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Converging evidence points towards a role of
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Abstract
Obsessive–compulsive disorder (OCD) is a neuropsychiatric disorder with childhood onset, and is characterized by
intrusive thoughts and fears (obsessions) that lead to repetitive behaviors (compulsions). Previously, we identified
insulin signaling being associated with OCD and here, we aim to further investigate this link in vivo. We studied
TALLYHO/JngJ (TH) mice, a model of type 2 diabetes mellitus, to (1) assess compulsive and anxious behaviors, (2)
determine neuro-metabolite levels by 1 H magnetic resonance spectroscopy (MRS) and brain structural connectivity
by diffusion tensor imaging (DTI), and (3) investigate plasma and brain protein levels for molecules previously
associated with OCD (insulin, Igf1, Kcnq1, and Bdnf) in these subjects. TH mice showed increased compulsivity-like
behavior (reduced spontaneous alternation in the Y-maze) and more anxiety (less time spent in the open arms of the
elevated plus maze). In parallel, their brains differed in the white matter microstructure measures fractional anisotropy
(FA) and mean diffusivity (MD) in the midline corpus callosum (increased FA and decreased MD), in myelinated fibers of
the dorsomedial striatum (decreased FA and MD), and superior cerebellar peduncles (decreased FA and MD). MRS
revealed increased glucose levels in the dorsomedial striatum and increased glutathione levels in the anterior cingulate
cortex in the TH mice relative to their controls. Igf1 expression was reduced in the cerebellum of TH mice but increased
in the plasma. In conclusion, our data indicates a role of (abnormal) insulin signaling in compulsivity-like behavior.

Introduction
Obsessive–compulsive disorder (OCD) is an often-

debilitating condition, characterized by obsessive and/or
compulsive behaviors. Obsessive behaviors include recur-
rent, intrusive, persistent thoughts, impulses and/or ideas
that often cause anxiety or distress, and compulsive beha-
viors are ritualized, stereotypic behaviors, or mental acts
performed to relieve anxiety or distress associated with the
obsessions or according to rigid rules1. Although its exact

etiology is still unknown, both genetic2 and environmental3

factors can contribute to OCD. The neuronal basis of the
disorder is argued to be an imbalance in the activity of the
cortico–striato–thalamo–cortical loop, resulting in hyper-
activation of the orbitofrontal–subcortical pathway4. Ima-
ging studies indeed showed increased activity (both in
resting state and evoked) in the lateral and medial orbito-
frontal cortex (OFC)5,6, the head of the caudate nuclei5,7–9

and the anterior cingulate cortex (ACC)10–13 in OCD
patients. In addition, the cerebellum is emerging as a brain
region of interest for OCD14–16. Furthermore, disturbances
in the prefrontal cortex networks have been reported to
contribute to disrupted cortical–striatal–cerebellar circuits
in OCD17.
Recently, we have reported that altered central nervous

system (CNS) insulin signaling may play a role in OCD18.
We built a molecular landscape based on genome-wide
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association studies of OCD19,20. In this landscape, we
identified insulin-related signaling and its downstream
PI3K/AKT/RAC1 cascades as key players in OCD etiol-
ogy, eventually affecting dendritic spine and synapse for-
mation21. This finding is supported by the notion that
OCD symptoms are associated with dysregulated per-
ipheral insulin signaling, i.e. diabetes mellitus. Increased
obsessive symptoms were observed in patients with type 1
diabetes mellitus (DM1)22 and OCD symptoms and gly-
cosylated hemoglobin levels—a measure of type 2 diabetes
mellitus (DM2) severity— showed a positive correlation23.
The most important role of peripheral insulin is regulat-
ing blood glucose concentrations, but glucose uptake in
the CNS is largely independent of insulin, and this is
because the glucose transporters in the blood brain bar-
rier are not regulated by insulin24,25.
That being said, insulin has important, non-metabolic

functions in the CNS, including modulating neuronal
survival26, synaptic and dendritic plasticity27–29, learning
and memory30,31, and neuronal circuitry formation32.
These functions are executed through a number of cas-
cades, including the PI3K/AKT and RAS/MAPK path-
ways21,33. There are two sources of insulin in the brain: (1)
it can be synthesized in the pancreas and enter from the
periphery by crossing the BBB34, and (2) it can be syn-
thesized in the CNS locally35. Moreover, there is a
growing body of evidence pointing toward insulin-related
signaling having an effect on white matter microstructure
in the brain, which is assessed by diffusion tensor imaging
(DTI). For example, insulin resistance in generally healthy
middle-aged and older adults is associated with white
matter microstructural alterations36 In young adults,
hyperglycemia is also associated with increased white
matter hyperintensities37. In addition, many studies report
an association between DM1 or DM2 and white matter
microstructure changes38,39.
In this study, we aimed to elucidate the link between

