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Antidepressants are often the first-line medications prescribed for patients with major depressive disorder (MDD). Given the critical
role of the default mode network (DMN) in the physiopathology of MDD, the current study aimed to investigate the effects of
antidepressants on the resting-state functional connectivity (rsFC) within and between the DMN subsystems. We collected resting-
state functional magnetic resonance imaging (rs-fMRI) data from 36 unmedicated MDD patients at baseline and after escitalopram
treatment for 12 weeks. The rs-fMRI data were also collected from 61 matched healthy controls at the time point with the same
interval. Then, we decomposed the DMN into three subsystems based on a template from previous studies and computed the rsFC
within and between the three subsystems. Finally, repeated measures analysis of covariance was conducted to identify the main
effect of group and time and their interaction effect. We found that the significantly reduced within-subsystem rsFC in the DMN
core subsystem in patients with MDD at baseline was increased after escitalopram treatment and became comparable with that in
the healthy controls, whereas the reduced within-subsystem rsFC persisted in the DMN dorsal medial prefrontal cortex (dMPFC) and
medial temporal subsystems in patients with MDD following escitalopram treatment. In addition, the reduced between-subsystem
rsFC between the core and dMPFC subsystem showed a similar trend of change after treatment in patients with MDD. Moreover,
our main results were confirmed using the DMN regions from another brain atlas. In the current study, we found different effects of
escitalopram on the rsFC of the DMN subsystems. These findings deepened our understanding of the neuronal basis of
antidepressants’ effect on brain function in patients with MDD. The trial name: appropriate technology study of MDD diagnosis and
treatment based on objective indicators and measurement. URL: http://www.chictr.org.cn/showproj.aspx?proj=21377. Registration
number: ChiCTR-OOC-17012566.
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INTRODUCTION
Major depressive disorder (MDD) has a high lifetime prevalence
nearly up to 20.6% in adults [1], and MDD is regarded as the third
non-fatal leading cause of the global burden of disease [2].
Antidepressant therapy (i.e., selective 5-HT reuptake inhibitors
[SSRIs]) is the first-line treatment for patients with MDD [3].
Although it is well-known that most antidepressant medications
primarily modulate monoaminergic neurotransmitters (such as
serotonin [5-HT]), translation of these neurobiological changes
into clinically important events remains unclear [4]. Neuroimaging
studies in the last decades have found abnormal communications
among large-scale brain networks, including the default mode
network (DMN), frontoparietal network, and other networks
related to emotion or salience processing in patients with MDD
[5, 6]. Thus, identifying the effects of antidepressants on the brain
networks is important to elucidate the neurobiological mechan-
isms of antidepressant action and develop targets for new
interventions.

Among the brain networks related to MDD, the DMN draws
increasing researchers’ attention in MDD studies. Evidence suggests
that the DMN is responsible for self-referential processing [7, 8], and
this function is impaired in patients with MDD, such as disordered
self-referential thought and maladaptive rumination [9–12]. Using
resting-state functional connectivity (rsFC), which detects synchro-
nized spontaneous activity across anatomically distinct brain regions
[13], previous functional magnetic resonance imaging (fMRI) studies
have frequently reported abnormal rsFC within the DMN in patients
with MDD. The seminal study conducted by Greicius and his
colleagues has shown increased rsFC of the subgenual cingulate and
thalamus with the DMN in the depressed subjects [14]. The increased
rsFC within the DMN in patients with MDD is supported by a recent
meta-analysis study [6]. However, decreased rsFC within the DMN
has also been reported in patients with MDD. For example, based on
the dataset consisting of 1300 patients with MDD and 1128 healthy
controls (HCs) from 25 sites of China, Yan et al. [15] found decreased
rsFC within the DMN in patients with MDD.
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The DMN may be a vital target of treatment response of
antidepressant medications at the neural circuit level because its
functionality is modulated by several neurotransmitter systems
or their interactions, such as serotonin, dopamine, and gamma-
aminobutyric acid [16–18], which are either neurobiological
targets of antidepressant medications or implicated in MDD
pathophysiology [19–21]. Among these, the relationship
between DMN and serotonin has attracted our attention. First,
the expression of several 5-HT receptors spatially overlaps with
the main DMN regions [22]. A study combining positron-
emission tomography and fMRI showed that the rsFC of the
DMN can be predicted by individual variations in the 5-HT 1A
receptor binding in the dorsal raphe nucleus and in the project
regions [16]. Second, pharmacologic neuroimaging studies
indicated that the functional connectivity of the DMN is
modulated by serotonin levels. For example, depletions of the
5-HT precursor tryptophan can change the rsFC of the DMN
[23–25]. SSRIs, which can block the reuptake of 5-HT by
inhibiting the 5-HT transporter (SERT), may decrease DMN
connectivity [26, 27]. Furthermore, the modulation of the
serotonin system on the DMN is dose-dependent as indicated
by the occupancy level of SERT by citalopram (one of the SSRIs)
[28]. All these studies suggest that the DMN is an important
network in understanding the underlying mechanism of the
antidepressant treatment of MDD, especially SSRIs. Therefore,
the current work focused on the DMN and attempted to
investigate the effect of SSRIs on the rsFC of the DMN.
Notably, the DMN can be divided into three subsystems [8], that

