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Abstract
Previous resting-state functional magnetic resonance imaging (rs-fMRI) studies of obsessive-compulsive disorder
(OCD) have facilitated our understanding of OCD pathophysiology based on its intrinsic activity. However, whether the
group difference derived from univariate analysis could be useful for informing the diagnosis of individual OCD
patients remains unclear. We aimed to apply multivariate pattern analysis of different rs-fMRI parameters to distinguish
drug-naive patients with OCD from healthy control subjects (HCS). Fifty-four drug-naive OCD patients and 54 well-
matched HCS were recruited. Four different rs-fMRI parameter maps, including the amplitude of low-frequency
fluctuations (ALFF), fractional amplitude of low-frequency fluctuations (fALFF), regional homogeneity (ReHo) and
functional connectivity strength (FCS), were calculated. Training of a support vector machine (SVM) classifier using rs-
fMRI maps produced voxelwise discrimination maps. Overall, the classification accuracies were acceptable for the four
rs-fMRI parameters. Excellent performance was achieved when ALFF maps were employed (accuracy, 95.37%, p < 0.01),
good performance was achieved by using ReHo maps, weaker performance was achieved by using fALFF maps, and
fair performance was achieved by using FCS maps. The brain regions showing the greatest discriminative power
included the prefrontal cortex, anterior cingulate cortex, precentral gyrus, and occipital lobes. The application of SVM
to rs-fMRI features may provide potential power for OCD classification.

Introduction
Obsessive-compulsive disorder (OCD) is a common

debilitating disorder characterized by persistent intrusive
thoughts and repetitive actions, with a prevalence of 1% to
3%1. While cortico–striato–thalamo–cortical (CSTC)
dysfunction has been found to contribute to the patho-
genesis of OCD, emerging evidence suggests that broader
brain regions, such as the parietal cortex and insula, are

involved in this disorder2–4. Such widespread alterations
may be due to the diversity of tasks used to investigate
OCD. The investigation of altered patterns of brain
activity during rest in OCD has the advantage of identi-
fying neural mechanisms that are not specific to a task,
which will provide a reliable measure of baseline brain
activity5 and may complement and extend findings from
task-based studies.
Recent advances in resting-state functional magnetic

resonance imaging (rs-fMRI) have facilitated our under-
standing of OCD pathophysiology based on its intrinsic
activity. Among various rs-fMRI parameters, both the
amplitude of low-frequency fluctuations (ALFF) and
the fractional ALFF (fALFF) of the BOLD signal measure
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the magnitude of the regional activity amplitude and
reflect the intensity of spontaneous neural activity6. In
addition, fALFF was originally regarded as less sensitive to
physiological noise7. Regional homogeneity (ReHo) mea-
sures Kendall’s coefficient concordance in neighboring
voxels to reflect the coherence of the BOLD signal
amplitude between a single voxel and its nearest neigh-
bors8. Given the computational basis of this parameter, it
has been suggested as a measure of localized con-
nectivity9, providing information about local alterations in
brain function. Functional connectivity strength (FCS),
also known as degree centrality, takes a given region’s
relationship with the entire functional connectome into
account. Examinations of FCS have focused on the iden-
tification of “functional hubs” in whole-brain net-
works10,11. Unlike the functional connectivity approach,
all of these parameters do not require a priori seed
selection; therefore, they have the potential to evaluate
abnormalities of certain brain regions at the whole-brain
level.
Previous studies have successfully revealed altered

ALFF12–14, fALFF15–17, ReHo18,19, and FCS20,21 maps in
various cerebral regions, including traditional CSTC cir-
cuits and newly found regions, such as the parietal,
occipital, and temporal lobes and the cerebellum. These
altered spontaneous neuronal activity and OCD-related
brain network hubs improve our understanding of the
pathophysiologic characteristics of OCD by revealing
intrinsically abnormal function within and beyond CSTC
circuits. However, previous studies mainly focused on
localizing alterations based on group-level differences
using univariate analysis and ignored information con-
tained in spatial distribution patterns. Thus, whether
group differences can be useful for informing the diag-
nosis of individual OCD patients remains unclear.
Recently, multivariate pattern analysis based on a