DM2 and compulsivity-like behavior in the TALLYHO/
JngJ (TH) mouse model at the behavioral, anatomical,
metabolic, and molecular levels. TH mice mimic human
DM2, as they develop hyperglycemia, hyperinsulinemia,
and enlargement of the islets of Langerhans40,41. We
combined behavioral tests, DTI, magnetic resonance
spectroscopy (MRS), and proteomic assays of specific
brain regions in the cortical–striatal–cerebellar loop, and
found that disturbed insulin signaling contributes to the
development of compulsivity-like behavior.

Materials and methods
Mice
TH mice and SWR/J mice, the control strain due to

sharing the highest level of genetic homogeneity with TH
mice42, were obtained from The Jackson Laboratory (Bar
Harbor, ME, USA) and experiments started at 13 weeks of

age (n= 9 per strain, male). The animals were individually
housed (Blueline IVC without top, Tecniplast, Buguggiate,
Italy) with crushed corncob bedding (The Andersons,
Maumee, OH, USA), sizzle nesting material (Datesand
Ltd., Manchester, UK), and an amber mouse igloo shelter
(Datesand Ltd.). Housing was on a reversed day–night
cycle (lights on at 20.00 h) in a ventilated cabinet with a
light adjustment kit (Scantainer, Scanbur, Karlslunde,
Denmark) and ad libitum food (V1244-703, SSNIFF spe-
zialdiäten GmbH, Soest, Germany) and autoclaved demi-
neralized water. Experimental procedures were conducted
after approval of the Animal Ethical Committee of the
Radboud University, Nijmegen, The Netherlands (project
DEC2014-113), an approval in which the required sample
size to ensure adequate power was estimated. A random
number generator was utilized to randomize the location
of the home cages in the cabinet and testing order during
the experimental procedures.

Behavioral studies
After one week of acclimatization to their new envir-

onment and being handled, the mice were used for the
experiments conducted in a room solely lit by an infrared
lamp (Y-maze and marble burying) or in a brightly lit
room (open field and elevated plus maze). After rando-
mization, the animals were tested in the same order
during all experiments. The experiments were videotaped
using a camera mounted above the maze and Media
Recorder software (Noldus, Wageningen, The Nether-
lands). The activity patterns of the animals were traced
using Ethovision XT 9 software (Noldus).
Decreased spontaneous alternation behavior in

rodents is considered an animal model for perseverative
symptoms in OCD patients43. Mice were placed in a Y-
maze (Stoelting Co, Wood Dale, IL, USA) facing the wall
of one of the arms (allocation to start arm was rando-
mized), and allowed to explore for 5 min. Distal arm
entries were identified using video tracing, and defined
as the center point of the mouse being in the distal 1/3
of the arm. These distal arm entries were used to score
spontaneous alternation behavior. An animal going back
to the same distal arm after visiting the center triangle
was scored as a repeated arm entry. Increased repeated
arm entries are also indications of compulsive-like
behavior.
The marble-burying test has been used as a model of

compulsive-like and anxiety-like behaviors in mice, with
an increased number of buried marbles reflecting
increased compulsive-like behavior. Mice were placed
individually in a clean home cage containing 18 glass
marbles evenly spaced on 5 -cm deep sawdust, without
access to food and water for 30min. The number of
marbles that were at least 2/3 buried reflects compulsive/
anxiety-like digging behavior.
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Upon entering an open field, mice are inclined to
explore the peripheral border zone (thigmotaxis) and not
the center zone of the maze. Mice were placed in the
center of a home-built open field (55 × 55 cm) containing
walls (40 cm height) and explored the maze freely for
30min. A decrease in time spent in the center zone was
used as an indication of anxiety-like behavior.
The elevated plus maze (EPM) is used to test anxiety in

rodents44. Animals are placed at the junction of the four
arms (two open and two closed arms) of the EPM
(Stoelting Co), facing the open arm and allowed 5min of
free exploration. A decrease in time spent in the open
arms and number of entries into the open arms reflects
anxious behavior.
Following the behavioral studies, blood was collected via

a tail vein puncture, and glucose levels were measured
using an Accu-Check Aviva hand-held device (Roche
Diabetes Care, Almere, The Netherlands).