is, the midline core subsystem, dorsal medial prefrontal cortex
(dMPFC) subsystem, and medial temporal lobe (MTL) subsystem.
The core subsystem, including the anterior medial prefrontal
cortex (aMPFC) and posterior cingulate cortex (PCC), participates
in the processes of self-related activity regardless of temporal
context and links all of the three subsystems [29]. The dMPFC
subsystem, comprising the dMPFC, temporal poles, lateral
temporal cortex, and temporoparietal junction, is predominantly
involved in meta-cognitive processes and mentalizing [29]. The
MTL subsystem, comprising the hippocampal formation, retro-
splenial cortex, and inferior parietal lobule, is associated with
recollection of experiences and autobiographical processing [29].
The subsystems may be differently affected by the antidepressant
medications because of their heterogeneity in functions. On the
one hand, the modulation role of the 5-HT neurotransmitter
system on the rsFC of the DMN is identified in the regions within
the core subsystem [16]. On the other hand, previous fMRI studies
have often reported altered local spontaneous neuronal activities
and rsFC in the DMN core subsystem in patients with MDD
following acute-phase SSRI treatment [30, 31]. For example, one
study has found that escitalopram treatment for 4 weeks induces
an increase of local spontaneous brain activity in the MPFC and
middle cingulate cortex [30]. Another study has found that
treatment response is associated with decreased rsFC between
amygdala and the right precuneus as well as the right PCC after
antidepressant treatment (including fluoxetine and sertraline) [31].
Therefore, the subsystems of the DMN may be affected by
antidepressants to a different extent, and the core subsystem is
more likely affected by antidepressants in patients with MDD.
Based on previous reports, only one study has noted the
dissociation effect of antidepressants on the DMN and found
that after 12 weeks of antidepressant treatment, rsFC within
the posterior component of the DMN was changed to a level
similar to that seen in HCs, whereas rsFC within the anterior
component persisted in patients with MDD [32]. However, in
this study, the DMN was divided into two subsystems, with the
MPFC in the anterior subsystem and the bilateral precuneus in
the posterior subsystem. Moreover, in this study, patients were
treated with several antidepressant medications, including
SSRIs and serotonin–norepinephrine reuptake inhibitors

(SNRIs), which might generate different effects on the brain
circuits [33]. Therefore, it is still unclear on the effect of
antidepressant treatment on the rsFC of the DMN subsystems in
patients with MDD.
In the current study, we selected escitalopram, a highly

selective serotonin reuptake inhibitor, as the single antidepres-
sant medication and investigated the effect of 12-week
antidepressant treatment on the rsFC of the 3 DMN subsystems.
We are particularly interested in the rsFC within and between
each subsystem of the DMN. Notably, we recruited a group of
unmedicated patients with MDD to exclude the confounding
effect of previously prescribed medications. The same as our
patients matched HCs were also scanned at baseline and after
12 weeks. Such a strategy can exclude confounders of test–retest
noise and provide a reliable reference to identify whether brain
alterations persist in patients with MDD after treatment with
escitalopram [34]. We hypothesize that the rsFC within or related
to the core subsystem might be particularly influenced by
the treatment of escitalopram because of its functionality and
the modulation effect observed in previous studies. Moreover,
we hypothesize that not all of the rsFC within the DMN
subsystems or between-subsystems after treatment will be
changed to a level similar to that seen in HCs, and some
abnormalities in the rsFCs might persist in patients after
treatment based on previous studies [32, 35].

MATERIALS AND METHODS
Participants
This study was conducted in Beijing Anding Hospital, Capital Medical
University, an affiliated teaching hospital in Beijing, China. We recruited
40 unmedicated patients with MDD from the outpatient departments.
The diagnosis of patients with MDD was made by trained psychiatrists
using the Mini International Neuropsychiatric Interview (MINI) 5.0 [36]
based on the DSM-IV criteria at the entry of this study. The inclusion
criteria of the patients were as follows: male or female outpatients aged
at least 18 years and not more than 65 years; systemic anti-depressants
treatment were not adopted during a current episode or has taken anti-
depressants less than 7 days in last 14 days; total score of the 16-Item
Quick Inventory of Depressive Symptomatology and Self-Report
(QIDS-SR16) ≥ 11 [37] and score of the Chinese version of the 17-item
Hamilton Depression Rating Scale (HAMD-17) ≥ 14 [38] at enrollment in
open-label preliminary phase; at least primary school education and
understand the scales; and preparing to use escitalopram. The exclusion
criteria of patients included history of manic episode or hypomanic
episode; history of bipolar, schizophrenia, schizoaffective disorder, or
other psychotic disorders; history of drug and alcohol dependence
or acute intoxication; women in pregnancy or lactation; significant risk of
suicidal behaviors; HAMD-17 Item 3(suicide) score ≥ 3; current clinically
significant disease; previously intolerant or lack of response to
escitalopram and any MRI contraindications.
HCs (N= 64) were recruited by advertisements and were interviewed by

using the MINI to exclude any DSM-IV Axis I diagnosis. All healthy
participants met the same additional exclusion criteria as the patients with
MDD and were matched on age, gender composition and educational
level with the patients with MDD. All participants signed informed consent
to participate in the current study. This study was approved by the Ethics
Committee of Beijing Anding Hospital, Capital Medical University.

