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Transcriptome analysis in whole blood
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Loes M. Olde Loohuis 1, Serghei Mangul2,11, Anil P. S. Ori1, Guillaume Jospin3, David Koslicki4, Harry Taegyun Yang 2,
Timothy Wu1, Marco P. Boks5, Catherine Lomen-Hoerth6, Martina Wiedau-Pazos7, Rita M. Cantor8, Willem M. de Vos9,10,
René S. Kahn5,12, Eleazar Eskin2 and Roel A. Ophoff1,5,8

Abstract
The role of the human microbiome in health and disease is increasingly appreciated. We studied the composition of
microbial communities present in blood across 192 individuals, including healthy controls and patients with three
disorders affecting the brain: schizophrenia, amyotrophic lateral sclerosis, and bipolar disorder. By using high-quality
unmapped RNA sequencing reads as candidate microbial reads, we performed profiling of microbial transcripts
detected in whole blood. We were able to detect a wide range of bacterial and archaeal phyla in blood. Interestingly,
we observed an increased microbial diversity in schizophrenia patients compared to the three other groups. We
replicated this finding in an independent schizophrenia case–control cohort. This increased diversity is inversely
correlated with estimated cell abundance of a subpopulation of CD8+ memory T cells in healthy controls, supporting a
link between microbial products found in blood, immunity and schizophrenia.

Introduction
Microbial communities in and on the human body

represent a complex mixture of eukaryotes, bacteria,
archaea, and viruses. In recent years, mounting evidence
has demonstrated the involvement of the microbiome in
human health and disease. In particular, through the
“microbiota–gut–brain axis”1,2, the microbiome has been
implicated in complex psychiatric disorders, including
schizophrenia (SCZ) and major depressive disorder3–8,
possibly via an impact on intestinal permeability9.
High-throughput sequencing offers a powerful culture-

independent approach to study the underlying diversity of
microbial communities in their natural habitats across

different human tissues10 and diseases3,11–15. The major-
ity of current microbiome studies use fecal samples and
target 16S ribosomal RNA gene sequencing16. With the
availability of comprehensive compendia of reference
microbial genomes and phylogenetic marker genes17, it
has become feasible to use non-targeted sequencing data
to identify the microbial species across different human
tissues and diseases in a relatively inexpensive and easy
way.
Other than in cases of sepsis, we currently lack a

comprehensive understanding of the human microbiome
in blood, as blood has been generally considered a sterile
environment lacking proliferating microbes18. However,
over the past few decades, this assumption has been
challenged19,20, and the presence of a microbiome in the
blood has received increasing attention21–23.
To explore potential connections between the

microbiome and diseases of the brain, we performed a
comprehensive analysis of microbial products detected
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in blood in almost 200 individuals, including patients
with SCZ, bipolar disorder (BPD) and sporadic amyo-
trophic lateral sclerosis (ALS). These three disease
groups represent complex polygenic traits that affect the
central nervous system with largely unknown etiology.
Moreover, roles for the microbiome in all the diseases
have been previously hypothesized5,24–26. We used
available high quality RNA sequencing (RNA-Seq) reads
from whole blood that fail to map to the human genome
as candidate microbial reads for microbial classification.
We observed an increased diversity of microbial com-
munities in SCZ patients, and we replicated this finding
in an independent dataset. Careful analyses, including
the use of positive and negative control data sets, sug-
gest that these detected phyla represent true microbial
communities in whole blood and are not present in
samples due to contaminants. With the increasing
number of RNA-Seq data sets, our approach may have
great potential for application across different tissues
and disease types.

Materials and methods
A brief description of Materials and methods follows;

see Supplementary Methods for the full details

Sample description
The discovery sample consists of unaffected controls

(Controls, n= 49) and patients with three brain-related
disorders: SCZ (n= 48), ALS (n= 47), and BPD (n= 48).
The replication sample includes Controls (n= 88) and
SCZ samples (n= 91). Sample recruitment of the cohorts
is described in the Supplementary Methods. All study
methods were approved by the institutional review board
of the University of California at Los Angeles, San Fran-
cisco or the Medical Research Ethics Committee of the
University Medical Center Utrecht at The Netherlands.
All participants provided written informed consent.

