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Polygenic scores for cardiovascular risk factors improve
estimation of clinical outcomes in CCB treatment compared to
pharmacogenetic variants alone
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Pharmacogenetic variants are associated with clinical outcomes during Calcium Channel Blocker (CCB) treatment, yet whether the
effects are modified by genetically predicted clinical risk factors is unknown. We analyzed 32,000 UK Biobank participants treated
with dihydropiridine CCBs (mean 5.9 years), including 23 pharmacogenetic variants, and calculated polygenic scores for systolic and
diastolic blood pressures, body fat mass, and other patient characteristics. Outcomes included treatment discontinuation and heart
failure. Pharmacogenetic variant rs10898815-A (NUMA1) increased discontinuation rates, highest in those with high polygenic
scores for fat mass. The RYR3 variant rs877087 T-allele alone modestly increased heart failure risks versus non-carriers (HR:1.13,
p= 0.02); in patients with high polygenic scores for fat mass, lean mass, and lipoprotein A, risks were substantially elevated
(HR:1.55, p= 4 × 10−5). Incorporating polygenic scores for adiposity and lipoprotein A may improve risk estimates of key clinical
outcomes in CCB treatment such as treatment discontinuation and heart failure, compared to pharmacogenetic variants alone.
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INTRODUCTION
High blood pressure (BP) is a major modifiable factor affecting
cardiovascular disease morbidity and mortality. Dihydropiridine
calcium channel blockers (dCCB), e.g., amlodipine, are among the
most commonly prescribed first-line treatments for hypertension
[1, 2]. Yet the factors influencing patient response and adverse
events are poorly understood.
Pharmacogenetic variations can affect drug absorption, meta-

bolism, distribution, excretion, or target, thereby altering drug
response [3]. We previously showed that alleles in genes NUMA1,
RYR3, CYP3A5, ADRA1A and APCDD1 increased risks for adverse
outcomes such as heart failure, coronary heart disease, and dCCB
discontinuation, in 32,000 patients in UK Biobank receiving dCCB
prescriptions in the primary care setting [4]. However, effect sizes
were modest; for example, the Hazard Ratio for heart failure in
RYR3 rs877087 T-allele carriers was 1.13 (95% CI 1.02–1.25) versus
participants with no T alleles.
dCCBs are lipophilic, with high protein-binding capacity,

hepatic metabolism and renal excretion, and are therefore
modified by individual patient characteristics such as age,
weight, adiposity, baseline blood pressure, biological biomarkers
(including serum calcium and urinary sodium), renal and hepatic
functions, and lipoprotein [5–11]. Yet the links remain incon-
clusive [12], likely due to differences in risk factors studied, small
sample sizes, a focus on selected patient groups not necessarily
representative of clinical practice, and biases common to

observational study designs, including confounding and reverse
causation. However, individuals inherit germline genetic variants
at conception in a random manner that are independent of
traditional confounders such as diet and lifestyle. Therefore,
substituting these risk factors for genetic proxies should act to
minimize the aforementioned biases.
Much work is ongoing to integrate pharmacogenetic informa-

tion to optimizing treatment effectiveness and reduce side-
effects [3, 13–17]. Yet there has been limited discussion on
whether genetically determined individual patient characteris-
tics (for example, by using polygenic scores) could be useful
predictors of drug response [18]. Polygenic scores reflect
individuals’ genetic liability for a trait, derived by summing
the number of trait-increasing alleles they carry and weighting
each variant’s contribution according to its effect size [19].
Polygenic scores are emerging as important tools for persona-
lized medicine [17] with utility in identifying high-risk patients
[20].
We aimed to test whether polygenic scores for risk factors

reported to predict CCB outcomes (individual patient character-
istics modifying CCB treatment mentioned above) are associated
with relevant clinical outcomes, in 32,000 UK Biobank community
participants prescribed dCCBs in routine clinical care. We also
aimed to test whether adding polygenic score risks with
pharmacogenetic variants produced stronger combined associa-
tions with selected clinical outcomes.
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METHODS
UK Biobank cohort description
503,325 community-based volunteers aged 40–70 years were recruited in
UK Biobank (UKB). The North West Multi-Centre Research Ethics Committee
approved the collection and use of UKB data (Research Ethics Committee
reference 11/NW/0382). Access to UKB was granted under Application
Number 14631. Individual assessments were at one of 22 centers in Wales,
Scotland, or England in 2006–2010 [21]. Lifestyles and health information,
as well as blood samples for biochemical and genetics analyses, were
gathered. General Practice (GP) data are available for 230,096 participants
(see below).