machine learning algorithm has been introduced for
neuroimaging analysis. It is a promising analytical tech-
nique allowing the classification of individual observations
into distinct groups and is sensitive to spatially distributed
information. This approach has been used to identify
neural imaging biomarkers of psychiatric disorders based
on both structural and functional images22,23. In parti-
cular, rs-fMRI has been applied to classify autism24,
depression25, and schizophrenia26 with moderate accu-
racy using the support vector machine (SVM), a multi-
variate pattern analysis-based classifier. However, in
regard to OCD, although accurate classification has been
achieved based on structural27, diffusion28, and task-based
functional MRI images29, few studies have explored the
potential diagnostic value of rs-fMRI data to date, with
one study reporting 73% classification accuracy by a
whole-brain functional connectivity network30. However,

it is difficult to draw a conclusion about the classification
value of certain abnormal regions from such a study.
In the current study, we employed a multiparameter

classification approach to distinguish drug-naive patients
with OCD from healthy control subjects (HCS) at the
individual level based on intrinsic neural activities
reflected by ALFF, fALFF, ReHo, and FCS. Our aims were,
first, to investigate which rs-fMRI parameter achieves the
best discrimination between OCD and HCS and, second,
to examine whether there is overlap between multivariate
pattern analysis and univariate analysis.

Materials and methods
Subjects
This retrospective study was approved by the Ethics

Committee of the West China Hospital, Sichuan Uni-
versity, and written informed consent was obtained from
each participant. A total of 54 OCD patients and 54 sex-
and age-matched HCS participated in this study (Table 1).
All participants were right-handed and native Chinese
speakers. OCD patients were recruited from the Mental
Health Center, West China Hospital, Sichuan University,
and diagnoses were confirmed using the Structured
Clinical Interview for DSM-IV Axis I disorders (SCID) by
two experienced psychiatrists. Exclusion criteria included
(1) participants younger than 18 years or older than
60 years; (2) psychiatric comorbidity assessed using the
SCID; (3) any history of major physical illness, cardio-
vascular disease or psychiatric or neurological disorder;
(4) substance abuse or dependence; and (5) pregnancy.
The Yale-Brown Obsessive-Compulsive Scale (Y-BOCS)
was used to rate the severity of OCD symptoms, and the
14-item Hamilton Anxiety Scale (HAMA) and 17-item

Table 1 Demographic and clinical characteristics of the
participants

Variable OCD (n= 54) HCS (n= 54) p-value

Mean SD Mean SD

Gender (male/female) 34/20 - 34/20 - 1.00

Age (years) 30.41 8.07 28.39 11.22 0.29

Course of illness (years) 8.15 5.69 - -

Y-BOCS - -

Obsession score 10.67 3.60 - -

Compulsive score 10.06 4.44 - -

Total score 20.72 5.30 - -

HAMD 17 8.19 5.87 - -

HAMA 14 9.24 5.15 - -

OCD obsessive-compulsive disorder, HCS healthy control subjects, SD standard
deviation, Y-BOCS Yale-Brown Obsessive-Compulsive Scale, HAMD Hamilton
Depression Rating Scale, HAMA Hamilton Anxiety Rating Scale
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Hamilton Depression Scale (HAMD) were used to rate
anxiety and depressive symptoms, respectively.
These patients had not received any prior psychiatric

medications for various reasons, mainly because of (1) a
lack of understanding or recognition of the severity of
mental illness, (2) poor socioeconomic conditions that
limited travel and funds for medical care in rural areas,
and (3) a lack of medical care close to the time of illness
onset due to the limited popularity of family physicians in
China. As a result of these factors, each patient had been
sheltered in the home without medical care through the
course of the illness.
HCS were recruited from the local area using poster

advertisements and were screened using the SCID (non-
patient edition) by the same psychiatrists to confirm the
current absence of psychiatric and neurological illness, as
well as the absence of a history of psychiatric illness
among first-degree relatives.

Image acquisition
The MRI examinations were performed via a 3-Tesla

GE MRI system with an 8-channel phase-array head coil.
Foam pads were used to reduce head motion and scanner
noise. Prior to the scan, the subjects were instructed to
keep their eyes closed, remain relaxed but not fall asleep,
and move as little as possible during scanning. The
images were obtained via a gradient-echo echo-planar
imaging sequence with the following parameters: time
repetition= 2000 ms, time echo= 30 ms, flip angle= 90°,
slice thickness= 5 mm with no slice gap, field of view=
240 × 240 mm2, 30 axial slices, and 200 volumes in each
run.