Magnetic resonance experiments
Magnetic resonance experiments were performed at an

11.7T BioSpec MR system (Bruker BioSpin, Ettlingen,
Germany) equipped with an actively shielded gradient set
of 600mT/m. A circular polarized volume resonator and
an actively decoupled mouse brain quadrature surface coil
were used as transmit and receive coils, respectively, and
data were acquired with Paravision 5.1 software. Mice
were head-fixed in the magnet using a bite-bar and blunt
earplugs and anesthetized by isoflurane. Anesthesia was
induced with 3–4% isoflurane, after which it was main-
tained at ~2% (1:2 oxygen:air). The respiration rate of the
mice was monitored throughout the experiment, and the
animals’ temperature was maintained at 37.5 °C using a
heated airflow device.
To visualize the brain anatomy, a T1-weighted gradient

echo sequence in three orthogonal orientations was used.
For diffusion tensor imaging (DTI) experiments, 20 axial
slices covering the whole brain were acquired with a T2-
weighted spin-echo echo-planar imaging (EPI)
sequence45. Encoding b-factors of 0 (five b0 images) and
1000 s/mm2 were used, and diffusion sensitizing gradients
were applied along 30 non-collinear directions with the
following imaging parameters: TR= 7750 ms, TE=
21.4 ms, FOV= 20 × 20mm2, slice thickness= 0.5 mm,
matrix= 128 × 128, Δ= 10ms, δ= 4 ms, number of seg-
ments= 4, and acquisition time (TA)= 18min.
Brain metabolite concentrations were quantified by

single-voxel proton MRS using point resolved spectro-
scopy (PRESS) sequence (TR/TE= 2500/11.6 ms, 700
acquisitions and TA= 29min) with image-guided posi-
tioning of voxels of 2.25 µL for the right dorsomedial
striatum (DMS) and 1.47 µL for ACC in both hemispheres
(Supplementary Fig. 1). Variable pulse power and opti-
mized relaxation delays (VAPOR) were employed to

suppress the water signal. For all spectra, a separate
spectrum was acquired without suppressing the water
signal, so that it could serve as a reference. We estimated
the tissue levels of N-acetylaspartate (NAA), creatine
(Cre), glutamate (Glu), glutamine (Gln), taurine (Tau),
total choline (tCho), sum of myo-Inositol and glycine (mI
+Gly), glucose (Glc), GABA, and glutathione (GSH).

Euthanasia
Mice were euthanized by cervical dislocation, followed

by collection of trunk blood and removal of the brain for
proteomics. Blood was immediately centrifuged to obtain
plasma. Brains and plasma were stored at −80 °C until
further processing.

Proteomics
The prefrontal cortex, the striatum, and the cerebellum

were dissected from the frozen brains. Mouse brain tis-
sues were weighed and, for each milligram of tissue, 10 μl
of PBS (Sigma-Aldrich Company Ltd, Dorset, UK) with
protease inhibitors (ThermoFisher, Waltham, MA, USA)
was added. Tissues were lysed on ice by using a sonication
probe and to each lysate, we added an equal volume of
Tissue Extraction Reagent 1 (ThermoFisher) to that of
PBS that was then vortexed. Lysates were centrifuged at
13,000 rpm for 3 min and then aliquoted and stored at
−20 °C. Plasma samples were prepared as per kit proto-
cols. Assays were performed based on the instructions
provided in the manual of the analyte kits. Specifically,
Kcnq1, Bdnf (ABIN2101758 and ABIN2115886, respec-
tively, from antibodies-online GmbH, Aachen, Germany)
and insulin (EMINS, ThermoFisher) were detected by
means of ELISA, whereas Igf1 was assessed by the
Luminex Multiplex kit (LXSAMSM-02, Bio-Techne Ltd,
Abingdon, UK).

Data analyses
Data from the behavior studies were analyzed using

Ethovision XT 9 software (Noldus) for tracing. Unfortu-
nately, several recordings from the open-field test were
lost due to a technical failure, resulting in a lower power.
In addition, two recordings from the EPM were excluded
from further analyses, since the animals fell from the
maze prior to the time limit. Tissue concentrations of
MRS-detected metabolites were evaluated relative to the
total creatine (tCr) signal, as it was found to be unchanged
in our models when using water concentrations as refer-
ence and the metabolite’s signals were fitted by LCModel
software46. Only signals with a Cramer-Rao lower bound
(CRLB) ≤ 20% were included in the quantification. The
DTI analysis was done using ExploreDTI47 through which
fractional anisotropy (FA) and mean diffusivity (MD)
maps were generated. Regions of interest (ROIs) were
selected based on Allan mouse brain atlas48, and ImageJ
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software49 was used to draw ROIs on two subsequent
slices (Supplementary Fig. 2) and extract their averaged
FA and MD values.
Statistical analyses were performed using IBM SPSS