Sample sequencing
For the discovery sample, RNA-Seq libraries were

prepared using Illumina’s TruSeq RNA v2 protocol,

Fig. 1 Microbial profiling using RNA-Seq data from whole blood. a We analyzed a cohort of 192 individuals from four subject groups, i.e.
Schizophrenia (SCZ, n= 48), amyotrophic lateral sclerosis (ALS n= 47), bipolar disorder (BPD n= 48), unaffected control subjects (Controls n= 49). b
Peripheral blood was collected for RNA collection. c RNA-Seq libraries were prepared from total RNA using ribo-depletion protocol. d Reads that
failed to map to the human reference genome and transcriptome were sub-sampled and further filtered to exclude low-quality, low complexity, and
remaining potentially human reads. e High quality, unique, non-host reads were used to determine the taxonomic composition and diversity of the
detected microbiome. See also Table S1
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including ribo-depletion protocol (Ribo-Zero Gold).
In total, we obtained 6.8 billion 2 × 100 bp paired-end
reads for the primary study (35.3M ± 6.0 paired-end
reads per sample). The replication sample was pro-
cessed at the same core facility using the same stan-
dardized procedures as the discovery sample.
However, the RNA-Seq libraries were prepared with
poly(A) enrichment, a procedure more selective than
the total RNA that was used for the discovery sample.
A total of 3.8 billion reads were obtained (26.3M ±
12.0).

Sequence analysis
We separated human and non-human reads, and use

the latter as candidate microbial reads for taxonomic
profiling of microbial communities. To identify poten-
tially microbial reads, we developed the following pipeline.
First, we filtered read pairs and singleton reads mapped to
the human genome or transcriptome. Because total
number of reads may affect microbial profiling, we per-
formed normalization by sub-sampling to 100,000 reads
for each sample. Next, we filtered out low-quality and
low-complexity reads using FASTX and SEQCLEAN (see
urls). Finally, the remaining reads were realigned to the
human references using the Megablast aligner27 in order
to exclude any potentially human reads. The remaining
reads were used as candidate microbial reads in sub-
sequent analyses. Fig. 1 displays an overview of our
pipeline.

Taxonomic profiling
To access the assembly and richness of the micro-

biomial RNA in blood, we used phylogenetic marker
genes to assign the candidate microbial reads to the
bacterial and archaeal taxa. We used PhyloSift (v 1.0.1
with default parameters) to perform taxonomic profiling
of the whole blood samples17. PhyloSift makes use of a set
of protein coding genes found to be relatively universal
(i.e., present in nearly all bacterial and archaeal taxa) and
have low variation in copy number between taxa.
Homologs of these genes in new sequence data (e.g., the
transcriptomes used here) are identified and then placed
into a phylogenetic and taxonomic context by comparison
to references from sequenced genomes. For our replica-
tion study, we used MetaPhlAn for microbial profiling
v.1.7.728. MetaPhlAn was run in two stages; the first stage
identifies the candidate microbial reads (i.e., reads hitting
a marker) and the second stage profiles metagenomes in
terms of relative abundances. We used MetaPhlAn, rather
than PhyloSift, due to differences in library preparation
(polyA enrichment versus Ribo-Zero); there were an
insufficient number of reads matching the database of the
marker genes curated by PhyloSift for adequate microbial
profiling of the replication sample.