Treatment and measurements
All patients with MDD were treated with escitalopram for 12 weeks. Head-
to-head studies have confirmed that escitalopram is one of the
antidepressants with better efficacy and acceptability than others
[39, 40]. In Asian countries, escitalopram is one of the most frequently
prescribed drugs in patients with MDD [41, 42]. In accordance with the
Clinical Practice Guidelines, the dose of escitalopram increased from 5mg/
day to 10–20mg/day within 7 days, and the dose remained unchanged
until the patients completed the 12-week study [43]. Patients experiencing
insomnia symptoms were permitted to receive additional medications as
needed. No other medications were permitted to be used during the
study. Finally, 13 patients received additional medications, including
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estazolam for 2 patients, lorazepam for 9 patients, and oxazepam for 2
patients. The HAMD-17 was assessed by trained and experienced
independent raters. All patients were evaluated at baseline and after
12 weeks. All participants also completed the self-reported questionnaire
of Patient Health Questionnaire-9 (PHQ-9) [44].
Seven participants, including four MDD patients and three HCs, were

excluded. Four MDD patients were excluded because of non-adherence
to the protocol (N= 1) or excessive head movement (N= 3, see details in
the following section). Three HCs were excluded because of non-
adherence to the protocol during the follow-up period. A total of 97
participants were included in the final analysis, of which 36 were MDD
patients and 61 were HCs. The demographic characteristics of the
participants are shown in Table 1.

MRI data acquisition
All scans were performed by using a 3.0 T Siemens MAGNETOM Prisma
MRI scanner (Siemens Medical Solutions, Erlangen, Germany) with a 64-
channel phased-array head coil. Foam paddings were used to minimize
head movement, and earplugs were used to minimize scanner noise. A
total of 200 volumes of functional images were obtained axially with an
echo-planar imaging sequence: number of slices= 33, repetition time
(TR)= 2000 ms, echo time (TE)= 30 ms, flip angle= 90°, field of view
(FOV)= 200 × 200 mm2, phase encoding direction= anterior to poster-
ior, in-plane matrix resolution= 64 × 64, slice thickness= 3.5 mm, gap=
0.7 mm and voxel size= 3.13 × 3.13 × 4.2 mm3. High-resolution sagittal
T1 images were acquired by using the 3D magnetization-prepared rapid
gradient-echo sequence: TR= 2530 ms, TE= 1.85 ms, flip angle= 15°,
FOV= 256 × 256 mm2, slices number= 192, with a thickness of 1 mm, no
gap, voxel size= 1 × 1 × 1 mm3. Before scanning, participants were
instructed to keep awake with their eyes closed, not to think any
particular thing, and try their best to keep still without any head motion.
The duration of the resting-state fMRI scanning was 6 min and 40 s. The
patients with MDD underwent identical MRI scan sequences at baseline
and after treatment for 12 weeks. The HCs also experienced two scans
with the same interval.

Resting-state fMRI data preprocessing
Data preprocessing steps were performed by using a data processing
assistant for resting-state fMRI (DPARSF_V4.5, http://rfmri.org/DPARSF)
[45]. First, we removed the first five-time points to exclude possible
magnetization effects. Then, we performed slice timing; realignment;

segmentation of T1 structural images to generate gray matter, white
matter (WM), and cerebrospinal fluid (CSF); nuisance covariate regres-
sion; normalization to MNI space (voxel size= 2 × 2 × 2 mm3), spatial
smoothing with a 4 mm FWHM kernel, and band-pass filtering
(0.01–0.1 Hz). The nuisance covariates included linear and quadratic
trends, the first five principal components of the individually segmented
WM and CSF, and Friston’s 24 motion parameters (six head motion
parameters, six head motion parameters one-time point before, and 12
corresponding squared items) [46, 47]. We did not regress out the global
signals in the nuisance covariates regression because doing so may lead
to artificial negative correlations in rsFC analysis [48] and distort
between-group effects [49, 50].
We limited our data analyses to participants with a receivable range of

head motion to reduce the effect of motion-related artifacts on rsFC. First,
we used volume-based Frame-wise Displacement (FD) to quantify micro-
head motions [51], and participants who had less than 100 “good” volumes
of data (a threshold of FD ≤ 0.5 mm) were excluded [52]. Second,
participants with severe head motion (above three standard deviations
of mean FD beyond the mean value) were excluded. Collectively, we
excluded three patients. Moreover, we employed volume-based scrubbing
regression by including scrubbing regressors as nuisance covariates [52],
and we used the mean FD as a covariate in group-level analyses.

Definition of regions of interest (ROIs) within the DMN
subsystems
We used a total of 24 anatomical ROIs created by Yeo et al. [53] based on
their 17-network parcellation, which was derived from data of 1000 young
healthy participants [54, 55]. These 24 ROIs could be divided into three
DMN subsystems: nine ROIs in the core subsystem, nine ROIs in the dMPFC
subsystem, and six ROIs in the MTL subsystem [8, 53]. These ROIs are
shown in Fig. 1A and Table S1.

Functional connectivity analyses
The mean time series were extracted from each ROI. Pearson correlation
coefficient between the mean time series of each pair of these 24 ROIs was
computed, resulting in a 24 × 24 functional connectivity matrix for each
participant. Then, Fisher r-to-z transformation was conducted for all rsFC
values. On the basis of this normalized connectivity matrix of each
participant, we computed the rsFC within and between the subsystems of
the DMN [15, 56]. In particular, two types of network connectivity (within-
subsystem and between-subsystem) for the three subsystems were
computed on the basis of the connectivity matrices [57]: the within-
subsystem connectivity for each subsystem was calculated as the averaged
connectivity across all the links within the subsystem normalized by the
square of the number of nodes (ROIs). The pairwise connectivity between
subsystems was computed as the averaged connectivity across all the links
between two subsystems normalized by the product of the number of
nodes within each of the two subsystems.