General practice (GP) data
UKB included more than 57 million prescriptions for 230,096 (45.7%)
participants from the linked GP data available up to 31 May 2016 (England
TPP system) and 31 August 2017 (Wales/Scotland EMIS/Vision system). We
analyzed the dihydropyridine subset of CCBs together (herein referred to as
dCCBs): for details see the previous analysis [4]. In brief, we identified
prescribing information for dCCB medications (amlodipine, felodipine,
lacidipine, lercanidipine, nimodipine, nisoldipine, nifedipine, nitrendipine
and nicardipine) and dates of prescriptions, using drug codes in clinical Read
v2, British National Formulary (BNF), or dm+d (Dictionary of Medicines and
Devices) format, depending on suppler. The UK National Institute for Health
and Care Excellence (NICE) BNF database (https://bnf.nice.org.uk) was our
primary source to detect medication and brand names prescribed in the
NHS that met our search criteria (Searched in Oct-Dec 2022).

Primary outcomes
We ascertained cardiovascular events from hospital inpatient records with
up to 14 years follow-up after baseline assessment (HES in England up to
30 September 2021: data from Scotland and Wales censored to 31 August
2020 and 28 February 2018, respectively), covering the period up to the
date of censoring of primary care prescribing data. Diagnoses of incident
heart failure, coronary heart disease (myocardial infarction/angina) and
chronic kidney diseases were ascertained using ICD-10 codes (see supple-
mentary information).
Discontinuation was defined as patients having a date of last

prescription at least 90 days prior to the censoring date which is either
the date of deduction (removal from GP list, where available) or 28
February 2016 where no deduction date existed. Depending on primary
care provider, data after 28 February 2016 was often incomplete (See UK
Biobank resource 591 [22]).

Genotype data
Primary analysis included 451,367 participants (93% of 481,000 with
genotype data available [4, 22]) identified as European (determined by

genetic clustering, as explained previously [23]). After subsetting to those
with dCCB prescribing data (see Fig. 1 flowchart) the sample sizes from
other genetic backgrounds were too small to study.

Polygenic score
For the following patient characteristics reported to alter dCCB pharma-
cokinetics [5–11], we calculated polygenic scores by summing the number
of risk increasing alleles, multiplied by the published effect, using
independent genome-wide significant (p < 5*10–8) variants reported by
publicly available large-scale genome wide association studies (GWAS) in
European-like people from the Open GWAS platform [24] (see Supplemen-
tary Methods for more details on polygenic score derivation and software
and Supplementary Table 1 for the genetic variants used in each polygenic
score). We also derived a polygenic score for heart failure based on a
recent GWAS [25]. We were not able to generate a polygenic score for
‘discontinuation of dCCB prescribing’ because there is not available GWAS
for this outcome (see next section for rationale for the outcomes). See
Table 1 for the traits and GWASs used in the polygenic scores.

Primary analysis: survival analysis
We aimed to extend our previous pharmacogenetics study [4] in 32,000
UKB dCCB patients where we tested associations between 23 genetic
variants and dCCB adverse events using primary care and secondary care
data, adding the effects of polygenic scores of patients’ characteristics
on the same outcomes studied (see Fig. 1 for the methodology
flowchart). In our pharmacogenetic analyses [4], the significant results
were for: NUMA1 rs10898815 A allele, increasing the risk of treatment
switch (significant after Benjamini–Hochberg adjustment for multiple
statistical testing: adjusted p= 0.04); and RYR3 rs877087 T allele,
increasing the risk of heart failure. For both the variants the prior
evidence available on these genetic variants increased the plausibility of
the associations observed [26, 27].
We used Cox proportional hazards regression models adjusted for sex,

