TE) conditional to this propensity
to respond to placebo, preserving the integrity of the data
collected and without removing any subject from the analyses.
In RCTs, the placebo response usually refers to the degree of

clinical improvement reported by patients assigned to the placebo
arm, while the placebo effect (PE) represents an improvement in
clinical outcomes due to the expectancies of positive treatment or
intervention [11]. PE can be defined as the clinical improvement
associated with the patient’s interactions with the clinician, the
information they received with regard to their condition and
treatment, the therapeutic care conditions and to the overall
expectation of a clinical benefit of a treatment or intervention [12].
Expectation, usually defined as the subject’s belief about the
potential effect of a treatment, was identified as a major non-
specific effect that influences the individual level of PE [13].On the
basis of these considerations, the effect of a treatment can be
viewed as the resultant of two components: the treatment specific
and the treatment non-specific effects. The individual propensity
to respond to any treatment or intervention assessed at baseline
can be considered as a major non-specific prognostic and
confounding effect. The larger is the baseline propensity to
respond to non-specific treatment, the lower will be the chance to
detect any treatment-specific effect. In the context of RCTs, it has
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been demonstrated that, as the PE increases, the difference
between the placebo and active arm decreases, reducing the
likelihood that the trial will meet statistical significance of the
primary endpoint [4, 14, 15]. The individual baseline propensity to
respond to placebo is associated with the individual expectations,
varying from individuals to individuals, and is not controlled by
the currently standard randomization process as the individual
propensity value is unknown. In RCTs, subjects are assigned to the
treatment arms at random. As a consequence, potential con-
founders are expected to be randomly distributed over the arms,
which make the arms comparable or balanced. Remaining
differences between randomized arms, such as the individual
baseline propensity to respond to placebo, are treated as a
function of chance. Hence, the groups to be compared may be
imbalanced, and thus incomparable due to baseline differences
that are not recognized.
The propensity weighting methodology was proposed as a

novel method of causal inference that aims at reducing
imbalances between arms [16–18]. This technique is based on
the calculation of propensity, defined as the individuals’ prob-
ability of showing PE, given observed baseline and pre-
randomization response [19]. Propensity scores allow researchers
to create balance between treatment and comparison arms based
on observed confounders such as the PE [20]. The higher is the
individual propensity to show a PE, the lower will be the
probability to detect a TE. This because the observed signal of
response will be driven by the high individual propensity and not
by the active TEs.
In this paper, we propose a novel methodology for evaluating

the outcomes of a RCT in major depressive disorders (MDD)
accounting for the predicted individual propensity probability. The
principle is to use the estimated individual propensity to respond
to placebo as a weight in the mixed-effect model for repeated
measures (MMRM) analysis conducted to assess the TE. The TE is
defined as the baseline-corrected change from placebo at study
end. The higher is the individual probability of showing a placebo
response, the lower will be the contribution of this subject in the
assessment of TE. The expected effect of the MMRM weighed
analysis will be to enhance the ability to detect a therapeutic
signal as the contribution of subjects with high placebo
responders will be minimized by the weighting procedure. The
overall effect will be to enhance signal detection, with an increase
of the effect size due to a better control of the inter-individual
variability in the propensity to respond to placebo.
The estimation of the individual propensity probability to

respond to placebo will be conducted using the Montgomery-
Asberg Depression Rating Scale (MADRS) [21], or the 17-item
Hamilton Depression Rating Scale (HAMD-17) [22] individual items
change from screening to baseline in subjects assigned to
treatment with placebo. A binary score will be associated with
each subject: 0 or 1 for the absence or presence of a response at
the study end. The predictive power of the individual item
changes from screening to baseline to predict the response will be
assessed using an artificial intelligence approach (AI).
Among the different methods used to implement AI, the