Statistics 22. Due to large variation in the proteomics data,
we applied Grubbs’ test50 for outlier correction to the data
set. In addition, several analyses could not be executed
due to either technical difficulties during the extraction of
the tissue or due to limited tissue availability (see Sup-
plementary Table 1 for details). Significance was tested via
independent two-sided t tests (equal variances not
assumed), and potential correlations were assessed by
Pearson correlations. Both methods were then followed by
correction for multiple testing using the false discovery
rate (FDR) method, incorporating potential dependencies
between p-values51. To calculate the FDR, we used the
mafdr function in MATLAB (R2012a; The Mathworks)
using the bootstrap selection method for the FDR para-
meter lambda. Whenever possible, the researchers were
blinded with regard to the strain they were investigating.
The data are displayed as mean ± SEM with p < 0.05 as
significant.

Results
Phenotype of TALLYHO/JngJ mice
TH mice had increased blood glucose levels compared

to SWR/J mice (332.1 ± 61.8 vs. 121.3 ± 5.7 mg/dl, n= 9
per strain, p= 0.009), confirming that they show glucose
elevations consistent with DM2 (Supplementary Fig. 3A).
TH mice demonstrated a significant reduction in loco-
motion, as quantified in the Y-maze (849.2 ± 113.2 vs.
1818.1 ± 36.6 cm traveled, n= 9 per strain, p= 0.000056),
the open-field test (7698.7 ± 767.0 and 12952.5 ± 903.4 cm
traveled, p= 4 per strain, p= 0.005) and the EPM
(512.0 ± 95.5 vs. 1388.5 ± 33.8 cm traveled, n= 7 [TH] or
n= 9 [SWR/J], p= 0.000036) (Supplementary Fig. 3B).
These findings are in keeping with known literature40,52.

TALLYHO/JngJ mice are more perseverative and anxious
Decreased spontaneous alternation behavior reflects

compulsivity-like behavior43. When allowed to explore
freely, mice alternate entering the three arms of the Y-
maze. TH mice showed a considerable reduction in
spontaneous alternation behavior (37.4 ± 6.8 vs. 62.3 ±
2.1% spontaneous alternation, n= 9 per strain, p= 0.006;
Fig. 1a). In addition, TH mice frequently entered the same
arm twice successively (11.3 ± 4.0 vs. 1.48 ± 0.74% of the
total arm entries being repeated arm entries, n= 9 per
strain, p= 0.041; Fig. 1b). No compulsive digging was
observed in the marble-burying test (8.2 ± 1.7 vs. 10.1 ±
1.1 marbles buried, n= 9 per strain, p= 0.365; Fig. 1c).
We also tested whether TH mice exhibited altered anxiety
levels. In the open field, there was a trend toward TH
mice spending less time in the center (204.6 ± 26.6 vs.

254.2 ± 16.5 s, n= 4 per strain, p= 0.174; Fig. 1d). More
importantly, TH mice spent less time in the open arms of
the EPM, suggesting increased anxiety (3.8 ± 0.98 vs.
23.7 ± 2.97 s, n= 7 [TH] and n= 9 [SWR/J], p= 0.000096;
Fig. 1e). Interestingly, blood glucose levels were negatively
correlated with spontaneous alternation behavior (r=
−0.495, n= 18, p= 0.037; Fig. 1f), suggesting that higher
blood glucose levels (i.e. hyperglycemia) was associated
with an increase in compulsive-like behavior. Taken
together, TH mice present both compulsivity-like and
anxious behaviors.

MRS reveals changes in the ACC and DMS in TALLYHO/
JngJ mice
Single-voxel proton MRS was performed to assess

metabolite levels in ACC and DMS of the TH and SWR/J
mice. The metabolites are reported relative to tCr as it
was found to be unchanged in our models when using
water concentrations as reference (DMS: 19.7 ± 1.76, n=
9 [TH] and 19.6 ± 0.61, n= 8 [SWR/J], p= 0.95; ACC:
12.8 ± 1.70, n= 9 [TH], 14.0 ± 2.74, n= 6 [TH], p= 0.70,
Supplementary Fig. 4). The TH mice had elevated Glc
levels in the DMS (0.527 ± 0.025 vs. 0.308 ± 0.035, n= 9
[TH] and n= 7 [SWR/J], p= 0.0031; Fig. 2a). In addition,
GSH levels were specifically increased in the ACC of TH
mice (0.325 ± 0.021 and 0.212 ± 0.028, n= 9 [TH] and n
= 6 [SWR/J], p= 0.047; Fig. 2b). Glc levels in the DMS (r
= 0.664, n= 16, p= 0.005) but not in the ACC (r= 0.415,
n= 16, p= 0.11) correlated with their concentration in
blood (Fig. 2c, d). In addition, we observed a significant
negative correlation between glucose levels in the DMS
specifically, and spontaneous alternation (r=−0.658, n=
16, p= 0.006; Fig. 2e and Supplementary Table 2), sug-
gesting that an increase in the glucose levels in the DMS
resulted in increased compulsivity-like behavior.