age at first prescription and genetic principal components 1 to 10 (Data-
field 22009), to account for population substructure. We chose outcomes
affected by pharmacogenetic variants in our previous study [4]. The
primary outcomes were incident heart failure (HF) diagnoses and
discontinuation of dCCB prescribing. We opted to use discontinuation
over ‘switching antihypertensive treatment’ to better capture patients who
are no longer prescribed dCCBs for any reason. Secondary outcomes were
incident coronary heart disease (CHD: myocardial infarction or angina) and
chronic kidney disease (CKD). Patients were included in the analyses if they
had at least 2 dCCB prescriptions in a year and were older than age 40 at
the first prescription (details described previously [4]). Patients entered the
model on the date of first prescription and exited on the date of event, or
were censored (date described in the discontinuation model).
We first conducted analyses with continuous polygenic scores, and then

repeated the analyses with the 3 tertiles of polygenic scores to provide
interpretable estimates of relative risk between groups without relying on
small numbers of participants with extreme values. For the models using
continuous polygenic scores, we standardized the scores (to give mean=0
and standard deviation = 1) to allow comparison of effect sizes between
the different scores and outcomes. We used a Benjamini-Hochberg
multiple testing correction.
STATA (v15.1) software and R (v4.2.1) were used for the analyses. ‘stset’,

‘stcox’ commands in STATA, and ‘coxph’ from the ‘survival’ package (v3.4-
0) in R was used to fit Cox proportional hazards models.

Combining pharmacogenetics and polygenic scores
We categorized patients to identify who is at most risk for HF and
discontinuation risks based on the presence of high polygenic score and/or
pharmacogenetic variant, and conducted survival analysis as described
above. The “high-risk” polygenic score group includes patients in the top
third of genetic liability for at least one polygenic score, and none of the
first-tertile scores; the “low-risk” score group includes patients with at least
one of the bottom third scores, and none of the third-tertile scores. We
also tested the interaction effect between genotypes and polygenic scores.
Carrying at least one rs877087 T allele in RYR3 (prevalence of 46% in

UKB) increased the risk of HF with the HR 1.13 (95% CI 1.02–1.25)
compared to non-carriers in UKB dCCB patients previously [4]. We
compared patients in different risk groups based on the presence of T
allele and high polygenic scores for body fat mass, lean mass, and
lipoprotein A scores as these increased the risks for HF (see Results). We

Fig. 1 Flowchart of the methodology. The study has two steps:
1) Testing the associations between polygenic scores of patient
characteristics and dCCB related adverse events, 2) Combining the
effects with polygenic scores to identify patients at most risk.
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did not include the heart failure polygenic score to focus on patient
characteristics that might be available in clinical practice.
Patients with rs10898815 GA (HR= 1.10, 95% CI 1.01 to 1.21) and AA in

NUMA1 (HR= 1.18, 95% CI 1.07 to 1.31), and rs776746 TT in CYP3A5 (HR
1.87, 95% CI 1.26 to 2.78) were at increased risk of discontinuing dCCBs
compared to their common homozygotes. We only took rs10898815 into
account here due to the low prevalence of rs776746 TT (0.5% in this
cohort). The same comparison model is used here as above, examining for
body fat mass, and A allele of rs10898815.
We observed dominant effects for rs877087 T allele and rs10898815 A

allele, so we modeled the carriers (heterozygotes plus homozygotes)
compared to non-carriers (homozygous reference) throughout.

Sensitivity analyses
We (1) repeated the combining model adjusting for additional anti-
hypertensives during dCCB prescription, (2) used Cox model for
discontinuation and rs10898815 in other antihypertensive, (3) used
summary data Mendelian randomization methods (as opposed to “one
sample” methods employed in the main analysis) to access a larger group
of roboust estimators for checking the MR assumptions, (4) excluded
existing HF diagnoses in the analysis of polygenic scores on HF risk.
See Supplementary Information for details.

RESULTS
There were 32,360 (45.6% female) participants with primary care
records meeting the inclusion criteria. The mean age at first dCCB
prescription was 61.3 (SD 7.7) years and the median number of
prescriptions per year was 8.2 (interquartile range [IQR] 6.6 to 13,
range 2 to 25). The mean prescribing period was 5.9 (standard
deviation [SD] 5.2) years, and the median was 4.4 (IQR 1.6 to 9.1).
See Table 2 for patient characteristics.