multilayer perceptrons (MLP) artificial neural network (ANN)
method has been shown to have superior and robust classification
performance with respect to other methodologies, such as logistic
analysis, random forest, and support vector machine [23]. The
ANN predictive model developed with the placebo data will be
applied to the individual item changes from screening to baseline
of the subjects included in the other treatment arms. In this way,
the individual predicted probability of PE will be associated to
each subject included in the RCT. The inverse of this value will be
used as a weight of each subject in the MMRM analysis conducted
to assess the TE. The probability to become a placebo responder
at study-end was then computed for all subjects included in the
different treatment arms using the neural network predictive

model outcomes applied to the individual pre-randomization
data. However, assuming that the independent variable in the
analysis (i.e., the change from baseline) is function either of the
propensity to respond to a non-specific intervention or to the
allocated treatment. In a clinical trial, longitudinal data are
collected to study the effect of treatment (or intervention) over
time. A key feature of longitudinal data is that the response
variable (the clinical score) is measured more than once on each
subject, and these repeated measurements are likely to be
correlated. The primary efficacy endpoint are usually analyzed
using MMRM analysis. The model included fixed-effect terms for
baseline score, treatment, visit and with treatment-by-visit
interaction as the independent variables. Therefore, the effect of
treatment could be estimated by directly comparing outcomes
between the treatment groups assuming that the independent
variable (i.e., the change from baseline) represents the ‘true’
treatment (or intervention) effect.

METHODS
The propensity to respond to placebo was defined as a clinically relevant
percent change from baseline in the MADRS or HAMD-17 total score, and
therefore in the absence of any active treatment intervention. The relevant
improvement was estimated by connecting the MADRS change scores to
the clinician global impression-improvement (CGI-I) scale scores, using the
equipercentile linking method. A CGI-I score of 3 (‘minimally improved’)
corresponded to an average reduction from baseline in the total MADRS
score of 24.5%, a CGI-I score of 2 (‘much improved’) corresponded to an
average reduction of 52.5%; and a CGI-I score of 1 (‘very much improved’)
to an average reduction of 82% [24]. For the purpose of the present
analysis, the percent change from baseline in MADRS scale used for
assessing the placebo response was 38%: the median value between
minimally and much improved CGI-I. Using the equipercentile linking
method, it was identified the percent reduction in the HAMD-17 scale of
41% as the equivalent percent reduction of 38% in the MADRS scale [25].
A case study is presented using the data of the study 29060/810. Details on

this study have been previously reported [9]. This was a randomized, double-
blind, parallel-group, placebo-controlled study evaluating efficacy and safety
of paroxetine controlled release (12.5 and 25mg/day) versus placebo in
patients with major depressive disorder conducted in 40 centers in the
United States. The study protocol, any amendments, the informed consent,
and other information that required pre-approval were reviewed and
approved by a national, regional, or investigational center ethics committee
or institutional review board. This study was conducted in accordance with
“good clinical practice” (GCP) and all applicable regulatory requirements,
including, where applicable, the 1996 version of the Declaration of Helsinki.
Written informed consent was obtained from each subject prior to the
performance of any study-specific procedures. Electronic case report forms
(eCRFs) were provided for each subject’s data to be recorded.
The propensity weighted analysis was conducted using a 5-step

approach:
Step 1: The pre-randomization (i.e., screening and baseline) and end of

study data (EOS) (i.e., visit at 8 weeks) in subjects randomized to placebo
were selected.
Step 2: A predictive model was developed to estimate the probability to

be placebo responder after 8 weeks of treatment using ANN and data
collected in the pre-randomization period.
Step 3: The model developed in step 2 was validated by comparing the

model predicted probability to the observed placebo response.
Step 4: The ANN model developed in step 2 was used to predict the

individual probability to be placebo responder using the pre-
randomization data of all subjects randomized in the study (i.e., subjects
in the different treatment arms).
Step 5: The inverse individual probability was used as a weighting factor

in the MMRM analysis conducted on the longitudinal clinical scores to
estimate the TE.
The procedure used for model development and validation was based

on a generally accepted procedure. This procedure consists of the random
split of the original dataset into three datasets:

1. The training set, applied for the ANN model development (in our
case this dataset included 75% of the data in the placebo arm
randomly selected).
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2. The validation set, applied for an unbiased model evaluation. The
evaluation was conducted by comparing the model predictions
based on the model developed in point 1 with the data observed in
the validation dataset (in our case this dataset included the 25%
data in the placebo arm not used for model development).