Statistical analysis
A two-sample t test, and chi-squared test were used to assess the
differences in demographic data between the patients with MDD and the
HCs using SPSS version 23.0. Hierarchical clustering analysis was performed
to validate that these ROIs were grouped into three pre-defined
subsystems in the HCs. Then, a two-way repeated-measures analysis of
covariance was performed to determine the main effects of group (MDD
patients vs. HCs), time (baseline vs. 12 weeks), and the group × time
interaction on each within-subsystem rsFC and between-subsystem rsFC,
with age, gender, educational level, and head motion (mean FD) as
nuisance covariates. P values < 0.05 were adjusted for multiple compar-
isons by controlling the false-discovery rate (FDR).
We also conducted group-level analyses on the rsFC of each pair of these

24 ROIs to give a comprehensive view of the treatment-related effect on rsFC.
We used Network-Based Statistics (NBS) [58] to identify sub-networks, in
which the rsFC was affected by the main effect of group and time and their
interaction effect. Based on our research aim, here we only focused on the
interaction effect, that is, treatment-related effect. Analogous to cluster-based
correction strategies used in voxel-wise fMRI studies, the NBS [58] focused on
the multiple-comparison problem posed by connectomic data by evaluating
the null hypothesis at the level of interconnected sub-networks rather than
individual connections. To realize this analysis, we used the NBS toolbox
(https://www.nitrc.org/) to analyze the functional matrices with statistical
threshold: t-threshold= 5.5, 5000 permutations, and corrected P< 0.05.

Table 1. Demographics and clinical characteristics.

MDD
(N= 36)

HCs
(N= 61)

P

Age (years, mean ± SD) 27.5 ± 5.88 26.16 ± 4.38 0.21a

Age (years, range) 18–46 19–40

Gender (male/female) 11/25 22/39 0.66b

Education (H/U/G) 5/24/7 4/40/17 0.37b

Number of previous
episodes

1.64 ± 1.29 – –

Baseline headmotion
(mean FD)

0.16 ± 0.07 0.13 ± 0.07 0.74c

Follow-up headmotion
(mean FD)

0.15 ± 0.09 0.14 ± 0.09

Baseline PHQ-9 17.58 ± 4.8 2.23 ± 1.9 <0.001c

Follow-up PHQ-9 6.31 ± 5.71 1.41 ± 1.4

Baseline HAMD-17 21.86 ± 3.25 – <0.001a

Follow-up HAMD-17 8.11 ± 5.04 –

Notes: Values are shown in mean ± SD. Abbreviations: MDD major
depressive disorder, HCs healthy controls, FD framewise displacement,
PHQ-9 Patient Health Questionnaire-9, HAMD-17 17-item Hamilton Depres-
sion Rating Scale, H high school, U undergraduate, G graduate.
aAge and HAMD scores were analyzed by using the two-sample t test.
bGender and education were analyzed by using the chi-square test.
cHeadmotion and PHQ-9 were analyzed by using two-way repeated
analysis of covariance.

J. Cui et al.

3

Translational Psychiatry          (2021) 11:634 

http://rfmri.org/DPARSF
https://www.nitrc.org/


Within-subsystem and between-subsystem rsFC values were extracted in
the patient group to explore the relationship between changes of the DMN
functional connectivity (rsFC12W–rsFC0W) and the clinical improvement
(HAMD0W–HAMD12W). Pearson correlation analysis was conducted
between the changes of rsFC values and the clinical improvement. The
relationship between the DMN subsystem connectivity (within- and
between-subsystem connectivity) at baseline and the clinical improvement
was also explored. Owing to the small sample size, an uncorrected
statistical significance level of P < 0.05 was used.

Confirmation analyses
We repeated our analyses by using another functional brain atlas (Power
264 atlas, which included 58 DMN regions) to exclude the influence of
potential variability in ROI selection on our results [59] (for details, see the
supplementary materials). We intersected the 58 ROIs of DMN in the Power
atlas [59] with Yeo’s DMN template to exclude 11 ROIs, which resulted in
47 ROIs for subsequent analyses. Then, within-subsystem and between-
subsystem connectivity for the three subsystems were computed using the
same methods for the main analyses.
In addition, the main analyses were repeated by comparing the

responders and non-responders to escitalopram. The responder exhibited
a more than 50% reduction in the initial HAMD-17 scores. The main
analyses in the responders were also repeated by comparing the DMN
subsystem connectivity between the responders and HCs. Finally, the DMN
subsystem connectivity in the HCs between the two-time points was
compared by paired t tests to determine the stability of the main findings.

RESULTS
Demographic and clinical characteristics
The demographic characteristics of the subjects are shown in
Table 1. Distributions of age, gender, educational level, and head
motion (mean FD) were not significantly different among the
patients with MDD and the HCs (all P-values > 0.05). The HAMD-17

total scores of the patients were significantly decreased after 12-
week treatment (P < 0.05). Among the patients, 28 (77.8%)
achieved response defined as a reduction of 50% or more in the
HAMD-17 score, and 19 patients (52.8%) showed clinical remission
with HAMD-17 score ≤ 7. The PHQ-9 total scores of patients with
MDD were also significantly decreased after 12-week treatment
(P < 0.05). Moreover, both of the scores of patients with MDD at
baseline and after 12 weeks were significantly higher than those
of the HCs (P-values < 0.05), in whom no difference in the PHQ-9
total scores was found at baseline and after 12 weeks (P > 0.05),
and the scores of the HCs were all below 5.

DMN subsystem connectivity within each group
The lower triangular of the averaged functional connectivity
matrix was displayed for each group (Fig. 1B). The hierarchical
clustering analysis verified that the DMN ROIs included in our
studies were grouped into the predefined subsystems in the HCs,
as reported in previous studies [56, 60] (Fig. 1C). The MDD patients
showed similar connectivity patterns among the 24 ROIs as
the HCs.