Polygenic scores
Of the nine polygenic scores tested, four were positively
associated with increased risk of one or more studied dCCB
adverse events (Fig. 2): body fat mass, lean mass, lipoprotein A,
and eGFR. Two were negatively associated: SBP and DBP. See
corrected p-values in Supplementary Table 2.
Body fat mass polygenic score was positively associated with

increased risk of dCCB discontinuation (Hazard Ratio [HR] per SD
increase in polygenic score 1.04: 95% Confidence Intervals [CI]
1.02–1.06, p= 1.3 × 10−4), heart failure (HF) and coronary heart
disease (CHD) in Cox proportional-hazards models (HRHF 1.12: 95%
CI 1.07–1.18, p= 9.6 × 10−7; HRCHD 1.05: 95% CI 1.02–1.08, p=
2.5 × 10−4). For details see Supplementary Table 2. To illustrate the
effect another way, we stratified the participants into tertiles
(three equally sized groups) of polygenic score. Those in the
highest body fat mass polygenic score tertile had 31% increased

risk of HF (HR= 1.31, 95% CI 1.17 to 1.47, p= 4 × 10−6), 10%
increased likelihood of discontinuation (95% CIs 1.05 to 1.15, p=
1 × 10−4), and 13% increased risk of CHD (95% CI 1.06–1.21,
p= 10−4), compared to the lowest third (Supplementary Table 3).
The mean difference in measured body fat at UK Biobank baseline
assessment between the top and bottom tertiles was 2.2 kg (95%
CI 2.09–2.36) in a linear regression model adjusted for age, sex and
the top 10 genetic principal components.
Lean mass polygenic score was associated with increased risk

of HF (HR per SD increase in polygenic score 1.06: 95% CI
1.01–1.11, p= 0.01) and discontinuation (HR 1.02, 95% CI 1–1.04,
p= 0.02, p= 0.06 after multiple testing correction). Those in the
highest third of lean mass polygenic score had increased risks of

Table 1. List of traits and GWASs used in polygenic scores.

Trait Open GWASID or paper Reference UKB only Number of variants*

SBP Evangelou 2018 [50] 240

DBP Evangelou 2018 [50] 297

Body fat mass UKB-b-19393 (IEU open gwas) Yes 403

Appendicular lean mass ebi-a-GCST90000025 (IEU open gwas) Yes 630

Wait to hip ratio Pulit 2019 [33] 266

eGFR ^ Pattaro 2015 [28] 49

Urinary Sodium Zanetti 2019 [51] 37

Serum Calcium O’Seaghdha 2013 [35] 7

Lipoprotein A Burgess 2018 [36] 36

Heart failure Shah 2020 [25] 12

See Supplementary Methods and Supplemetary Table 1 for details on variant selection and polygenic score creation. *Number of single nucleotide
polymorphisms showed significant associations with the studied trait in the genome wide association analysis. ^ We coded higher eGFR polygenic score to
correspond with worse kidney function (as presented by Pattaro 2015 [28]).

Table 2. Characteristics of UKB patients prescribed dCCB.

GP prescribed

Number of participants 32,360

Females, n (%) 17,590 (45,6)

Age at first prescription

Minimum: maximum 40:79.3

Mean (SD) 61.3 (7.7)

Number of prescriptions in a year

Minimum: maximum 2:25

Mean (SD) 9.6 (4.4)

Years between first and last prescription

Minimum: maximum 0.08:39.9

Mean (SD) 5.9 (5.2)

MI/angina^^ pre prescription of dCCBs 3026 (7.7)

CKD^^ pre prescriptions of dCCBs 229 (0.6)

Heart failure^^ pre prescriptions of dCCBs 333 (0.8)

Prescribed other antihypertensive during Dccb 23,971 (61)

Discontinue dCCBs 10,095 (31.4)

MI/angina^^ post prescription of dCCBs 7430 (18.9)

CKD^^ post prescriptions of dCCBs 2940 (7.5)

Heart failure^^ post prescriptions of dCCBs 2292 (5.8)

European-ancestry participants with > 1 dCCB prescription in the available
GP prescribing data.
CKD chronic kidney disease, dCCB dihydropyridine calcium-channel
blocker.
^^Hospital diagnosed diseased.
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HF (HR 1.14, 95% CI 1.02 to 1.27, p= 0.02) compared to the
bottom third.
Lipoprotein A polygenic score was associated with increased

risk for HF and CHD (HRHF 1.09: 95% CI 1.04–1.14, p= 2.7 × 10−4

and HRCHD 1.11: 95% CI 1.08–1.14, p= 4.5 × 10−14). Those in the
top third had increased risk of HF (HR 1.20, 95% CI 1.07–1.34,
p= 10−3) and CHD (HR 1.27, 95% CI 1.19–1.35, p= 3 x 10−14)
compared to the lowest third despite the dCCB treatment.
Systolic and diastolic BP scores were associated with lower