Image preprocessing
The rs-fMRI data were processed using the Data Pro-

cessing Assistant for Resting-State fMRI (DPARSF, http://
www.restfmri.net, version 2.1), implemented within the
MATLAB toolbox. We discarded the first ten time-points
to ensure signal stabilization. Slice timing and head
motion correction were conducted. We used the motion
correction strategy suggested by Yan et al.31: (1) regres-
sion of realigned data on 6 head motion parameters, 6
head motion parameters one time point before, and the 12
corresponding squared items (Friston 24-parameter
model)32 and (2) identification of “bad” time-points
using a threshold of framewise displacement > 0.2 mm,
as well as one back and two forward neighbors, as
reported by Power et al.33, followed by modeling each
“bad” time point as a separate regressor in the regression
models34,35. All subjects were under the threshold of
framewise displacement= 0.2 mm. The subsequent ana-
lysis was performed within good data. Next, the images
were normalized to the standard Montreal Neurological
Institute template and spatially resampled to a voxel size

of 3 × 3 × 3mm3. Subsequently, the linear trend of the
fMRI data was removed, and bandpass filtering
(0.01–0.08 Hz) was conducted to decrease the impact of
high-frequency physiological noise and very low-
frequency drift. Six motion parameters and the signals
from the cerebrospinal fluid and white matter were used
as nuisance covariates to reduce the effects of head
motion and nonneuronal BOLD fluctuations. The
Resting-State fMRI Data Analysis Toolkit (REST) (http://
www.restfmri.net/forum, version 1.8) was then used for
computation of ALFF, fALFF, ReHo, and FCS. Details
about the calculation of the four rs-fMRI parameters are
presented below.

ALFF and fALFF calculation
The ALFF images were computed by extracting power

spectra via a Fast Fourier Transform and computing the
sum of amplitudes in the low-frequency bands
(0.01–0.08 Hz). The ALFF measure at each voxel repre-
sents the averaged square root of the power in the above
frequency windows normalized by the mean within-brain
ALFF value for that subject. For fALFF, the measure was
scaled by total power across all available frequencies36.
Finally, both ALFF and fALFF images were smoothed by
an 8-mm full-width half maximum (FWHM) Gaussian
kernel.

ReHo calculation
Individual ReHo maps were generated by calculating the

Kendall coefficient of concordance (KCC) of the time
series of a given voxel with those of its neighbors (26
voxels) in a voxelwise manner8. Afterwards, a whole-brain
mask was adopted to remove the nonbrain tissues. For
standardization purposes, the individual ReHo maps were
divided by their own global mean KCC within the whole-
brain mask. Then, spatial smoothing was performed on
the standardized individual ReHo maps with a Gaussian
kernel of 8-mm FWHM.

FCS calculation
We first computed Pearson’s correlations between the

time series of all pairs of voxels, constructing a whole-
brain connectivity matrix for each participant. A prior gray
matter map (threshold of 0.2) in SPM8 was employed. To
improve normality, we then transformed individual cor-
relation matrices to a z-score matrix using a Fisher r-to-z
transformation. For a given voxel, FCS was computed as
the sum of the connections (z-values) between a given
voxel and all other voxels. Considering the ambiguous
interpretation of negative correlations with removal of the
global signal, we conservatively restricted our analysis to
positive correlations above a threshold of r= 0.2. Such a
threshold was chosen to eliminate voxels with weak cor-
relations attributable to signal noise37,38. The FCS maps
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were further smoothed with an 8-mm Gaussian kernel and
normalized to standard z-scores.

Univariate analysis of group comparisons
To detect group differences in demographic variables

between patients with OCD and HC, two-sample t-tests
and chi-square analyses were performed using SPSS
software (IBM SPSS Statistics for Windows, version 19.0).
We used a univariate approach to investigate differences
in ALFF, fALFF, ReHo, and FCS between OCD patients
and HCS in SPM8 software (http://www.fil.ion.ucl.ac.uk/
spm/software/spm8/). Statistical inferences were made at
p < 0.05 (corrected for multiple comparisons using the
false discovery rate at the voxel level).

