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Gene co-expression networks in peripheral blood
capture dimensional measures of emotional and
behavioral problems from the Child Behavior
Checklist (CBCL)
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Kristin M. Anders1, Patricia J. Forken 1, Cheryl A. Roe3, Thomas G. Schulze4,5,6,7, Stephen V. Faraone1,8 and
Stephen J. Glatt1,8

Abstract
The U.S. National Institute of Mental Health (NIMH) introduced the research domain criteria (RDoC) initiative to
promote the integration of information across multiple units of analysis (i.e., brain circuits, physiology, behavior, self-
reports) to better understand the basic dimensions of behavior and cognitive functioning underlying normal and
abnormal mental conditions. Along those lines, this study examined the association between peripheral blood gene
expression levels and emotional and behavioral problems in school-age children. Children were chosen from two age-
and sex-matched groups: those with or without parental reports of any prior or current psychiatric diagnosis. RNA-
sequencing was performed on whole blood from 96 probands aged 6–12 years who were medication-free at the time
of assessment. Module eigengenes were derived using weighted gene co-expression network analysis (WGCNA).
Associations were tested between module eigengene expression levels and eight syndrome scales from parent ratings
on the Child Behavior Checklist (CBCL). Nine out of the 36 modules were significantly associated with at least one
syndrome scale measured by the CBCL (i.e., aggression, social problems, attention problems, and/or thought
problems) after accounting for covariates and correcting for multiple testing. Our study demonstrates that variation in
peripheral blood gene expression relates to emotional and behavioral profiles in children. If replicated and validated,
our results may help in identifying problem or at-risk behavior in pediatric populations, and in elucidating the
biological pathways that modulate complex human behavior.

Introduction
The prevailing diagnostic systems, such as the Diag-

nostic and Statistical Manual of Mental Disorders (DSM)
and International Classification of Diseases (ICD), outline
the criteria used for diagnosing psychiatric disorders.
These criteria are not grounded on biological mechanisms.

Psychiatric disorders have etiologies that are multi-
factorial, and many risk factors are known to be shared
among disorders. The Research Domain Criteria (RDoC)
framework initiated by the U.S. National Institute of
Mental Health (NIMH) provides a multidimensional
approach for studying psychiatric illness, and while not
meant to immediately supplant the DSM, it provides a
more flexible and quantitative framework for studying
brain disorders and syndromes. The initiative explores
fundamental levels of analysis for measurable cognitive,
emotional, and behavioral constructs within discrete
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domains of functioning. RDoC units of analysis exist on a
spectrum from essentially static units, such as DNA
sequence, to dynamic units, such as behavioral phenom-
ena. They also include intermediate molecular, neural, and
physiological elements. The RDoC approach seeks to
create a more valid or accurate representation of psycho-
pathology and its underlying bases1.
A well-established tool for the dimensional assessment

of childhood psychopathology is the Child Behavior
Checklist (CBCL). Prior twin studies show that genetic
influences explain a substantial portion of variation in
CBCL scales, with heritability ranging from 15–48% for
syndrome scales among 12,310 7-year old Dutch twin-
pairs, and 54–71% for DSM-oriented scales among 398
Italian twin-pairs ages 8–17 years2,3. Although there is
evidence that the CBCL is significantly heritable, no
individual genes have yet been unequivocally associated
with the CBCL from prior genome-wide association
studies (GWASs). In such case, it is challenging to for-
mulate mechanistic hypotheses for experimental studies
of childhood psychopathology. Three GWASs of the
CBCL have been published to date, resulting in 23 loci
reaching suggestive levels of association (p ≤ 1 × 10−5)
but none yet achieving genome-wide significance, indi-
cating that studies have had insufficient sample sizes.
Mick et al.4 performed a GWAS of 341 children affected
with ADHD and found four loci associated with the
CBCL dysregulation profile (also called pediatric bipolar
disorder (BD) scale) defined as the sum of three CBCL
syndrome scales (anxiety/depression, aggression, and
attention). Kim et al.5 found five loci associated with the
DSM-oriented CBCL scale for pervasive developmental
problems (PDPs) and two for total problems score in a
GWAS of 316 children, Benke et al.6 meta-analyzed
single-SNP results from three independent GWAS of the
CBCL scale for internalizing problems measured in 4596
children, and found 12 loci associated at suggestive sig-
nificance. In addition, Benke et al. examined the joint
effect of all GWAS SNPs on internalizing problem scores
through heritability analysis. One nominally significant
estimate of heritability was uncovered attributing 41% of
the variance in internalizing problem scores to the effects
of all SNPs in the GWAS, showing that the CBCL-
internalizing problem score has a significant polygenic
component similar to DSM-based psychiatric disorders6.
Nevertheless, this finding should be interpreted with
caution until it is confirmed through independent repli-
cation considering that Benke et al. failed to reproduce
the effect using a different methodology in the same
sample.
Other studies sought to attribute variance in CBCL