discontinuation rates (HRSBP per SD increase in polygenic score
0.96, 95% CI 0.94-0.98 and HRDBP per SD increase in polygenic
score 0.98, 95% CI 0.96–0.99) (Fig. 2 and Supplementary Table 2).
Patients at the highest third of SBP or DBP polygenic score had
lower discontinuation rates, HR SBP= 0.92 (95% CI 0.88–0.97) and
HR DBP= 0.95 (95% CI 0.90–0.99) compared to the lowest third.
eGFR polygenic score (where higher values corresponds with

lower measured eGFR, as presented by Pattaro 2015 [28])
increased risk of chronic kidney disease (CKD) during dCCB
treatment, with the highest third having 1.12 (95% CI 1.01–1.24,
p= 0.03) times the risk versus the lowest (Supplementary Table 3).
Heart failure (HF) polygenic score was associated with

increased risk for HF despite the dCCB treatment (HR per SD
increase in polygenic score 1.14, 95% CI 1.09–1.19, p= 9.7 × 10−9).
Patients at the highest third of HF polygenic score had 34% of
higher risk for HF (HR= 1.34, 95% CI 1.20 to 1.50, p= 4 × 10−7)
versus the bottom (Supplementary Table 3).

Pharmacogenetics and polygenic scores
Pharmacogenetic variants were independent predictors of
adverse outcomes in combined analysis with the above polygenic
scores:

Heart failure. Male patients prescribed dCCB were 1.8 times more
likely to develop HF compared to female patients prescribed dCCB

adjusting for age at first prescription, 10 genetic principal
components and assessment center (HR= 1.8, 95% CI 1.6 to 2). In
a Cox proportional hazards regression model for incident HF after
initiating dCCB treatment, rs877087 T allele and polygenic scores for
body fat mass, lean mass, and lipoprotein A had significant,
independent effects (HRrs877087 1.13, p= 0.02; HRbody fat mass 1.08,
p= 1.7 × 10–6; HRlean mass 1.04, p= 0.02, HRLipoprotein A 1.06, p= 2 ×
10–4), after adjusting for age at treatment initiation, sex and the top
10 genetic principal components. T allele alone versus no T allele
increased HF risk with a HR of 1.13 (95% CI 1.02–1.26, P= 0.02) and
high polygenic score alone had HR of 1.39 (95% CI 1.22–1.58, p=
4.6 × 10−7) versus low scores adjusted for covariates. Estimates were
larger with the presence of high polygenic scores and pharmaco-
genetic risk allele together with no significant interaction (p= 0.8):
the high risk PGS-T allele (7.3% prevalence of HF) HR 1.55 (95% CI
1.26–1.91, p= 4.2 × 10−5) versus low risk PGS-No T allele (4.5%);
High risk PGS-No T allele HR 1.35 (95% CI 1.05–1.72, p= 0.02); Low
risk PGS-T allele HR 1.11 (95% CI 0.89–1.38, p= 0.37) (Fig. 3,
Supplementary Table 4).

Discontinuation. rs10898815 A allele carrier status and polygenic
scores for body fat mass also had significant, independent effects
(HRrs10898815 1.07, p= 0.002; HRbody fat mass 1.03, p= 10–4). High
risk PGS-A allele together had larger effect on discontinuation risk
with no significant interaction terms (p= 0.7): HR 1.16 (95% CI
1.07–1.25, p= 3.3 × 10−4).
See Supplementary Results for the sensitivity analyses.

Fig. 2 Forest plot of associations between patients’ character-
istics polygenic scores and the risks of increased dCCB adverse
events and discontinuation in 32,000 UK Biobank patients. SBP
Systolic blood pressure, DBP Diastolic blood pressure, BFM Body fat
mass, WHR Waist-to-hip ratio, Ca Serum Calcium+2, LPA Lipoprotein
A, EGFR Estimated glomerular filtration rate, HF Heart failure, CKD
Chronic kidney disease, CHD Coronary heart disease. HF, CKD, and
CHD are diagnoses of hospital records. Time to event analyses
between listed polygenic scores and hospital diagnosed heart
failure, chronic kidney disease, coronary heart disease, and dCCB
discontinuation in European-like aged 40+ years patients with at
least two dCCB prescription. The models are adjusted for sex, age at
first dCCB prescription and principal genetic components.