3. The working dataset, with the full data set including all the subject
data in the 3-arms. This dataset was used to provide the individual
estimate of the propensity probability applying the ANN model
validated in step 2 to the pre-randomization data of each subject in
the 3-arms.

A binary score was associated to each subjects: 0 or 1 for the absence or
presence of response after 8 weeks of treatment (i.e., HAMD-17 ≥ 38% or
greater change). The ability of the early collected (between two pre-
randomization time points at screening and baseline) HAMD-17 individual
item to predict the response to placebo at week 8 was investigated using
artificial intelligence (AI) methodology. The AI approach was selected as
this methodology provides the most performing predictive tool today
available [26]. Among the different methods used to implement AI, the
ANN method was shown to have superior and robust classification
performance with respect to other methodologies [23]. Artificial neural
networks are computational brain-inspired systems which are intended to
replicate the way that humans learn. Neural networks consist in at least of
three layers of nodes: an input layer, at least one hidden layer and an
output layer. Except for the input nodes, each node is expected to emulate
the function of a neuron that uses a nonlinear activation function. ANN
utilizes a supervised learning technique called backpropagation for
training [27, 28]. The implementation of ANN requires the definition of
two hyperparameters that control the topology of the network: the
number of hidden layers and the number of nodes in each hidden layer. A
grid search was initially conducted for identifying the optimal number of

layers (i.e., 1, 2, or 3) and the optimal number of nodes (i.e., from 1 to 17) in
an ANN model. Then, a bootstrap analysis was conducted on the best
performing model to evaluate the predictive performance and the
robustness of this model (i.e., the area under the receiver operating
characteristic (ROC) curve, with the 95% confidence interval). The ANN
analysis was conducted using the ‘neuralnet’ library in R [29]. The ANN
model developed using only placebo data was used to predict the
individual propensity to respond to placebo in each subject included in the
three arms of the study.
The inverse of the estimated probability was included as weight in

MMRMmodel used to analyze the longitudinal HAMD-17 total score and to
assess the TE. The MMRM model was implemented in SAS (PROC MIXED,
Version 9.4, SAS Institute, Carry, NC, USA), using the change from baseline
of the HAMD-17 total score. In the MMRM analysis a random effect model
was used on the change from baseline value, using an unstructured
covariance matrix, time as a classification variable, and baseline measure-
ment as a covariate, baseline × time interaction, and treatment × time
interaction. A significance level of α= 0.05 was used to establish the
significance of the TE.
Drug-placebo TE sizes were calculated as the least squares means (LS

means) difference divided by the pooled standard deviation, obtained as
the standard error of the LS mean difference divided by the square root of
the sum of inverse treatment group sample sizes.

RESULTS
A total of 459 subjects were included in the test trial 810.
Among them 58% were females and 42% males. The description
of the demographic data of the MDD population is presented in
Table 1.

Table 1. Demographic data of the MDD population.