Multivariate pattern analysis
We used the SVM, as implemented in the PROBID

software package (http://www.brainmap.co.uk/probid.
htm, version 1.04), to investigate the diagnostic potential
of four maps. The PROBID software allows for a linear
kernel matrix (which measures the similarity between all
pairs of brain images) to be precomputed and supplied to
the classifier. This approach affords a substantial increase
in computational efficiency and permits whole-brain
classification without requiring explicit dimensionality
reduction. Individual brain scans were treated as points
located in a high-dimensional space defined by the rs-
fMRI maps in the preprocessed images. In this high-
dimensional space, a linear decision boundary was defined
by a “hyperplane” that separated the individual brain
scans according to a class label (in this case, OCD vs.
HCS).
SVM classification aims to classify data points by

maximizing the margin between classes in a high-
dimensional space. This classification process consists of
two steps, training and testing. First, an SVM algorithm is
trained on a well-characterized sample to establish the
hyperplane in high-dimensional space that best distin-
guishes the different categories (i.e., OCD vs. HCS). Sec-
ond, once the optimal hyperplane is developed from the
training data, it is applied to a new “testing” dataset to
establish its generalizability. Feature selection was per-
formed based on the training dataset. Four types of fea-
tures, ALFF, fALFF, ReHo, and FCS, were used in the
present study. The machine learning algorithm finds the
discriminating regions using whole-brain information
without prior selection of regions.
A “leave-one-out” cross validation was used, which

involved excluding a single subject from each group and
training the classifier using the remaining subjects. The
subject pair excluded was then used to test the ability of
the classifier to reliably distinguish between categories
(i.e., OCD vs. HCS). This procedure was repeated for each
subject pair to assess the overall accuracy of the SVM39,40.

The statistical significance of the overall classification
accuracy was determined by permutation testing39, a
nonparametric test that involves repeating the classifica-
tion procedure 1000 times with a different random per-
mutation of the training group labels and counting the
number of permutations achieving higher sensitivity and
specificity than the true labels.
To enable the visualization of the discriminating pattern

for each measurement, we colored all voxels that had
values >30% of the maximum value of the discrimination
map. This arbitrary threshold predominantly eliminates
noise components, thus enabling better visualization of
the most discriminating regions41,42. Classification per-
formance was assessed by computing the accuracy, sen-
sitivity, specificity, and receiver operating characteristic
(ROC) curve, from which the area under the ROC curve
(AUC) was calculated.

Correlation with symptom severity
Relationships with symptom severity were examined by

extracting ALFF, fALFF, ReHo, and FCS values from
regions showing group differences and correlating these
values with Y-BOCS scores, HAMA scores, and HAMD
scores, with age, gender and onset time as covariates in
the OCD group.

Results
Demographic and clinical characteristics
Age and gender were not significantly different between

the OCD and HCS groups (p > 0.05). For the 54 OCD
patients, the total Y-BOCS was 20.72 ± 5.30, correspond-
ing to moderate and severe OCD symptoms, with obses-
sive and compulsive subscale scores of 10.67 ± 3.60 and
10.06 ± 4.44, respectively. The estimated duration of OCD
symptoms was 8.15 ± 5.69 years. The HAMA score was
9.24 ± 5.15, generally accepted as normal, and the HAMD
score was 8.19 ± 5.87, indicating mild depression. See
Table 1 for details.

Group comparison by voxelwise univariate analysis
Compared with the HCS, patients with OCD had sig-

nificantly increased ALFF values in the left ventral medial
prefrontal cortex (vmPFC), right dorsal lateral prefrontal
cortex and bilateral insula; conversely, OCD patients
showed lower ALFF values in the right inferior parietal
lobe (IPL), occipital lobe at a threshold of p < 0.05 (false
discovery rate-corrected at cluster level). Although sig-
nificant differences in fALFF, ReHo, or FCS values were
not observed, uncorrected results are provided (p < 0.005,
uncorrected at pixel level) (Fig. 1A).