Fig. 3 Time to event analysis between pharmacogenetic variant
alone (A), polygenic score alone (B) and both together (C), with
adverse events. Time to event analyses between outcomes and:
A PGX: pharmacogenetic variants only (rs877087 T for heart failure
and rs10898815 A for discontinuation) versus no variant; B PGS:
polygenic score high risk only (either or all top third and not any
bottom third; body fat mass+ lean mass+ lipoprotein A for heart
failure and body fat mass for discontinuation) versus low risk score
(either or all bottom third and not any top third); and C PGX+ PGS:
polygenic score and pharmacogenetic variant together. We ana-
lyzed European-like aged 40+ years patients with at least two dCCB
prescription. The models are adjusted for sex, age at first dCCB
prescription and principal genetic components.
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DISCUSSION
We aimed to estimate the combined effect of polygenic scores
with pharmacogenetic variants on dCCB adverse outcomes using
a large-scale study of 32,000 community patients prescribed dCCB.
Previous genetic research in hypertension has modeled pharma-
cogenetic variants [29] or polygenic scores [30], but not together.
We previously reported that variants in RYR3 and NUMA1 [4]
increased risks for heart failure (HF) and treatment discontinuation
respectively in the same patient sample, although effect sizes
were modest. Here we studied polygenic scores for individual
patient characteristics reported to alter dCCB pharmacokinetics.
By analysing genetically predicted traits we aimed to minimize
confounding, as genetic variants are inherited at conception and
are unaffected by later exposures or downstream effects of
disease. We found that genetically predicted body fat mass, lean
mass, and lipoprotein A were associated with adverse clinical
outcomes in hypertensive patients treated with dCCBs. Addition-
ally, genetic liability to HF increased incident HF risks in patients
prescribed dCCBs. Though overall estimates for pharmacogenetic
variants are modest, risk of adverse outcomes are considerably
higher in combination with high polygenic scores; suggesting
genetic information could have utility in identifying the subset of
hypertensive patients with substantially raised risks of adverse
events whilst on CCB treatment.
Adiposity is a common risk factor for many diseases, specifically

with cardiovascular diseases [31–33], with genetics supporting the
well-established causal role of adiposity and cardio-metabolic risk
[31]. We extend the literature by exploring associations in
pharmacogenetics. We found that patients with higher genetically
predicted body fat mass were more likely to have HF, CHD, CKD,
and to discontinue treatment, compared to those with low genetic
burden, despite the dCCB treatment. The pathway between higher
body fat mass and clinical outcomes is complex, likely two-fold: (1)
via non-pharmacogenetic effects on cardio-metabolic pathways,
and (2) dCCBs are highly lipophilic, therefore greater body fat
mass reduces medication effectiveness. Patients with higher fat
mass may need larger doses [5, 6].
The causal role of lipoprotein A on atherosclerotic cardiovas-

cular diseases is supported by several Mendelian Randomization
studies [34–36]. Although dCCBs were reported as being
protective for experimental atherosclerosis [37, 38], our results
show that genetically predicted lipoprotein A increased risk of HF
(HR 1.09: 95% CI 1.04–1.14) and CHD (HR 1.11: 95% CI 1.08–1.14) in
dCCB patients. We were unable to test the associations with direct
measured lipoprotein A at treatment initiation, however others
have demonstrated similar predictions on cardiovascular diseases
between the polygenic score and a direct measurement [39].
A randomized controlled trial (RCT) [8] found that age and

baseline BP affect dCCB response in ~60 patients. In UK Biobank, a
study found that in patients reporting antihypertensive use at
baseline genetically predicted SBP was associated with uncon-
trolled BP (OR 1.70; 95% CI: 1.6–1.8, top vs. bottom quintile) [40].
Another UK Biobank study found that high SBP polygenic score at
baseline increased cardiovascular risk 1.04-fold in untreated
hypertension and 1.06-fold in treated hypertension [41]. In our
study, high SBP and DBP polygenic scores are associated with
decreased the risk of discontinuation, and high DBP polygenic
score decreased risk of HF and CHD. We hypothesize that those
with the most severely increased blood pressures tend to continue
treatment compared to those with more moderately increased
pressures (although we lack data to test this directly). It might also
suggest that patients with higher predisposition to hypertension
may get better overall benefit from the dCCB treatment, similar to
the finding of two RCT on lipid-lowering showing that patients
with highest genetic risk of atherosclerosis had better benefit from
lipid-lowering treatment [42].
Serum calcium and urinary sodium were negatively associated