Group × time interaction effect on the DMN subsystem
connectivity
A significant interaction effect between group and time was found
in the within-subsystem rsFC of the core subsystem (P < 0.05, FDR
corrected; Fig. 2A). Post hoc analysis showed that within-
subsystem rsFC values of the core subsystem in the MDD patients
at baseline were significantly lower than those of the HCs at
baseline (P= 0.007, Bonferroni corrected) and significantly lower
than those of the MDD patients after treatment (P= 0.013,
Bonferroni corrected); however, within-subsystem rsFC values of
the core subsystem in the MDD patients after treatment were not

Fig. 1 Default mode network subsystems. Panel A shows spatial distributions of the three subsystems of the default mode network from
Yeo’s template [54, 55]. Brain regions painted in yellow belong to the core subsystem; brain regions painted in blue belong to the dMPFC
subsystem, and brain regions painted in red belong to the MTL subsystem. Panels of B show the lower triangular of the averaged functional
connectivity matrices among 24 ROIs of the default mode network in the healthy controls and the patients with MDD at baseline and after
12 weeks. The color bar represents functional connectivity strength. Panel C shows the result of hierarchical clustering analysis for the
connectivity matrix of the healthy controls at baseline, which were consistent with Yeo’s default mode subsystems. The meaning of the color
of the number is the same as those in Panel A. See Table S2 for the meaning of numbers.
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significantly different from those of the HCs after 12 weeks (P >
0.05, Bonferroni corrected) (Fig. 2B). In addition, we found a trend
toward the significance of the interaction effect on the rsFC
between the core and dMPFC subsystem (P= 0.055, FDR
corrected). Post hoc analysis showed that between-subsystem
rsFC values of the core and dMPFC subsystems in the MDD
patients at baseline were significantly lower than those of the HCs
at baseline (P= 0.008, Bonferroni corrected) and significantly
lower than those of the MDD patients after treatment (P= 0.013,
Bonferroni corrected); however, between-subsystem rsFC values
of the core and dMPFC subsystems in the MDD patients after
treatment were not significantly lower than those of the HCs after
12 weeks (P > 0.05, Bonferroni corrected). The rsFC values (z
transformed) of within and between-DMN subsystems are shown
in Table 2.
For the rsFC of each pair of ROIs, we found that the group and

time interaction effect was significant in 19 connections (P < 0.05,
NBS corrected; Fig. 3 and Table 3). Similar to the findings obtained in
the subsystem level, the interaction effect involved the connectivity
within the core subsystem (7 connections) and between the core
and the dMPFC subsystems (10 connections). Post hoc analysis
showed that all of these ROI-to-ROI rsFC values in the MDD patients
at baseline were significantly lower than those of the HCs at baseline
(P-values < 0.05, Bonferroni corrected) and significantly lower than
those of the MDD patients after treatment (P-values < 0.05,
Bonferroni corrected); however, all of these rsFC values in the
MDD patients after treatment were not significantly lower than
those of HCs after 12 weeks (P-values > 0.05, Bonferroni corrected).

The main effect of group and time on DMN subsystem
connectivity
We found a significant effect of group on within-subsystem rsFC in
the dMPFC and MTL subsystems (P < 0.05, FDR corrected). As
shown in Fig. 2C, within-subsystem rsFC values of the dMPFC or
the MTL subsystem in the MDD patients were significantly lower
than those of the HCs (P < 0.05, FDR corrected). No main effect of
group was found in other within- or between-subsystem rsFC.
In addition, no main effect of time was found.

Correlations between the DMN subsystem connectivity and
clinical improvements
No significant correlations between the changes of within-
subsystem and between-subsystem rsFC values and the clinical

improvement were observed among the patients with MDD
(P-values > 0.05, uncorrected). However, a significant negative
correlation was found between the rsFC within the MTL subsystem
at baseline and the clinical improvement, suggesting that the low
rsFC within the MTL subsystem at baseline was associated with
good clinical improvement (r=−0.33, P= 0.05, uncorrected).

Confirmation analyses
In the confirmation analysis using the DMN regions from the
Power 264 atlas as the 47 ROIs, the interaction effect showed a
trend toward significance in the within-subsystem rsFC of the
core subsystem (P= 0.07, FDR corrected) and the between-
subsystem rsFC between the core and dMPFC subsystems (P=
0.06, FDR corrected). Post hoc analysis showed that the reduced
within-subsystem and between-subsystem rsFC in the patients
with MDD at baseline was also increased following treatment
(P-values < 0.05, Bonferroni corrected) and became comparable
with those in the HCs. In addition, we found a significant group
effect on the within-subsystem rsFC in the dMPFC subsystem (P <
0.05, FDR corrected). Thus, our main results were confirmed,
except for the group effect on the MTL within-subsystem. Details
could be found in the supplement materials (Fig. S1). No
significant correlations were observed between the changes of
within-subsystem and between-subsystem rsFC values and the
clinical improvement (P-values > 0.05, uncorrected). The correla-
tion between the rsFC within the MTL subsystem at baseline and
the clinical improvement disappeared, and no correlations
between the other DMN subsystem connectivity at baseline and
the clinical improvement were observed in the confirmation
analysis (P-values > 0.05, uncorrected).
Among patients completing the study, 28 were responders and

8 were non-responders. A two-way repeated-measure ANOVA was
used to determine the main effects of subgroup (the responders
vs. the non-responders), time (baseline vs. 12 weeks), and
subgroup × time interaction on each within-subsystem rsFC and
between-subsystem rsFC, with age, gender, educational level,
and head motion (mean FD) as nuisance covariates. The significant
main effect of subgroup or interaction effect was not observed on
the DMN subsystem connectivity (P-values > 0.05, FDR corrected)
(Table S2). However, the significant main effect of time on rsFC
was noted between the core and dMPFC subsystem (P= 0.048,
FDR corrected). A trend toward the significance of the main effect
of time was also noted in the within-subsystem rsFC of the core