Treatment N Variable Mean Std Error Median Min Max

Paroxetine CR 12.5 MG 156 Age (year) 38.37 0.98 37.5 18 74

Weight (kg) 83.55 1.75 80.97 45.8 165.2

Day* 7.48 0.16 7 4 24

Paroxetine CR 25 MG 154 Age (year) 39.28 0.88 38.5 18 71

Weight (kg) 83.98 1.69 80.51 51.5 146.5

Day* 7.4 0.14 7 4 15

Placebo 149 Age (year) 38.64 0.97 37 18 65

Weight (kg) 86.03 2.1 83.91 42.4 204.1

Day* 7.76 0.18 7 4 17

*Days between screening and baseline visits.
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Fig. 1 ANN Analysis. Final neural network layouts for the analysis conducted using the changes from screening to baseline of the individual
items of the HAMD-17 clinical scale used as potential predictors of the response (resp = response to placebo).
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The means (±SD) baseline total HAMD-17total score were 23.13
(±2.89), 23.51(±3.28), and 23.81 (±3.23) for paroxetine CR 12.5 mg,
paroxetine CR 25mg, and placebo, respectively.
The grid search analysis indicated that the optimal number of

layers was 3 and the optimal number of nodes per layer was 12, 6,
and 5, respectively. The optimality criteria was based on the best
predictive performance of the model.
The final neural network layout for the ANN analysis is

presented in Fig. 1. In this plot, the first column represents the
change from screening to baseline of the 17 individual items of
the HAMD-17 scale considered as predictors of the placebo
response (‘resp’), the second column represents the 12 combined
items characterizing the first layer, the third column represents the
6 combined items defining the second layer, and the third column
represents the 5 combined items defining the final layer. The lines
connecting the nodes are color-coded by sign (black increasing,
and gray decreasing effect).
The size of the connecting lines in the neural network are

analogous to the coefficients in a standard regression analysis.
They determine the relative influence of information that is
processed in the network. A null weight will be associated to
variables not relevant for predictions. The overall predictive
performance of the ANN model was assessed using the area
under the ROC curve (AUC). The value of the AUC was 0.81, with a
95% confidence interval of 0.64–0.97. This value, statistically
greater than the noninformative threshold of 0.5, represents the
predictive performance of the ANN model to predict the
probability to show a non-specific response to a treatment using
the individual item score changes of the HAMD-17 scale assessed
in two pre-randomization time points (i.e., screening and baseline).

The ANN model was used to predict the individual propensity to
respond to placebo in each subject included in the three arms of
the study.
The percentage of subjects with estimated propensity to

respond to non-specific TEs in the intervals <0.2, 0.2–0.4,
0.4–0.6, 0.6–0.8, and >0.8 is presented in Fig. 2. The distribution
of the propensity indicated that a large majority of the subjects
have a high (>0.8) probability to inflate the response due to a non-
specific response to a treatment. Therefore, the size of the TE is
expected to be larger when the weighting factor will be included
in the mixed-effect analysis to account for this unbalance.
The results of the non-weighted and weighted MMRM analyses

with the estimation of the effect sizes are presented in Fig. 3. Note
that by definition, the results of the reference analysis will be the
same in absence of weight or in presence of a weight identical for
each subject.
A sensitivity analysis was conducted to evaluate the impact of

the excessively high and excessively low propensity to a PE on the
estimated TE with and without the use of a propensity weight in
the MMRM analysis. Three analyses were conducted with and
without propensity weight by (i) removing the subjects with high
probability of a PE (Prob > 0.8), (ii) removing the subjects with very
low probability of a PE (Prob < 0.1), and (iii) including all subjects.
The results of the analyses are presented in Table 2.
The analysis with and without propensity weight indicated that

the weighted analysis provided an estimate of TE and an effect-
size about twice larger than the non-weighted analysis. In this
analysis: (i) the TE increased when the subject with high
probability of a PE were removed, and (ii) the TE decreased when
the subject with low probability of a PE were removed. These
findings are consistent with the expected effect of low/high
placebo response on the estimated/estimable TE.
The % absolute deviation from the TE (i.e., bias) estimated in the

total population (all data) and in population without subjects with
high (Prob > 0.8) and with low (Prob < 0.2) probability of a PE was
estimated and compared in the propensity weighted and non-
weighted analyses (Fig. 4).
The estimated % absolute deviation of the TE values was 1.13 and

0.164 for the conventional and the propensity weighted analyses,
respectively. This large difference indicates that the propensity
analysis is less sensitive to the presence of excessively low or
excessively high placebo responders due to the effect of the weight
probability. On the contrary, the estimated TE in the conventional
MMRM analysis was significantly influenced by the distribution of the
different level of placebo responders and non-responders.
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Fig. 2 Propensity probability. Distribution of the propensity prob-
ability to a placebo effect by treatment.