with BP response in ~52 Finnish men in another 4-week RCT [10],

however we found no associations with serum calcium and
sodium polygenic scores between outcomes in 32,000 patients.
Calcium channel blockers are excreted renally, so we tested
whether genetically predicted eGFR affects dCCB response: high
eGFR polygenic score increased the risk of CKD in dCCB patients.
dCCBs are accepted as safe options for the first line treatment of

hypertension in non-black patients aged 55 and over, and
reported to have protective effects in HF by the UK National
Institute for Health and Care Excellence [43]. However, our results
suggest that specific patients at higher genetic risk for HF (i.e.,
those with higher genetic liability to HF, plus higher genetically
predicted body fat mass, lean mass, and lipoprotein A, and
carrying the pharmacogenetic RYR3 variant rs877087 T-allele) have
worse outcomes compared to those with lower genetic risk.
Individual-level predictions incorporating this information might
improve clinical outcomes in hypertension treatment.
Including genetic and non-genetic risk factors that could alter

estimation of treatment response in routine prescribing and
improve outcomes. Under the evidence-based medicine regimes,
more robust studies are required to implement new prescribing
methods. In this study, using polygenic scores we minimize the
effect of unmeasured confounders as genetic variants are fixed at
conception and reflect lifetime exposure to the risk factor [44],
with each variant essentially inherited at random to other variants
and health risks, thus providing a natural experiment comparable
to a randomized clinical trial. The potential clinical utility of
polygenic scores and pharmacogenetics is not yet realized
[45, 46]. We believe this is the first study examining polygenic
scores in combination with pharmacogenetic variants in a large
cohort of 32,000 community patients prescribed dCCBs over 5.9
years, using the primary care linked data reflecting the routine
clinic. Studies such as these will inform efforts in personalized
medicine. Simulation results from a UK Biobank study navigating
the effect of winner’s curse and weak instrument bias in the case
of sample overlap [47] shows that bias is minimal when only
strong instruments are used. Thus any bias in our analysis is
thought to be minimal considering our strongly instrumented
body fat, despite using UK Biobank in both the construction of the
PRS and the main analysis. However, for increased robustness,
future studies should replicate the associations for polygenic
scores ascertained from UK Biobank (fully: BFM, LM and partly: SBP
and DBP) in different cohorts.
Study limitations include not testing actual measurements of

risk factors (routine GP data does not systematically measure
these at treatment initiation), nor analyzing BP response due to
sparsity of data available (the majority of patients were missing
GP-measured BP within 2 months of treatment initiation). We were
not able to analyze CCB ‘dose’ due to missing/inconsistent
recording of data, and high intra-patient variability. Further work
is needed before specific treatment recommendations could be
made for the high-risk group (e.g., dose adjustments, or
alternative treatment prescribed). Future studies are planned to
extend the data analysis to incorporate untreated individuals and
extend analytical methods – such as our recently published TWIST
framework [48]. Further studies are needed to construct genetic
scores for discontinuation in dCCB patients, and extend the
approach reported, including data on populations of non-
European ancestry, and analyzing a wider range of alleles
Replication of our results and examination of drug-drug-gene
interactions are needed.
In summary, clinical outcomes seen in patients prescribed the

common antihypertensives dihydropiridine calcium channel
blockers were better estimated when incorporating polygenic risk
scores related to adiposity and lipoprotein A together with
pharmacogenetic variants. Hence, efforts to personalize treatment
regimes should consider multiple genetic risk factors to improve
patient outcomes. Combining pharmacogenetic and polygenic
score data may have wider applications for prescription
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optimization of other medications, especially as genome wide
genotype data becomes more widely available in routine clinical
practice.

DATA AVAILABILITY
The genetic and phenotypic UK Biobank data are available upon application to the
UK Biobank (www.ukbiobank.ac.uk/register-apply). The derived data fields used in
our analysis will be available via the UK Biobank, search for application number
14631. We are not able to share these directly.
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