Fig. 2 The interaction effect and main effect on the rsFC within and between the DMN subsystems. Panel A summarizes the interaction
effect and main effect within and between the DMN subsystems. Panel B shows the significant interaction effect on the within-subsystem rsFC
of the core subsystem and the between-subsystem rsFC of the core and dMPFC subsystem using violin plots. Panel C shows the significant
group main effect on the within-subsystem rsFC in the dMPFC and MTL subsystems using violin plots. **P-values < 0.01; *P-values < 0.05 for
post hoc analyses.
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subsystem (P= 0.051, FDR corrected). The main effect of time is
consistent with our main finding, suggesting that rsFC related to
the core subsystem increased after escitalopram treatment across
patients with MDD.
Furthermore, the main analyses were confirmed in patients

with MDD who responded to escitalopram. Similar to the main
findings, an interaction effect between group and time in the
within-subsystem rsFC of the core subsystem (P < 0.05, uncor-
rected) and a trend towards significance in the interaction effect
of the rsFC between the core subsystem and the dMPFC
subsystem (P= 0.07, uncorrected) were observed. The significant
main effect of group on within-subsystem rsFC in the dMPFC
subsystem and the MTL subsystem was also noted (P < 0.05,
uncorrected). However, due to the small sample size, these effects
observed in the responders cannot survive from the multiple
comparison corrections (P-values > 0.05, FDR corrected). No main
effect of group or time was found in other within- or between-
subsystem rsFC. Details can be found in the supplement materials
(Fig. S2).
Finally, no significant differences were found in within-

subsystem rsFC or in the between-subsystem rsFC between at
baseline and after the 12-week interval in the HCs (P-values > 0.05,
FDR corrected) (Table S3). This result supports the stability of the
main findings.

DISCUSSION
Our study investigated the effects of escitalopram on the rsFC of
the three DMN subsystems in patients with MDD. We observed
that after escitalopram treatment for 12 weeks, decreased within-
subsystem rsFC of the DMN core subsystem in patients with MDD
was increased to a level similar to that seen in HCs. The same
trend was found in the between-subsystem rsFC between the core
and dMPFC subsystems at a looser threshold. We also found that
the decreased within-subsystem rsFC persisted in the dMPFC and
MTL subsystems after treatment. Moreover, our main results were
confirmed using the DMN regions from another brain atlas.
The main finding is that the rsFC related to the DMN core

subsystem (rsFC within this subsystem and rsFC between the core
and dMPFC subsystem) in the patients with MDD decreased at
baseline and then became comparable with that seen in HCs after
escitalopram treatment for 12 weeks. The core subsystem,
composed of the aMPFC and PCC as key nodes, is commonly
regarded as a key network in patients with MDD due to its role in
self-referential processing [7, 11, 12]. Our finding supports DMN
hypoconnectivity in patients with MDD at baseline. This finding
seems to contradict previous reports, in which DMN hypercon-
nectivity was found in patients with MDD who have impaired self-
referential processes, such as self-referential thought and mala-
daptive rumination [9, 10]. However, after an exhaustive search on
literature, researchers found that less than 50% of studies (N= 18)
reported hyperconnectivity, 21% (N= 8) reported hypoconnectiv-
ity, 18% (N= 7) reported increased and decreased connectivity,
and 13% (N= 5) reported no significant changes in the DMN of
patients with MDD (38 reports) (for a review, please see also [15]).
Furthermore, a voxel-wise meta-analysis showed increased func-
tional connectivity in the orbitofrontal DMN (including subgenual
cingulate cortex) and decreased functional connectivity in the
dMPFC and posterior DMN in patients with MDD [15]. Moreover,
the decreased rsFC related to the DMN core subsystem at baseline
in the current work was generally consistent with the finding
obtained by the largest MDD database of China [15], in which the
rsFC in the DMN was reduced in recurrent patients with MDD
who had antidepressant treatments. The decreased rsFC between
the core and dMPFC subsystems in the patients with MDD at
baseline was also consistent with a previous study that recruited
drug-naïve patients with MDD in the first episode [56]. The
inconsistency between our findings and previous studies on Ta
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hyperconnectivity or the mixed findings in the DMN may be
attributed to the heterogeneity in MDD. Based on the largest MDD
database of China, researchers found that the DMN connectivity
was not associated with illness duration and showed no significant
differences among clinical sybtypes [15]. The biotypes of MDD
may account for the inconsistency across studies. The brain

connectivity-based subtypes of MDD have been recently identi-
fied [61–63]. In particular, a study found decreased and increased
DMN connectivity simultaneously occurring in patients with MDD,
regardless of having the first episode. This finding suggests that
the two biotypes of MDD exist, though no significant differences
in demographic and clinical variables were found between patient
subgroups [64]. The current study cannot parse the biotypes of
MDD due to the small sample size; however, our findings provide
new evidence for the hypoconnectivity of the DMN in patients
with MDD. It is possible that our samples and others in previous
studies [65–72] may be occasionally constituted of patients whose
rsFC related to the DMN at baseline decreased. Additional studies
must recruit more patients and parse the biotypes of MDD to
validate our findings.
It should be noted that the rsFC related to the core subsystem

in the patients with MDD were increased after escitalopram
treatment for 12 weeks and became comparable with those of the
HCs in the current study. This finding is compatible with two
previous studies. In one study, depressed elderly participants had
significantly higher functional connectivity between the PCC and
the MPFC after treatment relative to that before treatment;
however, the significance disappeared after adjusting for WM
hyperintensity burden [73]. In another study, relative to placebo,
acute citalopram administration increased rsFC between the PCC
and MPFC [74]. The 5-HT neurotransmitter system primarily
modulated the regions within the core subsystem; however, the
core subsystem had widely anatomical and functional connections
with the dMPFC subsystem [16, 75]. Therefore, in the current
study, the change of the rsFC related to the core subsystem

Table 3. Significant interaction effect on the ROI-to-ROI rsFC (z transformed).