Estimating microbial diversity
Microbial diversity, or alpha diversity, within each

sample was determined using the inverse Simpson index.
This index simultaneously assesses both richness (corre-
sponding to the number of distinct taxa) and relative
abundance of the microbial communities within each
sample29. In particular, it enables effective differentiation
between the microbial communities shaped by the
dominant taxa and the communities with many taxa with
even abundances30 (asbio R package). To measure
sample-to-sample dissimilarities between microbial com-
munities, we use Bray-Curtis beta diversity index, which
accounts for both changes in the abundances of the
shared taxa and for taxa uniquely present in one of the
samples (vegan R package). Higher beta diversity indicates
higher level of dissimilarity between microbial commu-
nities, providing a link between diversity at local scales
(alpha diversity) and the diversity corresponding to total
microbial richness of the subject group (gamma
diversity31).

Statistical analysis of microbiome diversity
To test for differences in alpha diversity between disease

groups, we fit an analysis of covariance (ANCOVA) model
using normalized values of alpha, including sex and age,
and technical covariates (RNA INtegrity value (RIN),
batch, flow cell lane and RNA concentration) into the
model. Bonferroni correction for multiple testing was
used. To determine the relative effect size of alpha
diversity on SCZ status, we fit a logistic regression model
including the same covariates and measure reduction in
R2 comparing the full logistic regression model versus a
reduced model with alpha removed. Analysis of beta
diversity was performed analogously (see Supplementary
Methods).

Reference-free microbiome analysis
We complement the reference-based taxonomic analy-

sis with a reference-independent analysis. We use
EMDeBruijn (https://github.com/dkoslicki/EMDeBruijn),
a reference-free approach capable of quantifying differ-
ences in microbiome composition between the samples.
EMDeBruijn compresses the k-mer counts of two given
samples onto de Bruijn graphs and then measures the
minimal cost of transforming one of these graphs into the
other. To determine overlap between the results from
PhyloSift and EMDeBruijn, we correlated principal com-
ponents of EMDeBruijn and PhyloSift by Spearman rank
correlation, including all samples.

Estimation of cell proportions in whole blood
We assessed DNA methylation data from 65 controls

taken from our replication sample, and we compared
methylation-derived blood cell proportions estimated
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using Houseman’s estimation method32,33 to alpha
diversity after adjusting for age, gender, RIN and all
technical parameters. We tested whether alpha diversity
levels are associated with cell type abundance estimates.
More details on the method, quality control pipeline of
the methylation data, and statistical analysis can be found
in Supplementary Methods.

Results
Studying microbial RNA in blood
To study the composition of microbial RNA in blood,

we determined the microbial meta-transcriptome present
in the blood of unaffected controls (Controls, n= 49) and
patients with three brain-related disorders: SCZ (n= 48),
ALS (n= 47), and bipolar disorder (BPD, n= 48) (Fig. 1,
Table 1).
Using our filtering pipeline, an average of 33,546 of

100,000 unmapped reads are identified as high quality,
unique non-host reads and were used as candidate
microbial reads in our analyses. From these, PhyloSift was
able to assign an average of 1235 reads (1.24 ± 0.41%,
mean ± standard deviation) to the bacterial and archaeal
gene families. A total of 1880 taxa were assigned, with 23
taxa at the phylum level (Fig. 2). Most of the taxa we
observed derived from bacteria (relative genomic abun-
dance 89.8 ± 7.4%), and a smaller portion derived from
archaea (relative genomic abundance 12.28 ± 6.4%).
In total, we observed 23 distinct microbial phyla with on

average 4.1 ± 2.0 phyla per individual. The large majority
of taxa observed in our sample is not universally present
in all individuals; the single exception is Proteobacteria,
which dominates all samples with 73.4 ± 18.3% relative
abundance (Fig. 2, dark green color). Several bacterial
phyla show a broad prevalence across individuals and
disorders (present in 1/4 of the samples of each subject
group). Those phyla include Proteobacteria, Firmicutes,
and Cyanobacteria, with relative abundance 73.4 ± 18.3%,
14.9 ± 10.9%, and 11.0 ± 8.9% (Table S2). This is in line
with recent published work on the blood microbiome
using 16S targeted metagenomic sequencing reporting
relative abundance of 80.4–87.4 and 3.0-6.4% for Pro-
teobacteria and Firmicutes, respectively23. The other two
phyla identified in this study (Actinobacteria and Bacter-
oidetes) were also detected in our sample in more than 25