scales to polygenic effects associated with neuropsychia-
tric disorders estimated in independent samples. One
study of 5,947 children from the Generation R Study

found that polygenic risk scores based on GWAS of
schizophrenia were significantly associated with higher
CBCL scores for internalizing problems7. A second
population-based study of 2,437 children found that
polygenic risk scores for ADHD were significantly asso-
ciated with attention problems measured by the CBCL.
These findings indicate that there is genetic overlap
between dimensional psychopathology in children with
diagnosis of schizophrenia and ADHD. A caveat of these
studies is that they had not attributed genetic overlap to
any specific loci. In absence of adequate sample sizes and
reproducible genome-wide significant findings, it remains
uncertain from the existing GWASs of the CBCL which
genes contribute to problem behaviors in children.
Evaluating transcriptome-wide profiles for gene expres-

sion patterns associated with CBCL measures may help
identify biological clues regarding genes and pathways
relevant to childhood psychopathology. As a review by
Tylee et al., prior transcriptomic studies have reported
moderate to high concordance of gene expression levels
across peripheral blood and postmortem brain (Pearson’s
r= 0.25 to 0.64), suggesting that peripheral blood may
serve as a useful proxy for the biological changes mani-
festing in the brain8. In addition, transcriptomic studies
can potentially complement GWAS, and findings that
converge across of the two approaches may help provide
deeper insight into complex disorders. The goal of the
current study was to identify gene co-expression modules
and biological pathways underlying dimensional psycho-
pathology in children measured by the CBCL. It was
envisaged that the RDoC approach might eventually foster
measures to better predict and prevent mental illness
before onset based on objective, validated, laboratory-
based measures9,10. We provided the first transcriptomic
evaluation of module eigengenes and pathways associated
with CBCL scales in a cohort of children that showed a
broad range of behavioral and psychiatric profiles at a
relatively young age (6–12 years). The findings from our
study may inform subsequent efforts to develop better
statistical models to predict onset or severity of mental
illness and may shed light on new avenues for treatment.
Our findings could be incorporated with other RDoC
studies to help build better conceptual frameworks of
mental illness agnostic to rigid DSM categories. We used a
hypothesis-free discovery approach in our primary analysis
considering no reproducible genome-wide significant loci
have been reported to date. However, we hypothesized
that gene expression signatures of the CBCL would show
association with BD, schizophrenia, depression, and post-
traumatic stress disorder (PTSD) given that the CBCL is
predictive of those disorders. The CBCL is also sig-
nificantly predictive of ADHD, however, we did not have
transcriptomic data to evaluate the overlap between CBCL
and ADHD transcriptomic signatures.
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Methods
Experimental design overview
This is a pilot study of peripheral blood RNA expression

levels related to CBCL scores in 96 probands aged 6–12
years. Here, we took an agnostic approach regarding psy-
chopathology by ascertaining families having a child with
any psychiatric diagnosis and sampling non-psychiatric
children from the community (and their families) as well,
allowing us to investigate a wide range of possible child
behavior profiles. These children were sub-sampled from
2,806 individuals (954 probands from 954 families) who
had been recruited into our longitudinal study of reward-
system genetics. Probands were selected from two groups:
those with a parent report of any prior or current psy-
chiatric diagnosis, and those without (i.e., community-
ascertained typically developing children). RNAs were
extracted from whole blood and were sequenced and
processed using standard bioinformatics pipelines to pro-
vide cross-sectional profiles of transcriptome-wide gene
expression levels which could then be statistically asso-
ciated with CBCL scores.