Region MNI coordinates Region MNI coordinates MDD
baseline
(mean ± SD)

MDD week
12 (mean
± SD)

HCs baseline
(mean± SD)

HCs week
12 (mean
± SD)

F interaction
(P)

(x y z) (x y z)

Within core subsystem

IPL.L −44 −68 37 PFCm.L −8 51 4 0.48 ± 0.23 0.54 ± 0.27 0.58 ± 0.22 0.52 ± 0.26 5.57 (0.02)

PFCm.L −8 51 4 Temp.L 62 −5 −17 0.34 ± 0.27 0.54 ± 0.22 0.44 ± 0.31 0.46 ± 0.28 11.38 (<0.01)

PFCm.L −8 51 4 IPL.L 51 −57 29 0.35 ± 0.26 0.47 ± 0.20 0.45 ± 0.24 0.42 ± 0.27 6.36 (0.01)

pCunPCC.L −5 −51 31 PFCd.L 23 35 43 0.45 ± 0.22 0.55 ± 0.34 0.57 ± 0.21 0.52 ± 0.26 6.73 (0.01)

PFCm.L −8 51 4 PFCd.L 23 35 43 0.42 ± 0.25 0.56 ± 0.29 0.54 ± 0.20 0.48 ± 0.26 12.12 (<0.01)

PFCm.L −8 51 4 PFCl.L 7 −51 30 0.51 ± 0.23 0.65 ± 0.23 0.62 ± 0.25 0.61 ± 0.31 6.16 (0.01)

PFCl.L 7 −51 30 PFCv.L 7 49 5 0.62 ± 0.26 0.78 ± 0.26 0.74 ± 0.25 0.73 ± 0.29 6.54 (0.01)

Core-dMPFC subsystem

Temp.L 62 −5 −17 IPL.L −56 −12 −18 0.73 ± 0.22 0.86 ± 0.25 0.83 ± 0.27 0.81 ± 0.22 6.52 (0.01)

IPL.L 51 −57 29 PHC.L −8 44 42 0.32 ± 0.21 0.48 ± 0.23 0.46 ± 0.25 0.48 ± 0.21 7.26 (0.01)

IPL.L −44 −68 37 Temp.R −40 13 50 0.63 ± 0.31 0.72 ± 0.33 0.76 ± 0.31 0.69 ± 0.28 6.50 (0.01)

Temp.L 62 −5 −17 Temp.R −40 13 50 0.23 ± 0.22 0.36 ± 0.25 0.37 ± 0.29 0.35 ± 0.25 5.93 (0.02)

Temp.L 62 −5 −17 IPL.R −47 26 −2 0.19 ± 0.22 0.31 ± 0.25 0.31 ± 0.25 0.28 ± 0.17 7.37 (0.01)

PFCd.L 23 35 43 PFCd.R 62 −26 −5 0.18 ± 0.25 0.29 ± 0.25 0.31 ± 0.25 0.25 ± 0.28 6.73 (0.01)

PFCl.L 7 −51 30 PFCd.R 62 −26 −5 0.30 ± 0.21 0.40 ± 0.23 0.45 ± 0.24 0.40 ± 0.22 8.20 (0.01)

IPL.L 51 −57 29 PFCm.R 10 48 41 0.55 ± 0.23 0.66 ± 0.25 0.68 ± 0.30 0.67 ± 0.21 5.71 (0.02)

Temp.L 62 −5 −17 Temp.R 46 28 −9 0.28 ± 0.25 0.44 ± 0.22 0.38 ± 0.25 0.40 ± 0.23 5.56 (0.02)

IPL.L 51 −57 29 Temp.R 46 28 −9 0.27 ± 0.24 0.41 ± 0.25 0.35 ± 0.23 0.34 ± 0.22 7.45 (0.01)

dMPFC-MTL subsystem

IPL.L −56 −12 −18 Temp.R 46 28 −9 0.40 ± 0.22 0.56 ± 0.28 0.50 ± 0.27 0.51 ± 0.22 5.82 (0.02)

Core-MTL subsystem

PFCd.L 23 35 43 PHC.R 26 −27 −20 0.15 ± 0.17 0.18 ± 0.20 0.08 ± 0.20 0.23 ± 0.21 6.79 (0.01)

Notes: P values after NBS correction (only list the connections with P < 0.05). Abbreviations: L left, R right, IPL inferior parietal lobule, pCunPCC precuneus
posterior cingulate cortex, PFCd dorsal prefrontal cortex, PFCl lateral prefrontal cortex, PFCm medial prefrontal cortex, PFCv ventral prefrontal cortex,
PHC parahippocampal cortex, Temp temporal lobe.