individuals. Although Proteobacteria and Firmicutes are
commonly associated with the human microbiome34,
some members of these phyla might be associated with
reagent and environmental contaminants35,36.
To validate our pipeline and investigate the possibility

of contamination introduced during RNA isolation,
library preparation and sequencing steps, we performed
both negative and positive control experiments (see
Supplementary Results and Methods for details). In brief:
no microbiome sequences were detected in transcriptome
data in lymphopblast cell lines (negative control), and we
only detected the Chlamydiae phylum in RNA-Seq from
cells infected with Chlamydiae (positive control). We
examined experimental procedures and technical para-
meters on microbial composition, and we observed no
link between the presence of microbial communities and
possible confounders.
To compare the inferred microbial composition found in

blood with that in other body sites, we used taxonomic
composition of 499 metagenomic samples from Human
Microbiome Project (HMP) obtained by MetaPhlAn or five
major body habitats (gut, oral, airways, and skin)10. Of the
23 phyla discovered in our sample, 15 were also found in
HMP samples, of which 13 are confirmed by at least ten
samples. Our data suggest that the predominant phyla
detected in blood are most closely related to the known oral
and gut microbiome (Table S2). Comparing the microbial
composition of whole blood with the microbiome detected
in atherosclerotic plaques37, we observe that the four phyla
that together make up for >97% of the microbiome in
plaques are also identified in our sample (Firmicutes, Bac-
teroidetes, Proteobacteria, Actinobacteria).
Finally, it should be noted that the sequencing tech-

nology does not allow for identification of the origin of
microbial RNA. That is, we cannot distinguish whether
the observed microbial signatures in blood are originated
from bacterial communities actually present in the blood,
or whether the RNA crossed into the bloodstream from
elsewhere.

Increased microbial diversity in SCZ samples
To evaluate potential differences in microbial profiles of

individuals with the different disorders (SCZ, BPD, ALS)
and unaffected controls, we explored the composition and
richness of the microbial communities across the groups.
We observed increased alpha diversity in SCZ samples

compared to all other groups (ANCOVA P < 0.005 for all
groups, Fig. 3a, Table 2 and Table S5, Bonferroni cor-
rection). These differences are corrected for covariates
and are independent of potential confounders, such as
experimenter and RNA extraction run (Figure S1 and S2),
and they are not the consequence of a different number of
reads being detected as microbial in SCZ samples (see
Supplementary Results). No significant differences were

Table 1 Sample description

Disease status Control SCZ BPD ALS

N 49 48 48 47

Age mean (SD) 41.1 (10.7) 29.9 (5.8) 46.5 (9.9) 56.4 (10.3)

Age range [21–60] [22–46] [26–71] [35–76]

Male/Female 38/11 39/9 20/28 29/18
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Fig. 2 Relative abundances of microbial taxa at phylum level. Phylogenetic classification is performed using PhyloSift, which is able to assign the
filtered candidate microbial reads to the microbial genes from 23 distinct taxa on the phylum level

Fig. 3 Increased diversity of microbiome detected in blood in schizophrenia samples. a Alpha diversity per sample for four subject groups
(Controls, ALS, BPD, SCZ) measured using the inverse Simpson index on the phylum level of classification. Schizophrenia samples show increased
diversity compared to all three other groups (ANCOVA P < 0.005 for all groups, after adjustment of covariates, see also Methods, Table S5, and Figure
S3). b Alpha diversity per sample of schizophrenia cases and controls, measured using the inverse Simpson index on the genus level of classification.
Schizophrenia samples show increased within-subject diversity compared to Controls (P= 0.003 after adjustment of covariates)
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observed between the three remaining groups (BPD, ALS,
Controls). In our sample, alpha diversity was found to be a
significant predictor of SCZ status and explained 5.0% of
the variation as measured by reduction in Nagelkerke’s R2