Subject recruitment
Participants were recruited from a variety of sources

within the Syracuse, NY and surrounding areas, including
the Child and Adolescent Psychiatry Clinic at SUNY
Upstate Medical University and child psychiatrists and
mental health clinicians working in private practice in the
community, as well as from community events (local fairs,
festivals, etc.). Children were excluded for any of the
following: sensorimotor disabilities, a diagnosed neuro-
logical condition, a history of head injury with docu-
mented loss of consciousness lasting more than
10minutes, an uncontrolled medical condition, an IQ
below 80 as reported by parents, or an inability to
understand the English language. Adopted children were
also excluded as this was designed as a family-genetic
study. Informed consent was obtained from all parents
and assent was obtained from all children upon arrival for
their study visit. Study visits were approximately three
hours in length and involved the completion of a variety
of computerized inventories and behavioral paradigms.
All probands were free of all psychiatric medications for at
least six months prior to study assessment, with the
exception that stimulants were allowed until within
12 hours of assessment. All protocols were approved by
the Institutional Review Board at SUNY Upstate Medical
University.

Child Behavioral Checklist
The CBCL is a well-validated parent-reported measure

of children’s emotional and behavioral functioning11,12.
The CBCL includes 113 items for which parents were
asked to assign a score based on a three-level rating scale

indicating how true each item was for their child (0= ‘Not
true’, 1= ‘Somewhat or sometimes true’, 2= ‘Very true or
often true’). The CBCL provides t-scores (minimum 50) in
relation to U.S. national age- and gender-norms. For the
present analysis, t-scores were evaluated for eight syn-
drome scales (anxious/depressed, withdrawn/depressed,
somatic complaints, social problems, thought problems,
attention problems, rule-breaking behavior, aggressive
behavior). T-scores for nine other scales framed around
DSM nosology were not included in our analysis (affective
problems, anxiety problems, somatic problems, attention-
deficit/hyperactivity problems, oppositional defiant pro-
blems, conduct problems, sluggish cognitive tempo,
obsessive-compulsive problems, post-traumatic stress
problems), as we aimed to describe gene expression
changes that were predictive of dimensional measures of
emotional and behavioral functioning rather than diag-
noses. Nevertheless, the DSM-oriented scales of the CBCL
were found to be highly correlated with the syndrome
scales of the CBCL (Supplementary Fig. 1).

Blood sample collection
Whole-blood samples were obtained from subjects at

the time of their study visit. Blood was collected by a
licensed phlebotomist into a 16 × 100 mm (2.5 mL whole
blood, 6.9 mL additive) PAXgene Blood RNA (BD/Qia-
gen) tube. All samples were incubated for two hours at
room temperature and then transferred to a freezer at
–20 °C.

RNA extraction, library preparation, sequencing, and
quantification
Detailed procedures for these steps are provided in the

Supplementary Materials and Methods. In brief, we fol-
lowed standard procedures provided in a commercial
RNA library preparation kit to prepare samples of RNA
from whole blood for sequencing on an Illumina HiSeq
2000. A standard bioinformatics pipeline was used to
align reads to the reference human genome (hg19),
quantify counts aligned to genes, and normalize gene
counts to reduce unwanted variation. Normalized gene
expression values are presented in Supplementary Fig. 2.

Deconvolution of cell types in whole blood based on gene
expression levels
The deconvolution method proposed by Abbas et al.

and implemented in the R software CellMix (version 1.6)
was used to estimate the abundance of leukocytes from
whole-blood gene expression levels across all probands
based on a fixed set of cell-type-specific signatures13,14.

Surrogate variable analysis (SVA)
We used the SVA algorithm implemented in the R

package sva (version 3.30.1) to estimate hidden artefacts
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in our RNA-sequencing data set that might confound our
statistical analyses15,16. An iteratively re-weighted least-
squares approach was used to empirically estimate hidden
artefacts called “surrogate variables”. The number of
surrogate variables was selected using the asymptotic
conditional singular value decomposition method (or
“leek” method)17.

Identification of gene co-expression networks
We generated a weighted gene co-expression network

from normalized RNA-sequencing data using the R package
weighted gene co-expression network analysis (WGCNA),
the same procedure used in our previous blood-based gene
expression mega-analyses18–20. Detailed procedures are
provided in the Supplementary Materials and Methods.