Classifier performance
Figure 2 shows the results of the SVM classification

between 54 OCD patients and 54 HCS based on ALFF,
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A. Group comparison B. Discrimination map

a. ALFF

b. fALFF

c. ReHo

d. FCS

Fig. 1 (See legend on next page.)
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fALFF, ReHo, and FCS maps. The best discrimination was
obtained when ALFF measures were used for accuracy,
sensitivity, and specificity, with values as high as 95.37%,
96.30%, and 94.44% (p < 0.001), respectively, followed by
the classification based on ReHo (accuracy 86.11%, sen-
sitivity 88.89%, and specificity 83.33%, p < 0.001). For the
fALFF measures, the accuracy was 82.41%, the sensitivity
was 79.63%, and the specificity was 85.19% (p < 0.001). For
the FCS measures, the accuracy was 74.07%, the sensi-
tivity was 74.07%, and the specificity was 74.07% (p <

0.001). The ROC curves demonstrated good performance,
with AUC values ranging from 0.81 to 0.99 (p < 0.001)
(Fig. 3). An overview of the accuracy and AUC values is
presented in Table 2.

Discrimination map of OCD abnormalities
The spatial maps of the brain regions that strongly

contributed to the discrimination between patients with
OCD and controls are shown in Fig. 1B, and the detailed
location and information appear in Supplementary Table

(see figure on previous page)
Fig. 1 Significant regions in group comparison and discrimination map. a ALFF, b fALFF, c ReHo, and d FCS. In group comparison panel, warm
colors indicate regions showing higher values in the OCD group than in HCS and cool colors indicate regions showing lower values. The color bar
indicates the T-score. Threshold: p < 0.05, false discovery rate-corrected at cluster level (a), p < 0.005, uncorrected at pixel level (b, c, d). In
discrimination map panel, warm colors indicate higher values for the parameter in OCD group than in HCS, whereas cool colors indicate higher
values for the parameter in HCS than in patients with OCD. The color bar indicates the weighted vector value determined from SVM. OCD obsessive-
compulsive disorder, HCS healthy control subjects, SVM support vector machine, ALFF amplitude of low-frequency fluctuations, fALFF fractional
amplitude of low-frequency fluctuations, ReHo regional homogeneity, FCS functional connectivity strength

Fig. 2 Classification plots for the SVM classifier utilizing ALFF, fALFF, ReHo, and FCS. a ALFF; b fALFF; c ReHo; d FCS (“open circle“ represents
patients with OCD, and “ letter × “ represents HCS). SVM support vector machine, ALFF amplitude of low-frequency fluctuations, fALFF fractional
amplitude of low-frequency fluctuations, ReHo regional homogeneity, FCS functional connectivity strength, OCD obsessive-compulsive disorder, HCS
healthy control subjects
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S1–S4. The spatial distribution of the weighted vectors
can be thought of as a spatial representation of the deci-
sion boundary and thus represent a map of the most
discriminating regions.
The regions that contributed to the identification of

patients with OCD (OCD >HCS) in the ALFF dis-
crimination map included the left vmPFC, right dorsal

lateral prefrontal cortex and bilateral insula. In contrast,
regions that contributed to the identification of controls
(HCS >OCD) were mainly located in the right IPL and
occipital lobe. The discriminative pattern for OCD in the
fALFF map was composed of the right superior frontal
lobe, bilateral precentral gyrus, right superior temporal
gyrus, anterior cingulate cortex (ACC), and left cuneus
and left lingual gyrus, whereas regions that contributed to
the identification of HCS were mainly located in the right
IPL. The discriminative pattern for OCD in the ReHo map
primarily consisted of the bilateral orbitofrontal cortex
(OFC), left ACC, left putamen, and left precentral gyrus.
The discriminative pattern for OCD in the FCS map
mainly contained the bilateral superior frontal lobe, left
vmPFC, left ACC, left superior parietal, bilateral lingual
gyrus, and right putamen.

Relationships with symptom severity
No significant association was observed between the

values of rs-fMRI parameters and symptom scores after
corrections.

Fig. 3 ROC curves assessing SVM performance using ALFF, fALFF, ReHo, and FCS. a ALFF; b fALFF; c ReHo; d FCS. ROC receiver operating
characteristic, SVM support vector machine, ALFF amplitude of low-frequency fluctuations, fALFF fractional amplitude of low-frequency fluctuations,
ReHo regional homogeneity, FCS functional connectivity strength