from logistic regression. We observe no correlation
between polygenic risk scores38 and alpha diversity in our
SCZ sample (n= 32, Kendall’s tau= 0.008, P= 0.96,
Supplementary Methods). We also did not observe dif-
ferences in alpha diversity between sexes or across ages,
nor are our results driven by the relatively younger SCZ
cohort (Supplementary Results). Alpha diversity at other
main taxonomic ranks yields a similar pattern of increased
diversity in SCZ (Figure S3).
The increased diversity observed in SCZ patients may

be due to specific phyla characteristic to SCZ, or due to a
more general increased microbial diversity in people
affected by the disease. To investigate this, we compared
diversity across individuals within the SCZ group to
control samples. We compared beta diversity across pairs
of samples with SCZ and controls, resulting in three
subject groups: SCZ_Controls, SCZ_SCZ, and Con-
trols_Controls. The lowest diversity was observed in the
Controls_Controls group (0.43 ± 0.21), followed by
SCZ_SCZ (0.50 ± 0.14), and the highest beta diversity
values were observed for SCZ_Controls (0.51 ± 0.17) (P <
0.05 for each comparison, by ANCOVA after correcting
for three tests). This result was confirmed by permanova
(P < 0.001) based on 1000 permutations. Thus, the
observed increased alpha diversity in SCZ is not caused by
a particular microbial profile, but most likely represents a
nonspecific overall increased microbial burden (see also
Figure S4 and Supplementary Results).
In addition to measuring individual microbial diversity

(alpha), and diversity between individuals (beta), we
measured the total richness of the microbiome by the
total number of distinct taxa of the microbiome com-
munity observed within an entire subject group (gamma
diversity39). We observed that all 23 distinct phyla are
observed in SCZ: gamma (SCZ)= 23 compared to
gamma (Controls)= 20, gamma (ALS)= 16, and gamma
(BPD)= 18.

We complemented reference-based methods (PhyloSift
and MetaPhlAn) with EMDeBruijn, a reference-
independent method. EMDeBruijn distances measured
between samples correlated significantly with beta diver-
sity (Spearman rank P < 2.2e-16, rho= 0.37, including
SCZ and Controls). Also, EMDeBruijn PCs correlated
with principal components obtained from edge PCA
based on the PhyloSift taxonomic classification (correla-
tion between EMDeBruijn PC1, and PhyloSift PC1 is P=
1.824e-09; Spearman rank correlation is rho=−0.42; see
also Figure S5). After correcting covariates, the first three
EMDeBruijn PCs are significant predictors of SCZ status,
and jointly explained 7.1% of the variance (P < 0.05 for
each PC).

Group differences of individual phyla
In addition to a global difference between SCZ and the

other groups, we also investigated whether there are
particular individual phyla contributing to the differences
between SCZ and other groups. There are two phyla
detected more often in SCZ cases versus all the other
groups: Plactomycetes, observed in 20 SCZ cases com-
pared to 3 (ALS) 2 (BPD) 5 (Controls) (P= 0.0002 Fisher’s
exact for four groups, Bonferroni corrected for 23 tests P
= 0.0057), and Thermotogae, observed in 20 SCZ cases
compared to 6 ALS, 3 BPD and 6 Controls (P= 0.0006
Fisher’s exact, corrected P= 0.014). No outliers were
observed for the other groups (see Table S7).

Replication
We performed a replication experiment in an inde-

pendent case-control sample: SCZ (n= 91) and healthy
controls (Controls n= 88) (see Table S1.D). MetaPhlAn
was able to assign 5174 reads (0.089% ± 0.039%, mean ±
standard deviation) on average to the bacterial gene
families.
SCZ samples showed increased alpha diversity on genus

level (2.73 ± 0.77 for cases, versus 2.32 ± 0.57 for controls,
corrected P= 0.003 Fig. 3b) and explained 2.5% of var-
iance as measured by reduction in Nagelkerke R2, thus
replicating our main finding of increased diversity in SCZ.
While our original analysis was performed on the phylum
level, in our discovery sample we observe a similar
increase of diversity at the genus level (see Figure S3).
Similar to our discovery cohort, we observed no sig-
nificant correlation between alpha diversity and age or
differences across gender. Beta diversity and EMDeBruijn
analyses also show similar, though not identical, patterns
of nonspecific increased diversity in SCZ samples (Sup-
plementary Results).