Pathway analysis
We performed a statistical test for gene set enrichment

across module eigengenes to identify significant associa-
tions with CBCL syndrome scales using annotated gene
sets from the Molecular Signatures Database (MSigDB)21.
Additional details of our gene set analysis are provided in
the Supplementary Materials and Methods. Enrichment
p-values were adjusted using the Benjamini-Hochberg
false discovery rate (FDR) procedure to correct for the
number of gene sets tested within each module with a
significance threshold set at FDRp < 0.05.

Predicting CBCL scores with polytranscript risk scores
We used our approach called “polytranscript risk scor-

ing” (akin to polygenic risk scoring) to estimate the pro-
portion of variance in CBCL scales explained by a single
linear composite score that summarizes the expression
level of numerous genes along with an estimate of their
effect size on CBCL scales and neuropsychiatric diag-
noses20. Details of our approach are provided in the
Supplementary Materials and Methods.

Results
Sample demographics and technical variables
Table 1 describes demographic and technical variables

after the removal of one sample that had an insufficient
number of paired-end sequenced reads (children with psy-
chiatric concerns n= 47, typically developing children n=
48). Ten children of the 47 with psychiatric concerns
reported prior use of psychiatric medications, but all were
free of medication at the time of study assessment. No
outliers were detected when we analyzed transcriptomic
profiles with principal components analysis (Supplementary
Fig. 3). The two groups did not differ in age (t-value=
−0.06, p < 0.95), gender (χ2= 0.009, p= 0.92), self-reported
race (χ2 < 0.001, p < 0.99), experimentally determined RNA
quality (t-value= 0.82, p= 0.41), total number of sequenced
reads (t-value=−1.83, p= 0.07), GC content of reads

(t-value=−1.01, p= 0.32), or overall quality of reads on the
PHRED scale (t-value=−0.41, p= 0.68). Over 3.2 billion
paired-end reads were generated from an Illumina HiSeq
2500 system with about 16.8 million reads produced per
sample. Approximately 91% of reads were successfully
aligned to the hg19 reference genome with a total of 51,833
Ensembl-annotated genes showing at least one read count
in one sample. After data normalization and removal of low-
abundance genes, 14,318 unique genes were retained for
analysis, of which 11,529 were known to be protein-coding
(81%). There were no significant differences between male
and female probands with respect to ratings on CBCL
syndrome scales (Supplementary Table 1). However, as
expected, affected probands showed significantly higher
ratings than typically developing probands for all CBCL
syndrome scales (p-values < 0.01) apart from somatic com-
plaints (p= 0.25).

Hidden sources of confounding variation
The estimated abundance of circulating leukocytes was

similar across gender (male and female, p > 0.1) and
affection status (p > 0.1). One significant surrogate vari-
able was detected (referred to as SV1) after accounting for
variation in gene expression explained by age, gender,
RNA quality, and race.

Gene co-expression modules associated with CBCL scales
The gene co-expression network obtained from

WGCNA was divided into 36 modules that ranged in size

Table 1 Comparison of demographic and technical
factors between cases and comparison subjects.

Variable Community-ascertained

typical developing

children

Cases

(n= 48) (n= 47)

Number (%)

Males 22 (46%) 23 (49%)

Caucasian 24 (50%) 24 (51%)

Medicated 0 (0%) 10 (22%)

Mean (standard deviation)

Age 9.3 (2.15) 9.36 (2.2)

RIN 8.8 (0.42) 8.7 (0.56)

PHRED (base call quality

for RNA reads)

35.9 (0.22) 35.9 (0.12)

No. of sequenced reads 15,454,578 (5,889,023) 18,203,003

(6,528,747)

Read counts 5,996,077 (214,185) 6,434,947

(3,199,557)
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from 41 genes to 2045 genes; 2601 genes that did not fit
well with any module were pruned away from the network
(Supplementary Fig. 4). Figure 1 shows all associations
between CBCL scales and module eigengenes. After cor-
recting for multiple comparisons, significant pairwise
associations were detected for nine module eigengenes
and four CBCL scales, namely: social problems (ME7,
ME8, ME16, ME21, ME29, and ME27), thought problems
(ME7, ME16, ME21, and ME29), attention problems
(ME8, ME13, ME16, ME26, ME27, and ME29), and
aggression (ME7, ME14, and ME29). Module eigengenes
ME7, ME13, ME16, ME21, and ME26 showed positive
associations with thought problems, social problems,
attention problems, and/or aggression. Conversely, mod-
ule eigengenes ME8, ME27, and ME29 displayed negative
associations with social problems, attention problems,
and/or aggression. The strongest association observed
across all comparisons was between ME29 and attention
problems (β=−5.33, SE= 0.15, p= 9.9 × 10−8).
Module eigengenes explained a relatively small pro-