White matter microstructure changes may underlie
compulsivity-like behavior
The FA and MD of the corpus callosum (CC), OFC,

ACC, DMS, nucleus accumbens (NAcc), and the superior
cerebellar peduncles (SCP) were assessed (Supplementary
Fig. 5). TH mice had increased FA (0.547 ± 0.008 vs.
0.478 ± 0.01, n= 9 per strain, p= 3.7E-05) and decreased
MD (7.44E-04 ± 5.56E-06 vs. 7.78E-04 ± 1.21E-05, n= 9
per strain, p= 0.03) in the CC, decreased FA (0.18 ± 0.01
vs. 0.20 ± 0.01, n= 9 per strain, p= 0.01) and MD (7.17E-
04 ± 1.10E-05 vs. 7.58E-04 ± 1.18E-05, n= 9 per strain, p
= 0.02) in the DMS, and decreased FA (0.28 ± 0.02 vs.
0.36 ± 0.01, n= 9 per strain, p= 0.003) and MD (6.50E-
04 ± 2.89E-05 vs. 7.44E-04 ± 1.30E-05, n= 9 per strain, p
= 0.01) values in the SCP (Fig. 3a, b). Of note, FA in the
DMS and the SCP of TH and SWR/J animals positively
correlated with spontaneous alternation behavior (r=
0.734, n= 18, p= 0.002 and r= 0.548, n= 18, p= 0.02,

van de Vondervoort et al. Translational Psychiatry           (2019) 9:225 Page 4 of 11



respectively), suggesting that the increased FA in these
brain regions is associated with increased spontaneous
alternation, irrespective of the mouse strain (Fig. 3c, d).
Correlations between other DTI findings and sponta-
neous alternation behavior failed to reach significance
(Supplementary Table 3). In addition, we performed
correlation analyses between the DTI and MRS results in
the corresponding brain regions, but all correlations failed
to reach significance (Supplementary Table 4).

Levels of Insulin-like growth factor 1 proteins in TALLYHO/
JngJ mice are altered in both plasma and brain
Protein expression was examined for four molecules

that have been associated with OCD before: insulin18,
insulin-like growth factor 1 (Igf1)18,53, potassium voltage-
gated channel subfamily KQT member 1 (Kcnq1)18—that
inhibits insulin secretion54—and brain-derived neuro-
trophic factor (Bdnf)—a positive regulator of insulin
secretion and known to be involved in OCD18,55–58.
Protein expression levels were determined in the plasma,
prefrontal cortex, striatum, and cerebellum of TH and

SWR/J mice (Supplementary Table 1). The protein
selection was based on the molecular landscape of OCD
that we built (see above)18. Igf1 concentrations were
decreased in the cerebellum of TH mice (90.2 ± 12.3 vs.
168.7 ± 15.5 pg/ml, n= 6 [TH] and n= 8 [SWR/J], p=
0.0002; Fig. 4a), while they were increased in the plasma of
these mice (1217.4 ± 453.6 vs. 97.6 ± 22.2 pg/ml, n= 7
[TH] and n= 4 [SWR/J], p= 0.049, Fig. 4b). In all tested
samples, insulin and Bdnf expression in plasma fell below
the detection limit, which was also the case for Igf1 levels
in the striatum. No significant correlations between the
proteomic data set and OCD-like behavior were observed
(Supplementary Table 5).