Cell type composition and diversity
We hypothesized that differences in microbial diversity

may be linked to whole blood cell type composition. Our

Table 2 Microbial diversity measures

Disease status Control SCZ BPD ALS

N 49 48 48 47

Alpha diversity, mean

(SD)

1.77 (0.74) 2.50

(0.79)

1.55

(0.66)

1.65

(0.86)

Beta diversity, mean (SD) 0.43 (0.21) 0.50

(0.14)

0.31

(0.17)

0.38

(0.22)

Gamma diversity (per

group)

20 23 18 16
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analysis shows that the proportion of one cell type, CD8+

CD28− CD45RA− cells, is significantly negatively corre-
lated with alpha diversity after correction for all other cell-
count estimates as estimated from whole blood DNA
methylation data (correlation=−0.41, P= 7.3e-4, n= 65
Controls from the Replication study, Figure S6, Table S6).
These cells are T cells that lack CD8+ naïve cell markers
CD28 and CD45RA and are thought to represent a sub-
population of CD8+ memory T cells40,41. We observed
that low alpha diversity correlates with high levels of cell
abundance of this population of T cells.

Discussion
We used high-throughput RNA sequencing from whole

blood to perform microbiome profiling and identified an
increased diversity in SCZ patients.
While other studies of human microbiome using RNA-

Seq have been conducted42,43, this is the first assessing the
microbiome from whole blood by using unmapped non-
human reads. Despite the fact that transcripts are present
at much lower fractions than human reads, we were able
to detect microbial transcripts from bacteria and archaea
in almost all samples. The microbes found in blood are
thought to be originating from the gut as well as oral
cavities44,45, which is in line with our finding that the
microbial profiles found in our study most closely
resemble the gut and oral microbiome as profiled by the
HMP10. The taxonomic profile of the cohort samples
suggests the prevalence of the several phyla, Proteo-
bacteria, Firmicutes and Cyanobacteria, across individuals
and different disorders included in our study. This is in
line with a recent study that used 16S targeted metage-
nomic sequencing, which reported Proteobacteria and
Firmicutes among the most abundant phyla detected in
blood23.
Rigorous quality control is critically important for any

high-throughput sequencing project, especially in the
context of studying the microbiome35. To this end, we
performed both negative and positive quality control
experiments, and we carefully evaluated possible con-
tamination effects introduced during the experiments.
Our results suggest that the detected phyla represent true
microbial communities in whole blood and are not due to
contaminants. However, it should be noted that whether
only the microbial products crossed into the bloodstream
or whether the microbes themselves are present in blood
cannot be answered using sequencing techniques. Future
experiments, for example, using microscopy, culturing, or
direct measures of gut permeability, may be able to shed
light on this question.
The most striking finding of our study that relates to

diseases affecting the central nervous system is the
increased microbial alpha diversity in SCZ patients com-
pared to controls and the other two disease groups (A.L.