portion of variance in CBCL syndrome scales after
accounting for the variance attributable to age, sex, race,
RIN, and one surrogate variable (mean Nagelkerke’s R2=
0.036, range: 0.0012–0.16). On average, module ME29
explained the largest amount of variance in CBCL syn-
drome scales (Nagelkerke’s R2= 0.016). A mean Nagelk-
erke’s R2= 0.036 was the amount of variance in each
CBCL syndrome scale attributable to module eigengenes,
on average, which ranged from 0.019 (withdrawn/
depressed scale) to 0.065 (attention problems scale).
Significant associations between CBCL scales and indi-

vidual genes from the nine significant WGCNA modules
are presented in Supplementary Fig. 5. 1,209 gene tran-
scripts out of 1,928 showed a significant association with
at least one of the four CBCL scales after multiple-testing
correction (FDRp < 0.05, total of 2,237 significant asso-
ciations out of 4171 tests). We presented the top 20

most-strongly associated in Table 2, and provide sum-
mary statistics for all 2,237 significant gene-level asso-
ciations in Supplementary File 1.

Gene set enrichment
No Gene Otology (GO) term showed a significant

overlap with module eigengenes associated with CBCL
scales after correction for multiple testing. The top twenty
gene sets ranked by enrichment p-value are shown in
Supplementary Fig. 6, which we categorized into four
broad domains based on commonalities: regulation of
DNA/transcription/chromatin, energy, immunity, and
signaling.

Polytranscript risk scores associated with CBCL scores
Figure 2 shows the results from our five-fold cross-

validation analysis of CBCL polytranscript risk scores.
CBCL polytranscript risk scores explained a significant
proportion of variance in five CBCL scales in the 20% of
withheld samples from our five-fold cross-validation,
namely: aggression (max R2= 0.057, min p= 0.011,
FDRp= 0.041), anxiety/depression (max R2= 0.042, min
p= 0.028, FDRp = 0.034), attention problems (max R2=
0.11, min p= 0.00056, FDRp= 0.0008), social problems
(max R2= 0.079, min p= 0.004, FDRp= 0.016), and
thought problems (max R2= 0.075, min p= 0.0034,
FDRp= 0.008).
The average proportion of variance in each CBCL scale

explained by polytranscript risk scores that were exter-
nally defined for psychiatric disorders in other samples is
shown in Fig. 3. Three significant associations emerged
after correction for multiple testing (FDRp < 0.05): poly-
transcript risk scores for BD were significantly associated
with attention problems (R2= 0.15, p= 0.0004), and
polytranscript risk scores for PTSD were significantly
associated with attention problems (R2= 0.18, p= 0.0005)
and thought problems (R2= 0.11, p= 0.002).

Fig. 1 A heat-map showing associations between 36 module eigengenes (ME) and eight Child Behavior Checklist syndrome scales. Cell
color refers to the significance of the association on the –log10(p-value) scale as denoted in the color legends in the left-hand margin. The signed
values in the cells are Z-scores obtained from negative binomial regression. Hierarchical clustering with Ward’s algorithm was utilized to cluster
columns according to pairwise similarity. Associations that remained significant after multiple-testing correction (Benjamini-Hochberg FDRp < 0.05)
are bolded and marked with an asterisk (*). WithDep—Withdrawn/Depressed, ThoughtProb—Though problems, Somatic—Somatic complaints,
SocialProb—Social problems, Rulebreak—Rule-Breaking Behavior, AttentionProb—Attention problems, AnxDep—Anxiety with depression.

Hess et al. Translational Psychiatry          (2020) 10:328 Page 5 of 10



Table 2 A table with the four CBCL scales significantly associated with WGCNA modules, and the top 5 ranked genes
associated with each scale. Genes are ordered from smallest to largest p-value.