Discussion
Previously, we proposed a role for (CNS) insulin-

regulated dendritic spine formation and synaptic plasti-
city in OCD in a molecular landscape based on data from
genome-wide association studies18. The aim of this study
was to find additional evidence for the involvement of
insulin-related signaling in OCD, which was carried out at

Fig. 1 Increased compulsive- and anxiety-like behaviours are observed in TALLYHO/JngJ mice while compulsive behaviour correlates with
blood glucose levels. a TALLYHO/JngJ (TH) mice show increased compulsive behavior compared to SWR/J mice (the control strain), as seen in a
decrease in the spontaneous alternation behavior (37.4 ± 6.8 vs. 62.3 ± 2.1% spontaneous alternation, n= 9 per strain, p= 0.006). b In addition, an
increase in the number of repeated arm entries was observed in the TH mice (11.3 ± 4.0 vs. 1.48 ± 0.74% of the total arm entries being repeated arm
entries, n= 9 per strain, p= 0.041). c No difference was observed between the two strains in compulsive marble burying (8.2 ± 1.7 vs. 10.1 ± 1.1
marbles buried, n= 9 per strain, p= 0.365). d In addition, TH mice display increased anxiety behavior: a trend was observed toward a TH mice
spending less time in the center zone of the open field compared with SWR/J mice (204.6 ± 26.6 vs. 254.2 ± 16.5 s, n= 4 per strain, p= 0.174). e More
importantly, TH mice spent less time in the open arms of the elevated plus maze (EPM), suggesting increased anxiety (3.8 ± 0.98 versus 23.7 ± 2.97 s,
n= 7 [TH] and n= 9 [SWR/J], p= 0.000096). f Blood glucose levels were negatively correlated with spontaneous alternation behavior (r=−0.495, n
= 18, p= 0.037)
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three levels: behavioral assessment of TH mice (a model
for DM2), characterization of their brains via MR imaging
and spectroscopy and investigation of the prefrontal
cortex, striatum, cerebellum, and plasma of these mice at
the molecular level.
At the behavioral level, we showed that TH mice display

a compulsivity-like phenotype, and that these mice were
more anxious than their control counterparts. These
results are in line with previously published findings that
anxiety is a well-known symptom of OCD1. In addition,
patients with DM1 and DM2 display more symptoms of
OCD than control subjects22,23, and the prevalence of
anxiety symptoms in patients with diabetes is higher than
in the general population59.
Regarding the characterization of the brain, MRS

revealed an increase in glucose levels in the DMS. In this
respect, insulin resistance inherent to DM2 may have
caused increased glucose levels in the DMS, which

suggests that DM2 in TH animals has a similar effect on
the glucose metabolism of the DMS than on the periph-
eral circulation. In turn, this is in keeping with our finding
that both blood and DMS glucose levels are negatively
correlated with spontaneous alternation behavior. This
also provides a more direct link between CNS glucose
levels and OCD-like behavior, i.e., increased CNS glucose
is associated with increased OCD-like behavior. That
being said, it is still unclear what is the relative con-
tribution of this change in glucose metabolism in the
periphery and the CNS at the behavioral level.
The second finding of our MRS analyses is an increase

in GSH in the ACC of TH mice. GSH has previously been
studied in the context of OCD, although the number of
studies is limited. Although no studies show changes in
the anterior cingulate cortex, GSH levels in the posterior
cingulate cortex were found to be significantly lower in
OCD patients vs. control subjects60. In addition, a

Fig. 2 MRS revealed differences in the metabolite content of the dorsomedial striatum (DMS) and anterior cingulate cortex (ACC) in
TALLYHO/JngJ mice. The metabolites of interest are glutamate (Glu), glutamine (Gln), taurine (Tau), N-acetylaspartate (NAA), sum of myo-Inositol
and glycine (mI+ Gly), total choline (tCho), glucose (Glc), GABA, and glutathione (GSH). MRS data are expressed as ratios of the metabolites relative to
the total creatine (tCr) levels. a Glucose (Glc) ratios (relative to tCr) were increased in brains of TALLYHO/JngJ (TH) mice in the DMS compared with
the control strain (SWR/J mice) (0.527 ± 0.025 vs. 0.308 ± 0.035, n= 9 [TH] and n= 7 [SWR/J], p= 0.0031). b An increase in glutathione (GSH) ratios
(relative to tCr) was observed in the ACC of TH mice (0.325 ± 0.021 and 0.212 ± 0.028, n= 9 [TH] and n= 6 [SWR/J], p= 0.047). Differences in the
other metabolites (glutamate [Glu] glutamine [Gln], taurine [Tau], N-acetylaspartate [NAA], the sum of myo-Inositol and glycine [mI+ Gly], total
choline [tCho], and GABA) failed to reach significance. c Blood glucose concentrations correlated with DMS Glc concentration (r= 0.664, n= 16, p=
0.005). d No significant correlation was observed between the blood glucose concentrations and ACC Glc concentration (r= 0.415, n= 16, p= 0.11).
e Interestingly, we observed a significant negative correlation between glucose levels in the DMS specifically, and spontaneous alternation (r=
−0.658, n= 16, p= 0.006)
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reduction in GSH levels in the serum of OCD patients was
reported61, suggesting that GSH levels are affected in both
the CNS and peripheral tiisues of OCD patients. This is
corroborated by findings of altered GSH levels in animal
models of OCD: Sapap3 knockout mice show a reduction

in GSH levels in the striatum62, and deer mice that show
high levels of stereotypical behavior have reduced GSH
levels in the frontal cortex63.
Interestingly, in keeping with the main aim of this study