S., B.P.D.). We replicate this finding in an independent
cohort of SCZ cases and controls. The replication
experiment, while based on different library preparation
(Ribo-Zero versus Poly(A)), provides strong evidence for
an increased alpha diversity of the microbiome detected in
blood in SCZ and explains roughly 5% of disease variation.
We not only observe an increased individual microbial
diversity but also an increased diversity between indivi-
duals (Beta diversity) with SCZ compared to controls,
rendering it unlikely that a single phylum or microbial
profile is causing the disease-specific increase in diversity.
Nevertheless, in our study we observed that two phyla in
particular, Planctomycetes and Thermotogae, were pre-
sent in significantly more schizophrenia samples when
compared to the other groups. Interestingly, Planctomy-
cetes is group of Gram-negative bacteria closely related to
Verrucomicrobia and Chlamydiae; together these com-
prise the Planctomycetes–Verrucomicrobia–Chlamydiae
superphylum46. From peripheral blood, infection with
Chlamydiaceae species has been reported to be increased
in SCZ (40%) compared to controls (7%)47. Since Chla-
mydiae is one of the taxa of the superphylum, it is possible
that the increase in Planctomycetes we observe is related
to the observed increase in Chlamydiaceae species. As the
collection of available reference genomes continues to
grow and improve, future studies are needed to corro-
borate and refine these findings.
For the study of microbiome diversity, we employed

reference-based methods (PhyloSift and MethPhlAn) and
the EMDeBruijn method, a purely reference-agnostic
approach. The latter showed strong correspondence to
both reference-based methods, highlighting the value of
this unbiased sequence-based analysis for investigating
microbial differences across groups. However, in addition
to differences in distribution of microbial transcripts,
EMDeBruijn may capture variation of other, yet unknown,
origin.
In addition to our observation that microbial diversity is

more generally increased in SCZ, our study demonstrates
the value of analyzing non-human reads present in the
RNA-Seq data to study the microbial composition of a
tissue of interest48,49. The RNA-Seq approach avoids
biases introduced by primers in targeted 16S ribosomal
RNA gene profiling. In addition, since mRNA stability is
low in prokaryotes, RNA-Seq might offer a potential
advantage of avoiding contamination of genomic DNA by
dead cells compared to genome sequencing50. Given the
many large-scale RNA-Seq data sets that are becoming
available, we anticipate that high-throughput meta-
transcriptome-based microbiome profiling will find
broad applications as a hypothesis-generating tool in
studies across different tissues and disease types.
The increased microbial diversity observed in SCZ

could be part of the disease etiology (i.e., causing SCZ) or
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may be a secondary effect of disease status. In our sample,
we observed no correlation between increased microbial
diversity and genetic risk for SCZ as measured by poly-
genic risk scores51. In addition, it is remarkable that
bipolar disorder, which is genetically and clinically cor-
related to SCZ52, does not show a similar increased
diversity. We did observe a strong inverse correlation
between increased diversity and estimated cell abundance
of a population of T cells in healthy controls. Even though
this finding is based on indirect cell-count measures using
DNA methylation data40, the significant correlation
highlights a likely close connection between the immune
system and the blood microbiome, a relationship that has
been documented before53. More extensive cell-count
measures and/or better markers of immune sensing of
microbial products could be used to study this relation-
ship more directly. In the absence of a direct link with
genetic susceptibility and the reported correlation with
the immune system, we hypothesize that the observed
effect in SCZ may be mostly a consequence of disease.
This may be affected by lifestyle and/or health status
differences of SCZ patients, including smoking, treatment
plans, (chronic) infection, GI status, the use of probiotics,
antibiotics and other drug use or other environmental
exposures. Future targeted and/or longitudinal studies
with larger sample sizes, detailed clinical phenotypes, and
more in-depth sequencing are needed to corroborate this
hypothesis. Another interesting direction for future work
is to study gut permeability in the context of our findings
more directly. For example, how does damage to the gut
(such as measured using I-FABP) affect observed micro-
bial diversity in blood? These studies would likely result in
an expanded understanding of the functional mechanisms
underlying the connection between the human immune
system, microbiome, and disease etiology. In particular,
we hope that these future efforts will provide a useful
quantitative and qualitative assessment of the microbiome
and its role across the gut–blood barrier in the context of
psychiatric disorders.

Availability of Data and Materials
The data discussed in this publication have been

deposited in NCBI’s Gene Expression Omnibus54 and are
accessible through GEO Series accession number
GSE80974 (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE80974).
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