CBCL scale Module Gene symbol Beta SE P-value FDRp

Aggression ME7 SLC9B2 0.011 0.002 3.17 × 10−5 0.025

ME7 KIAA0101 0.020 0.005 3.17 × 10−4 0.071

ME7 NDUFA4 0.013 0.004 3.47 × 10−4 0.071

ME7 S100PBP 0.014 0.004 3.70 × 10−4 0.071

ME7 NNT 0.016 0.004 4.86 × 10−4 0.071

Attention problems ME8 PILRB −0.042 0.008 1.00 × 10−6 4.25 × 10−4

ME8 RP11-434B12.1 −0.015 0.003 1.91 × 10−6 4.25 × 10−4

ME16 RNU6-4P 0.015 0.003 1.94 × 10−6 4.25 × 10−4

ME27 RPUSD2 −0.036 0.007 1.99 × 10−6 4.25 × 10−4

ME8 RP11-219E7.1 −0.033 0.006 2.14 × 10−6 4.25 × 10−4

Social problems ME8 RP11-253E3.1 −0.027 0.006 1.73 × 10−5 9.61 × 10−3

ME8 FAHD2CP −0.034 0.008 1.95 × 10−5 9.61 × 10−3

ME8 IGKV1-39 −0.022 0.005 2.66 × 10−5 9.61 × 10−3

ME8 RP3-423B22.5 −0.021 0.005 2.73 × 10−5 9.61 × 10−3

ME16 RNU6-4P 0.015 0.003 4.11 × 10−5 0.01

Thought problems ME7 ADD1 0.015 0.005 1.49 × 10−3 0.46

ME7 KIAA0101 0.018 0.006 2.32 × 10−3 0.46

ME29 EOGT −0.015 0.005 2.87 × 10−3 0.46

ME21 ANKRD17 0.011 0.004 3.58 × 10−3 0.46

ME21 DIABLO 0.011 0.004 3.78 × 10−3 0.46

ME module eigengene, SE standard error, FDRp false discovery rate adjusted p-value.

Fig. 2 Average amount of variance in Child Behavior Checklist (CBCL) scales explained by CBCL polytranscript risk scores from 5-fold
cross-validation. *P < 0.05, **P < 0.01, ***FDR-adjusted p < 0.05 (correcting for a total of six tests per CBCL scale).
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Discussion
We performed RNA-sequencing to profile transcriptome-

wide gene expression in 95 children (1 sequencing outlier
removed) to identify combinations of genes associated with
emotional and behavioral problems measured by the CBCL
using an agnostic sampling model10. We identified a gene
network in our proband sample consisting of 36 gene co-
expression modules. Nine modules (comprising 1,928
genes) showed a significant association with at least one of
the following CBCL scales: aggression, thought problems,
attention problems, and social problems. Biological path-
ways related to the regulation of DNA accessibility/tran-
scription, metabolism, and immunity were implicated in
our gene set enrichment analysis as potential drivers of the
associations between module eigengenes and CBCL syn-
drome scales; however, our enrichment results are to be
interpreted with caution as no single pathway achieved
significance after multiple-testing correction. Although our
findings ought to be interpreted with caution until repli-
cated, the genes and pathways implicated in our study could
serve as a basis for mechanistic hypotheses.
We cross-referenced all of our significant results against

a brain-specific transcriptome-wide associations study of
ADHD by Liao et al.22 to see whether any overlapping
results existed. Expression of MANBA, a gene that
encodes a lysosomal enzyme called mannosidase beta, was
found in our study to be significantly positively associated
with the CBCL attention problems scale and was found by
Liao et al. to be significantly upregulated in the cerebellar

hemisphere in ADHD22. A number of mutations in
MANBA have been described that cause an extremely rare
lysosomal storage disorder called beta-mannosidosis that
typically presents with developmental delay and intellec-
tual disability, and increased risk for seizures, infections,
and hearing loss. Two of the approximately 20 reported
cases with beta-mannosidosis presented with ADHD23,24,
adding evidence in support of a potential etiological link
between MANBA and ADHD. MANBA has also been
implicated as a druggable gene and may offer a new
avenue for ADHD treatment25.
Our study may be the first to look for transcriptomic