(see above) and although more research is warranted, our

Fig. 3 DTI showed differences in white matter microstructure in brains of TALLYHO/JngJ (TH) mice compared to the control strain (SWR/J).
a The fractional anisotropy (FA) was increased in the corpus callosum (CC) (0.547 ± 0.008 vs. 0.478 ± 0.01, n= 9 per strain, p= 3.7E-05) and decreased
in the dorsomedial striatum (DMS) (0.18 ± 0.01 vs. 0.20 ± 0.01, n= 9 per strain, p= 0.01) and superior cerebellar peduncle (SCP) (0.28 ± 0.02 vs. 0.36 ±
0.01, n= 9 per strain, p= 0.003) of TH mice. No differences were observed in the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), and
nucleus accumbens (NAcc). b The same three brain regions showed a decrease in the mean diffusivity (MD) in TH mice: CC (7.44E-04 ± 5.56E-06 vs.
7.78E-04 ± 1.21E-05, n= 9 per strain, p= 0.03), DMS (7.17E-04 ± 1.10E-05 vs. 7.58E-04 ± 1.18E-05, n= 9 per strain, p= 0.02) and SCP (6.50E-04 ± 2.89E-
05 vs. 7.44E-04 ± 1.30E-05, n= 9 per strain, p= 0.01). c, d Compulsivity-like behavior as shown by the spontaneous alternation is positively correlated
to the FA in DMS and SCP (r= 0.734, n= 18, p= 0.002 and r= 0.548, n= 18, p= 0.02, respectively)

Fig. 4 TALLYHO/JngJ mice show changes in cerebellar and plasma Insulin-like growth factor 1 protein levels. a The concentration of Insulin-
like growth factor 1 (Igf1) is reduced in the cerebellum of TALLYHO/JngJ (TH) mice compared with their controls, SWR/J mice (90.2 ± 12.3 vs. 168.7 ±
15.5 pg/ml, n= 6 [TH] and n= 8 [SWR/J], p= 0.0002). b Interestingly, the concentration of Igf1 is increased in the blood plasma of TH mice (1217.4 ±
453.6 vs. 97.6 ± 22.2 pg/ml, n= 7 [TH] and n= 4 [SWR/J], p= 0.049)
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finding about GSH also adds to the evidence about insulin
signaling being implicated in OCD-like behavior. Insulin
itself stimulates the synthesis of GSH64, while GSH is also
involved in the same PI3K/AKT/RAC1 signaling cascades
that are regulated by insulin18. For instance, GSH inhibits
the activation of RAC165 whereas activation of PI3K and
AKT regulates GSH synthesis64,66. In summary, our MRS
results provide further insights and clues for further
research into how insulin regulates OCD-linked behavior
by affecting specific brain regions. However, the relative
contribution of the direct metabolic effects and indirect
effects of insulin on synaptic plasticity needs to be
elucidated.
On the level of the white matter microstructure, DTI

revealed TH mice displaying differences in the CC, DMS,
and SCP. Our finding of changes in the CC is in line with
previous studies, since multiple studies report increased
FA in the CC in OCD patients, but other studies found a
decreased FA in this brain region, both in adult and
pediatric populations (reviewed in ref. 67), suggesting that
although no consensus has been reached about the
directionality of the effect, it is clear that the white matter
microstructure of the CC is affected in OCD patients. Of
particular notice is one study, in which drug-naive OCD
patients were shown to have an increase in FA in the CC,
the internal capsule and white matter in the area super-
olateral to the right caudate68. This increase in FA was no
longer observed after 12 weeks of citalopram treatment68.
Lastly, although we found no significant correlation
between FA in the CC and spontaneous alternation
behavior, it is interesting to note that FA reduction in the
CC was found to be associated with greater insulin
resistance in generally healthy adults36, providing a clue as
to how FA changes may be related to disturbed insulin
signaling. Few studies have investigated the white matter
microstructure in the DMS and/or the SCP of OCD
patients, and no consensus has been reached regarding
these differences69–71. Of note, one recent study found an
increase in FA in the cerebellum of OCD patients72, which
is in line with our finding of increased FA in the SCP. In
addition, although white matter microstructure is known
to be altered in DM1 and DM238,39, no studies have
shown differences in specifically the CC, DMS, or SCP in
patients with DM2.
In addition, DTI analyses revealed that the FA of the