Fig. 3 The interaction effect on the ROI-to-ROI rsFC. The ROI
regions painted in yellow belong to the core subsystem; the ROI
regions painted in blue belong to the dMPFC subsystem, and the
ROI regions painted in red belong to the MTL subsystem.
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(rsFC within this subsystem and rsFC between the core and
dMPFC subsystem) might indicate that escitalopram increases
rsFC within the core subsystem by blocking the reuptake of the
5-HT and this effect extends to the rsFC between the core and
dMPFC subsystem. The core subsystem is considered to integrate
external or internal information with one’s prior episodic knowl-
edge and current affective experience [76]. The dMPFC subsystem
is primarily active when participants are making affective self-
referential cognition, which is correlated with the core subsystem
[77]. Thus, in the current study, the decreased rsFC related to the
core subsystem in the patients with MDD at baseline might reflect
the abnormalities in self-related processes in these patients and
these abnormalities could be reversed by escitalopram treatment.
This speculation can be supported by previous studies. Both of the
decreased emotional response or brain activity to positive
autobiographical memories and increased emotional response
or brain activity to negative autobiographical memories are
observed in the patients with MDD [78, 79]. More importantly,
the decreased brain activity in the amygdala to positive
autobiographical memories in the SSRI responders after treatment
was changed to a level similar to that seen in HCs [80]. Future
studies can use measurements on autobiographical memories or
other self-related processes to test this speculation. In brief, our
finding on the rsFC related to the core subsystem might be
important to elucidate the neurobiological mechanisms of
escitalopram action in patients with MDD.
In the current study, the decreased within-subsystem rsFC in the

dMPFC and MTL subsystems persisted in the patients with MDD
after treatment. Decreased neurochemical changes within the
dMPFC subsystem and decreased rsFC within the MTL subsystem
have been reported in previous studies [81, 82]. However, 12-week
treatment of escitalopram did not change the decreased within-
subsystem rsFC in the dMPFC and MTL subsystems in our study,
which indicated that the decreased within-subsystem rsFC in the
two subsystems might be independent of the presence of
escitalopram therapy and thus might reflect disease-specific
features of MDD. Therefore, these observations imply that the
hypoconnectivity within the dMPFC and MTL subsystems may not
be modulated by escitalopram and thus may reflect the abnormal
neural circuit implicated in the pathophysiology of MDD. It is
possible that the persistent abnormal functional connectivity
within the dMPFC and MTL subsystems following treatment in
patients with MDD may indicate a biomarker of diagnosis of MDD.
However, due to the limited follow-up period (12 weeks), the
possibility that the rsFC will be changed to a level similar to that
seen in HCs after long-term treatment (e.g., 6 months or longer)
cannot be excluded. Given the heterogeneity of MDD, future
studies should recruit a large sample size and conduct a
longitudinal design with a long follow-up period to validate the
current findings.
Moreover, our main results were confirmed by using the DMN

regions from the Power 264 atlas, except for the group effect on
within-subsystem rsFC in the MTL subsystem or the clinical
correlates of this subsystem. The unstable finding in the MTL
subsystem might be due to the difference between the two
atlases. The ROIs obtained from the Power atlas were spheres
with 5 mm radius, but those in Yeo’s template were clusters
covering the whole ROI. The difference in ROIs might affect the
estimation of rsFC, which has been repeatedly discussed in
previous studies [83, 84]. In the future, we hope to recruit other
suitable templates to verify whether the group main effect in the
MTL subsystem can be observed.
Insignificant correlations were found between the changes of

the DMN subsystem connectivity and the clinical improvement
after the 12-week treatment of escitalopram. The correlation
between the changes of rsFC and clinical improvement in
depression severity, which suggests a match between sympto-
matic recovery and MDD neurobiology, must be further explored

[32]. However, only a few studies on the antidepressant’s effect on
the rsFC have reported this correlation [31, 85–88], other works
did not find [32, 89, 90] or did not report this correlation [73, 91].
The inconsistent findings combined with the small sample size
across these studies (N= 12–21) appeal to future research with a
large sample size to build a robust relationship between rsFC and
clinical improvement.
The present study has several limitations. First, although

patients who completed the study included responders (N= 28)
and non-responders (N= 8) after the 12-week treatment of
escitalopram, no difference was found between the responders
and non-responders. Future studies must recruit additional MDD
samples to find differences in the rsFC of the DMN between the
responders and non-responders and verify the current results.
Second, a placebo effect cannot be ruled out because we did not
include a single group of MDD patients taking a placebo in the
current study. The optimized controls would be groups of
placebo-used or unmedicated patients with MDD. However,
ethically speaking, asking patients with MDD who were
experiencing depressive symptoms to remain untreated is a
challenge. Therefore, recruiting patients with moderate depres-
sive symptoms using a placebo for a short term could be helpful
to confirm drug-specific effects in the future. Third, recent
studies have shown that regions defined in the group-level atlas
are suboptimal compared to individually specified regions in
connectivity analyses [92, 93]. Therefore, future work could use
the individual-level functional mapping which may better
identify the variations in the effect of antidepressant treatment
on brain functions in patients with MDD. Finally, the state of
mind was not evaluated during the resting-state scanning.
Future studies should use inventories to quantify the resting-
state cognition, including sleepiness, comfort, and discontinuity
of mind [94] to further understand the functional implications of
the DMN subsystem connectivity.

CONCLUSIONS
Our findings suggest that the DMN core subsystem may be a key
DMN subsystem that plays an important role in the effect of
escitalopram on brain functions for patients with MDD. We also
found that the decreased within-subsystem rsFC in the dMPFC
and MTL subsystems persisted in patients with MDD after
treatment, indicating that the abnormality is independent of the
presence of escitalopram therapy in MDD. The dissociation effect
of escitalopram on the rsFC of DMN subnetworks deepens our
understanding of the neural basis of antidepressants in patients
with MDD. In addition, the persistent abnormal functional
connectivity within the dMPFC and MTL subsystems following
treatment in these patients may indicate a biomarker of
diagnosis of MDD.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
authors upon reasonable request.
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