markers of child psychopathology as characterized by
several CBCL syndrome scales10. Measurement of the
transcriptome in the neurons of living subjects would be
ideal for examining the molecular biology of psychiatric
illness. However, as this is not possible, we analyzed the
peripheral blood as an accessible tissue that can also
inform us of neurobiological correlates. As we previously
reviewed in detail, existing studies comparing brain and
blood transcriptomes suggest that 35–80% of known
transcripts are expressed in both tissues and cross-tissue
gene expression correlations ranged from 0.25 to 0.648.
Therefore, the transcriptomic dynamics in the blood can
inform us of gene expression variability occurring in the
brain, and may be able to illuminate biological mechan-
isms underlying mental illness.
Following on our findings, we quantified polytranscript

risk scores for the CBCL scales and several psychiatric

Fig. 3 Association between Child Behavior Checklist syndrome scales and polytranscript risk scores for five psychiatric disorders. *P < 0.05,
**P < 0.01, ***FDR-adjusted p < 0.05 (correcting for a total of 48 tests per disorder). autism spectrum disorder (ASD), bipolar disorder (BD), major
depression (MDD), post-traumatic stress disorder (PTSD), schizophrenia (SCZ).
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disorders, then assessed whether the polytranscript risk
scores were able to serve as significant predictors of CBCL
scores20. Our de novo polytranscript risk scores for CBCL
scales showed a significant association with all CBCL
scales except rule-breaking behavior, somatic complaints,
and withdrawn/depressed scales. The three null findings
are consistent with the lack of significant associations
between these three scales and WGCNA modules. Blood-
based gene expression levels do not exert strong effects on
these specific scales. A follow-up study with larger sample
sizes is warranted to determine if significant polytran-
script risk scores for these three scales can be identified.
Blood-based polytranscript risk scores (derived from
independent samples) for BD and PTSD accounted for a
significant proportion of the underlying transcriptomic
correlates of the CBCL scales. This finding is consistent
with prior work showing a shared molecular basis among
psychiatric disorders in transcriptome-wide studies of
postmortem brain tissues26,27, in addition to evidence of
shared polygenic overlap between psychiatric disorders
found by GWAS28–31. However, this is the first study to
have evaluated the transcriptomic overlap between CBCL
dimensions and psychiatric disorders. We found that
polytranscript risk scores associated with BD accounted
for a significant proportion of variance in scores for
attention problems, while PTSD polytranscript risk scores
were significantly associated with the CBCL thought
problems scale. These findings indicate that BD and
PTSD may each share a common set of genes and/or
biological pathways with dimensional psychopathology in
children. The attention problems scale has been shown to
identify children with attention-deficit/hyperactivity dis-
order (ADHD)32,33, which is indirect evidence that tran-
scriptomic signatures for dimensional scores for ADHD
may overlap with BD. Elevated CBCL scores for thought
problems have been associated with co-morbid mania in
children with ADHD, implying a biological link between
PTSD and ADHD that was supported by our study34.
These findings fit with epidemiological studies that have
shown heightened prevalence of BD and PTSD among
individuals diagnosed with ADHD, as well as familial co-
aggregation of these disorders35–40. It is unclear if the
transcriptomic overlap we found is driven by shared
genetic etiological factors, non-genetic factors, or a
combination of the two.
Studying gene expression in the brains of living indivi-

duals is not feasible, thus we have used blood-based gene
expression as a proxy for gene expression in the brain.
Converging evidence suggests that some -omic profiles
from brain are reflected in the blood8,18,41–49; thus, blood-
based gene expression profiles can serve as a potentially
informative proxy for the brain. Transcriptomic studies of
peripheral blood may provide important information on
immunologic pathways associated with psychopathology,

or the activities of genes that mediate immune responses
in the periphery but take on other roles in the central
nervous system (c.f., C4A). In addition, peripheral blood
can offer a window into environmental insults associated
with increased risk for neurodevelopmental and neu-
ropsychiatric disorders. In short, peripheral blood in
humans has the potential to shed light on genes and
biological pathways underlying psychopathology.
To the best of our knowledge, this is the first study that

used a transcriptomic approach to identify genes and
pathways associated with CBCL scales. Our results shed
light on blood-based gene expression profiles associated
with emotional and behavioral problems in children, as
well as transcriptomic profiles of CBCL scales shared with
mood and anxiety disorders. Our findings could be used
to guide mechanistic studies to explore genes and path-
ways regulating normal behavioral functioning and men-
tal illness.
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