Table 2 Accuracy and AUC values for the four parameters

Parameter ALFF fALFF ReHo FCS

Accuracy (%) 95.37 82.41 86.11 74.07

Sensitivity (%) 96.30 79.63 88.89 74.07

Specificity (%) 94.44 85.19 85.33 74.07

AUC 0.99 0.92 0.96 0.81

ALFF amplitude of low-frequency fluctuations, fALFF fractional amplitude of low-
frequency fluctuations, ReHo regional homogeneity, FCS functional connectivity
strength, AUC area under the ROC curve
p < 0.001
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Discussion
To our knowledge, this is the first study to investigate

the potential diagnostic value of different resting-state
fMRI features in adult drug-naive OCD patients. The
regional neural activity across the whole-brain reflected by
ALFF, fALFF, ReHo, and FCS can distinguish patients with
OCD from HCS. Excellent performance was achieved
when ALFF maps were employed, good performance was
achieved by using ReHo maps, weaker performance was
achieved by using fALFF maps, and fair performance was
achieved by using FCS maps. Remarkably, the dis-
crimination pattern of ALFF partially overlapped with the
group differences. In addition, regions that contributed to
the identification of patients with OCD were not only
limited to the CSTC circuits, such as the vmPFC and
putamen, but also involved additional brain systems,
including the precentral gyrus and occipital lobe. These
patterns provide preliminary support for the use of the
four rs-fMRI parameters, especially ALFF, as promising
classification markers for drug-naive patients with OCD.
Classification accuracy varied among different resting-

state functional parameters. The four indices of sponta-
neous brain activity revealed increased and decreased
weighted vector values in drug-naive adults with OCD
compared to those of HCS, but these patterns cannot be
explained as neuronal activity increases or decreases in
one group relative to the other. We emphasize that due to
the multivariate character of SVM, each region in the
discrimination maps should be interpreted in the context
of the entire discriminating pattern and should not be
considered in isolation. In multivariate methods, an
individual region may display high discriminative power
for two possible reasons: (i) the presence of a large group
difference in that region; or (ii) the region is highly
intercorrelated with other regions of the network. Thus,
discrimination maps should be interpreted as spatially
distributed patterns rather than as individual regions43.
Of the four measurements, ALFF showed the greatest

diagnostic accuracy for discriminating patients with OCD
from HCS. It has been shown that ALFF directly corre-
lates with the intensity of spontaneous neural activity in
the resting state and is related to the rate of regional
glucose metabolism44. Nugent et al. suggested that
impaired glutamate cycling is widespread throughout the
cortex, particularly implicating neuronal dysfunction.
This effect could make ALFF more sensitive to detecting
dysfunctional neural activity than the other three para-
meters. In addition, we found that regions showing sig-
nificant group differences had partially overlapping
discrimination patterns. The strong group differences for
ALFF may underlie the excellent classification achieved in
the current study. Therefore, the SVM enabled the iden-
tification of brain regions that corroborate the existing
differences in ALFF between patients with OCD and HCS,

providing support for ALFF as a promising classification
marker for OCD.
Initially, scholars believed that fALFF selectively sup-

pressed artifacts from nonspecific brain areas while
enhancing signals from cortical regions associated with
brain activity, making use of the distinct characteristics of
signals in the frequency domain and would therefore
significantly improve the sensitivity and specificity in
detecting regional spontaneous brain activity compared
with ALFF7. However, in the present study, a very dif-
ferent profile of spatially distributed patterns was
observed in the fALFF map, with generally lower classi-
fication accuracies than those of ALFF. Therefore, we
supposed that in the fALFF approach, power spectrum
fractionalizing resulted in suppressed power in the low-
frequency range in regions such as the cisterns, ventricles
and sagittal sinus, as well as altered spectral distribution.
Thus, fALFF was incapable of detecting subtle informa-
tion for optimal differentiation.
ReHo showed good classification performance as well,

particularly in the bilateral OFC, left ACC, precentral
gyrus and putamen, although the comparison between
the two groups was not significant. Since the dis-
crimination is based on the whole-brain pattern by
taking into account correlations among the regions,
rather than evaluating individual regions, we suppose
that the whole-brain spatial pattern of ReHo differs
between OCD and HCS. While the different resting-
state fMRI approaches mentioned above are promising
for measuring intrinsic spontaneous brain activity, we
used graph-based voxelwise FCS to reveal the value of
hub-related abnormalities in discrimination OCD. In
general, regions with higher FCS values usually suggest a
central role in the functional integrity of the whole-
brain networks21. The automated classification of
patients with OCD versus HC using FCS did not show
high accuracy. The reason for this may lie in the fact
that the range of FCS values was highly overlapping for
the two groups. Therefore, both weak group differences
and poor classification were achieved.
The discrimination regions identified in our study are