Fig. 3 MMRM longitudinal analysis. Results of the non-weighted and weighted MMRM analyses with the estimation of the effect sizes. The
LS mean (± standard error) of the longitudinal HAMD-17 total score changes from baseline are presented by treatment.

R. Gomeni et al.

4

Translational Psychiatry          (2023) 13:141 



DISCUSSION
In drug development, usually researchers want to compare two
medications to understand which one is more effective in treating
or preventing disease. Randomized controlled trial is widely
accepted as the best design for evaluating the efficacy of a new
treatment because the randomization is expected to eliminate
accidental bias, including selection bias, and to provide a base for
a fair comparison of the TE.
The TE in clinical trials for MDD is usually considered as the

resultant of treatment specific and non-specific effects. The
baseline individual propensity to respond to any treatment is
considered as a major non-specific confounding factor. The larger
is the baseline propensity to respond to non-specific TEs the lower
is the chance to detect any treatment specific effect. In the current
clinical trial setting no methodologies are currently available for
evaluating the comparability of the treatment arm with respect to
the potential baseline unbalance in the distribution of the
individual propensity to respond to placebo.
To address comparability issues among groups, epidemiologists

have developed specific methodologies which include propensity
score matching and weighting, focused on creating baseline
comparability between the treatment groups corrected by
potential confounding factors. The propensity score methodology
was initially developed for mitigating the confounding bias in
non-randomized comparative studies and to facilitate causal
inference for TEs [30].
This methodology was used mainly in epidemiological and

social science studies, until it was adopted in a regulatory setting
by statisticians in FDA/CDRH, where it was used in observational
studies that supported marketing applications for medical devices
[31, 32]. Since 2018, the scope of the propensity score
methodology has been broadened so that it can be used for
the purpose of leveraging external data to augment a single-arm
or randomized traditional clinical study [33].
Regulatory agencies are well aware of the relevance of the

propensity weighting methodology for insuring comparability of
treatment arms, mainly in the analysis of observational studies
[34, 35]. On this basis, we believe that there are valid
methodological reasons for the regulatory agencies to consider
the extension of the propensity methodology in RCTs in CNS as a
reference analysis suitable to control the unknown potential
baseline unbalance in the distribution of the propensity to non-
specific placebo response.
The methodology developed in this paper assumes that the

effect of a treatment in a major depressive disorder (MDD) trial
can be viewed as the resultant of treatment-specific and
treatment non-specific effects. While the specific effect can be

associated with the active drug response, the non-specific effect
can be attributed to a generic individual propensity to respond to
any treatment or intervention. As we have previously described
[36], one may classify treated patients in an MDD trial based on
each participant’s propensity to respond to a given type of
treatment. The “D− P− ” population comprises patients who are
not responsive to either active treatment (D) or placebo treatment
(P), whereas the “D+ P− ” population comprises patients who are
responsive to active treatment but not to placebo. The “D+ P+ ”
population comprises patients who are responsive to either active
(D) or placebo (P) treatments, and are therefore uninformative,
given their propensity to respond to non-specific TEs. The
propensity can be considered as a major non-specific prognostic
and confounding effect. The larger is the baseline propensity to
respond to placebo, the lower will be the chance to detect any
treatment specific effect [14]. The statistical methodologies
currently applied for analyzing RCTs do not account for potential
unbalance in the allocation of subjects to the treatment arms
associated with different distribution in the individual propensity
to respond to placebo. Hence, the groups to be compared may be
imbalanced, and thus incomparable due to baseline differences.
The basic premise of the proposed methodology is that the