DMS and SCP positively correlated with spontaneous
alternation behavior in the Y-maze. This correlation may
indicate that differences in white matter microstructure at
least partially underlie the compulsivity-like behavior we
observed. Most interestingly, our finding of a positive
correlation between glucose levels in the blood—which
are regulated by peripheral insulin—and in the DMS (see
above), suggests an “overspill” of blood glucose into the
DMS. Combined with the observed positive correlation

between FA in the DMS and spontaneous alternation
behavior, this suggests that increased DMS glucose
increases compulsivity-like behavior through decreasing
FA. Taken together, all these findings indicate that at least
to some extent, compulsive behavior is indirectly regu-
lated by peripheral insulin signaling.
At the molecular level, we found no significant changes

in the concentrations of insulin, Kcnq1, and Bdnf in any of
the investigated tissues. However, it is important to note
that insulin-related signaling involves a wide variety of
molecules, some of which we did find to be significantly
changed in the TH animals. In this respect, we observed
that TH mice have a decreased expression of Igf1 in the
cerebellum, but increased Igf1 plasma levels. Our findings
of different Igf1 levels in the cerebellum and plasma of
compulsive TH mice vs. controls support our hypothesis
that insulin-related signaling pathways are involved in
compulsive behavior, possibly affecting SCP micro-
structure. Specifically, the observed imbalance between
peripheral and central Igf1 expression is noteworthy. First,
IGF1 levels were found to be increased in the serum of
OCD patients compared with controls53, which is in line
with the increased plasma Igf1 levels we observed in the
TH mice. Disturbances in IGF1 levels such as that we
observed may be an indication of reduced sensitivity of
tissues to IGF1, so called IGF1 resistance, which often
accompanies insulin resistance in DM273. Insulin/IGF1
resistance blunts the activation of the insulin receptor and
IGF1 receptor (IGF1R) signaling cascades, which could
negatively impact on dendritic spine and synapse
formation21.
Interestingly, IGF1 is also produced locally in the cer-

ebellum, and can act there in a paracrine or autocrine
fashion74. IGF1 and IGF1R are known to be abundant in
the cerebellum both in rodents and humans75,76. More
specifically, IGF1R is present both presynaptically (i.e. in
axonal terminals making contact with the soma of cere-
bellar Purkinje cells) and postsynaptically, in the dendrites
and soma of Purkinje cells of the cerebellar cortex76. IGF1
is extremely important during the (pre- and postnatal)
development of the cerebellum, as it is essential for nor-
mal dendritic growth and Purkinje cell survival74,77 and
for regulating synaptic plasticity of the cerebellum in
general78. Given the above, we would like to speculate that
the observed imbalance in Igf1 expression levels in TH
animals (i.e., more Igf1 in plasma and less Igf1 in cere-
bellum) leads to compulsive behavior because the
decrease of available Igf1 to bind Igf1r has a negative
impact on synaptic plasticity in the cerebellum and sub-
sequently on spontaneous alternation behavior.
Although no studies have been undertaken to elucidate

the effects of dendritic spine and synapse formation in
human subjects, this is well studied in animal models of
OCD. Hoxb8 mutant mice—that exhibit compulsive
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grooming similar to humans with OCD-like traits—dis-
play profound differences in synaptic plasticity79. In
addition, mice that lack SAP90/PSD95-associated protein
3 (Sapap3; also known as Dlgap3), a postsynaptic scaf-
folding protein at excitatory synapses that is highly
expressed in the striatum, exhibit increased anxiety and
compulsive grooming behavior combined with defects in
corticostriatal synapses80. Specifically, these effects are
caused by a reduction in the AMPA-type glutamate
receptor (AMPAR)-mediated synaptic transmission in
corticostriatal synapses81,82.
Taken together, our experimental findings support our

hypothesis that insulin-related pathways are involved in
OCD etiology while also supporting an association
between white matter integrity and compulsive behavior.
Although it is still not clear what the relative contribution
is of (1) the effect of ‘spill over’ peripheral insulin and (2)
locally produced CNS insulin, our data suggest that at
least some of the observed behavioral changes are due to
the effects of CNS insulin. That being said, further
research is required in order to dissociate the peripheral
and central insulin effects. For example, the effect on
OCD(-like symptoms) could be tested by using pharma-
cological interventions such as an IGF1 agonist or met-
formin, a first line treatment of DM2. In addition, mouse
models with a conditional/brain region-specific knock-
down of Igf1 and/or Igf1r could be behaviorally assessed.
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