within and beyond CSTC circuits. Previous neuroimaging
studies have revealed the critical role the ACC/vmPFC, a
region crucially involved in detecting the presence of
cognitive conflicts, error monitoring and detection2, in
OCD. A recent meta-analysis study4 has shown that the
gray matter volume was reduced in ACC/vmPFC in
patients with OCD. In the task state, several studies45,46

reported that increased ACC activation in patients with
OCD in relation to error processing correlated with dis-
ease severity. In the resting state, Tian et al.20 and Hou
et al.21 reported increased functional connectivity
strength in the ACC in OCD patients compared with
HCS. The hyperactivity in the ACC may reflect
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dysfunction of the action monitoring system and result in
abnormal symptoms of OCD, such as feelings of being
erroneous, a constant need for correction and incomplete
performance. OCD patients also exhibited greater activity
in the vmPFC due to a failure to deactivate this DMN
region47, perhaps reflecting an inability of patients to
disengage from automatic evaluative processes when
errors occur. In addition, meta-analytical4 findings have
also reported that structurally and functionally over-
lapping regions in the putamen show increases in both
gray matter volume and activity in patients with OCD.
Furthermore, Beucke et al.48 found greater local con-
nectivity in the OFC and the putamen, and this con-
nectivity was positively correlated with OCD symptom
severity. Consistent with these findings, the ACC/vmPFC
and putamen displayed a high degree of discriminative
ability between OCD patients and healthy controls in the
present study, providing further support for dysfunction
in CSTC pathways in patients with OCD.
In addition, there is some evidence suggesting that

individuals with OCD show activation in regions within
the sensorimotor network, including the precentral gyrus
and supplementary area, in inhibitory control pro-
cesses49,50, which partially explains the nature of inhibi-
tory control deficits in OCD. Furthermore, some results
demonstrated that unmedicated OCD patients have
impaired sensory-motor integration and sensory gating, as
measured by prepulse inhibition and transcranial mag-
netic stimulation, which indicates that the abnormality of
the sensorimotor system might impair the ability of OCD
patients to suppress internally triggered intrusive and
repetitive movements and thoughts51,52. Therefore, the
notable contribution of these regions to accurate dis-
crimination in the present study provides further support
for their involvement in OCD.
Our finding that the occipital lobe contributed to the

discrimination of OCD patients from HCS is consistent with
other evidence implicating the occipital region in OCD. For
instance, OCD patients with poor insight had increased
ALFF in the right middle occipital gyrus53. A previous
study54 reported that OCD patients showed hypoactivation
of the superior and inferior occipital cortex during a target
detection task following negative internally focused atten-
tion states, pointing to an OCD-related impairment in the
visual processing of external stimuli when patients have
experienced a period of negative internal focus.
It is noteworthy that there are some limitations of the

present study. First, although the findings were encoura-
ging, the sample size was relatively small, and the gen-
eralizability of the results was, therefore, unclear. Larger
sample sizes are needed to confirm our findings. Second,
we separated only patients with OCD from healthy sub-
jects, leaving an unresolved issue of whether the use of the
SVM to rs-fMRI would also successfully discriminate

between subtypes of OCD. Future studies may be dedi-
cated to the differential diagnosis of patients with OCD
across subtypes or to differentiating between patients with
OCD and other psychiatric conditions with potentially
overlapping symptoms. Third, we need to be cautious
when explaining the results of ALFF, as it contains not
only low-frequency neuronal fluctuations but also low-
frequency physiological fluctuations, such as breathing
pattern changes. Given the low sampling rate used in this
study (TR= 2 s), we cannot fully exclude the confounding
effect of cardiac pulsation and respiratory effects.
In conclusion, our results provide preliminary support

for the hypothesis that multiple rs-fMRI features can be
utilized for the diagnostic classification of drug-naive
patients with OCD, with the ALFF providing the greatest
accuracy. Furthermore, our findings emphasize the role of
regions within and outside CSTC circuits in the patho-
physiology of OCD. Therefore, this study demonstrates
that the application of supervised machine learning
methods, such as SVM, to neuroimaging data could
potentially be used for reliable OCD classification, and
also adds the development of psychoradiology55 that
applies imaging to psychiatry and psychology.
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