changes in the individual items of a clinical scale used for the
assessment of the disease severity collected between screening
and baseline visits prior to the treatment allocation contains
relevant information of the time course of the disease, as reported
by Hopkins et al. using the PANSS score [37]. The response to
placebo was defined as a clinically relevant percent change from
baseline in the MADRS or HAMD-17 total score (i.e., a reduction of
at least 38% and 41%, respectively). The relevant improvement
was estimated by connecting MADRS to CGI-I scales using the
equipercentile linking method and by selecting the percentage
reduction associated with minimal and much improved CGI-
I score.
An ANN analysis was conducted to evaluate the predictive

performances of the individual item values of the target clinical
scale (i.e., MADRS and HAMD) evaluated in the same subject in
two pre-randomization time points (i.e., screening and baseline
visits) in subjects treated with placebo. The ANN model was then
applied to the pre-randomization data of all subjects in the trial to
associate to each subject a probability score representing the
individual propensity to respond to placebo. This individual score
was then used as a propensity weighting factor in the MMRM
analysis conducted for assessing the TE to reduce baseline
imbalances between arms.
A case study was presented using the data of a randomized,

double-blind, placebo controlled, three arms, parallel group,

Table 2. Sensitivity analysis results to evaluate the impact of the excessively high and excessively low propensity to a placebo effect on the
estimated TE with and without a propensity weigh in the MMRM analysis.

Analysis Comparison TE P Effect-size

Propensity Weight 12.5mg_vs_Plac −4.147 <0.0001 0.289

25mg_vs_Plac −5.767 <0.0001 0.391

No data with prob < 0.2 12.5mg_vs_Plac −2.154 0.043 0.119

25mg_vs_Plac −5.951 <0.0001 0.329

No data with prob > 0.8 12.5mg_vs_Plac −4.533 <0.0001 0.231

25mg_vs_Plac −6.067 <0.0001 0.299

No Propensity Weight 12.5mg_vs_Plac −1.216 0.1558 0.083

25mg_vs_Plac −2.905 0.0011 0.197

No data with prob < 0.2 12.5mg_vs_Plac 0.092 0.9258 0.005

25mg_vs_Plac −2.103 0.0371 0.125

No data with prob > 0.8 12.5mg_vs_Plac −3.791 0.0018 0.185

25mg_vs_Plac −5.960 <0.0001 0.281
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8 weeks duration, fixed-dose study to evaluate the clinical efficacy
of paroxetine CR at the doses of 12.5 and 25mg/day. This ANN
model performed satisfactorily well in terms of predictive
performance estimated by the area under the ROC curve of
0.81. This model was used to predict the individual propensity
probability to respond to placebo in each subject included in the
three arms. The distribution of the propensity probability in the
different treatment arms indicated a large unbalance in the
distribution of the high probability values (i.e., > 0.8).
The inverse of the estimated probability was included as weight

in the mixed-effects model for the repeated measures model used
to assess the TE. The comparison of the results of the analysis with
and without the propensity weight indicated that the weighted
analysis accounted for the individual probability to respond to
placebo and provided an estimate of the TE (difference in the
change from baseline between placebo and active at week 8) and
of the effect-size about twice larger than the conventional non
weighted analysis. The resulting effect of the inclusion of the
estimated probability to be placebo responder as a weighting
factor in the analysis was to provide an estimate of the TE adjusted
for the difference in the individual propensity to respond to
placebo and to better control the impact of subjects with high
placebo response.
The results presented indicated that the individual weights

obtained in one RCT cannot be generalized and prospectively
used in other trials even if the other trial has a similar design. This
is because the propensity weight represents a subject-specific
attribute varying from individual to individual. Therefore, as the
subjects enrolled in different trials are different, the weights
obtained in one trial cannot be prospectively used in another trial.
According to the FDA definition, enrichment is the prospective

use of any patient characteristic to select a study population in
which detection of a drug effect (if one is in fact present) is more
likely than it would be in an unselected population [38]. Therefore,
the propensity weighting approach cannot be considered as a
population enrichment method because all the randomized
subjects are included in the analysis. Prospectively, the propensity
weighted analysis can be applied to any current phase II, phase III,
or historical RCTs when the following conditions are satisfied: (i)
the study has been designed to collect screening and pre-
treatment baseline data, (ii) the criteria for assessing the clinical
response to placebo has been pre-specified in the statistical
analysis plan (SAP), (iii) the acceptable criteria for the predictive

performance of the ANN model used to estimate the link between
screening and baseline data to the placebo response has been
also pre-specified in the SAP specifying that the ROC AUC cut-offs
should be statistically greater than the noninformative threshold
of 0.5.
The benefit of this approach in phase II is to dispose a tool for a

more precise and conservative estimate of the TE adjusted by
possible excessively low or excessively high level of placebo
response as shown by the results of the sensitivity analysis. The
estimated bias in the assessment of the TE due to the presence of
very high and very low placebo responders using the conven-
tional and the propensity weighted analysis indicates that the
propensity analysis is less sensitive to the presence of excessively
low or excessively high placebo responders due to the effect of
the weight probability. On the contrary, the estimated TE in the
conventional MMRM analysis was significantly influenced by the
distribution of the different level of placebo responders and non-
responders.
Historical attempts to identify and deal with placebo responders

were based on innovative study design aimed to identify and
exclude high placebo responders. Among these study designs, we
can mention the lead-in periods [6] or the sequential parallel
comparative design [7]. In addition, alternative analysis proce-
dures such as the band-pass methodology were proposed for
detecting and removing recruitment sites with non-plausible
placebo response from the analysis.
The major difference and advantage of the proposed metho-

dology with respect to the historical study design and/or analysis
procedures is that no subject will be excluded and all subjects
randomized in the study will be included in the analyses. The
propensity weighting method provides an unbiased strategy to
associate the observations collected in each subject with a weight
accounting for the potential confounding factor of a non-specific
response. The comparison of the results of the analysis with and
without the propensity weight indicated that the weighted
analysis accounted for the individual probability to respond to
placebo and provided an estimate of the TE (difference in the
change from baseline between placebo and active at week 8) and
of the effect-size about twice larger than the conventional non-
weighted analysis. The resulting effect of the inclusion of the
estimated probability to be placebo responder as a weighting
factor in the analysis was to provide an estimate of the TE adjusted
for the difference in the individual propensity to respond to

Treatment Effect: Active − Placebo

−8 −4 0

 All data

No data with Prob < 0.2

No data with Prob > 0.8

TE =  −4−2 0

No Propensity Weight

Mean % absolute TE 
change from All data = 1.130

Treatment Effect: Active − Placebo

−8 −4 0

 All data

No data with Prob < 0.2

No data with Prob > 0.8

TE =  −4−2 0

Propensity
Weighted Analysis

Mean % absolute TE 
change from All data = 0.164

Fig. 4 Sensitivity analysis. Propensity weighed and non-weighted analyses: comparison of the estimated TE in the total population (All data)
and in population without high (Prob > 0.8) and without low (Prob < 0.2) placebo response. The dots represent the TE value estimated in the
MMRM analysis, the horizontal lines represent the 95% confidence intervals (the solid lines correspond to the 12.5 mg arm and the dotted
lines corresponds to the 25mg arm). The vertical blue dotted lines represent some reference TE values of −4, −2, and 0.
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placebo and to better control the impact of subjects with high
placebo response. Despite the relatively large size of the clinical
study considered, the main limitation of this study is the restricted
number of RCTs evaluated with the proposed methodology, even
though similar results have been found in the analysis of
additional RTCs not reported in this paper. Finally, we do not
identify scenarios where the use of the propensity methodology
would not be appropriate, of course, when the applicability criteria
are satisfied.
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