Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PACSIN2 rs2413739 influence on thiopurine pharmacokinetics: validation studies in pediatric patients

Abstract

The aim of the study was to validate the impact of the single-nucleotide polymorphism rs2413739 (T > C) in the PACSIN2 gene on thiopurines pharmacological parameters and clinical response in an Italian cohort of pediatric patients with acute lymphoblastic leukemia (ALL) and inflammatory bowel disease (IBD). In ALL, PACSIN2 rs2413739 T allele was associated with a significant reduction of TPMT activity in erythrocytes (p = 0.0094, linear mixed-effect model, multivariate analysis considering TPMT genotype) and increased severe gastrointestinal toxicity during consolidation therapy (p = 0.049). A similar trend was present also for severe hematological toxicity during maintenance. In IBD, no significant effect of rs2413739 could be found on TPMT activity, however azathioprine effectiveness was reduced in patients carrying the T allele (linear mixed effect, p = 0.0058). In PBMC from healthy donors, a positive correlation between PACSIN2 and TPMT protein concentration could be detected (linear mixed effect, p = 0.045). These results support the role of PACSIN2 polymorphism on TPMT activity and mercaptopurine adverse effects in patients with ALL. Further evidence on PBMC and pediatric patients with IBD supports an association between PACSIN2 variants, TPMT activity, and thiopurines effects, even if more studies are needed since some of these effects may be tissue specific.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cara CJ, Pena AS, Sans M, Rodrigo L, Guerrero-Esteo M, Hinojosa J, et al. Reviewing the mechanism of action of thiopurine drugs: towards a new paradigm in clinical practice. Med Sci Monit. 2004;10:RA247–254.

    CAS  PubMed  Google Scholar 

  2. Dubinsky MC, Lamothe S, Yang HY, Targan SR, Sinnett D, Théorêt Y, et al. Pharmacogenomics and metabolite measurement for 6-mercaptopurine therapy in inflammatory bowel disease. Gastroenterology. 2000;118:705–13.

    Article  CAS  Google Scholar 

  3. Stocco G, Cheok MH, Crews KR, Dervieux T, French D, Pei D, et al. Genetic polymorphism of inosine triphosphate pyrophosphatase is a determinant of mercaptopurine metabolism and toxicity during treatment for acute lymphoblastic leukemia. Clin Pharm Ther. 2009;85:164–72.

    Article  CAS  Google Scholar 

  4. Adam de Beaumais T, Fakhoury M, Medard Y, Azougagh S, Zhang D, Yakouben K, et al. Determinants of mercaptopurine toxicity in paediatric acute lymphoblastic leukemia maintenance therapy. Br J Clin Pharm. 2011;71:575–84.

    Article  Google Scholar 

  5. Schaeffeler E, Fischer C, Brockmeier D, Wernet D, Moerike K, Eichelbaum M, et al. Comprehensive analysis of thiopurine S-methyltransferase phenotype-genotype correlation in a large population of German-Caucasians and identification of novel TPMT variants. Pharmacogenetics. 2004;14:407–17.

    Article  CAS  Google Scholar 

  6. Ameyaw MM, Collie-Duguid ES, Powrie RH, Ofori-Adjei D, McLeod HL. Thiopurine methyltransferase alleles in British and Ghanaian populations. Hum Mol Genet. 1999;8:367–70.

    Article  CAS  Google Scholar 

  7. Spire-Vayron de la Moureyre C, Debuysere H, Mastain B, Vinner E, Marez D, Lo Guidice JM, et al. Genotypic and phenotypic analysis of the polymorphic thiopurine S-methyltransferase gene (TPMT) in a European population. Br J Pharm. 1998;125:879–87.

    Article  CAS  Google Scholar 

  8. Franca R, Rebora P, Bertorello N, Fagioli F, Conter V, Biondi A, et al. Pharmacogenetics and induction/consolidation therapy toxicities in acute lymphoblastic leukemia patients treated with AIEOP-BFM ALL 2000 protocol. Pharmacogenomics J. 2017;17:4–10.

    Article  CAS  Google Scholar 

  9. Yates CR, Krynetski EY, Loennechen T, Fessing MY, Tai HL, Pui CH, et al. Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann Intern Med. 1997;126:608–14.

    Article  CAS  Google Scholar 

  10. Relling MV, Gardner EE, Sandborn WJ, Schmiegelow K, Pui CH, Yee SW. Clinical Pharmacogenetics Implementation Consortium, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing: 2013 update. Clin Pharm Ther. 2013;93:324–5.

    Article  CAS  Google Scholar 

  11. Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF, et al. Pharmacogenomics knowledge for personalized medicine. Clin Pharm Ther. 2012;92:414–7.

    Article  CAS  Google Scholar 

  12. Relling MV, Gardner EE, Sandborn WJ, Schmiegelow K, Pui CH, Yee SW. Clinical Pharmacogenetics Implementation Consortium, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clin Pharm Ther. 2011;89:387–91.

    Article  CAS  Google Scholar 

  13. Turner D, Carle A, Steiner SJ, Margolis PA, Colletti RB, Russell RK, et al. Quality items required for running a paediatric inflammatory bowel disease centre: an ECCO paper. J Crohns Colitis. 2017;11:981–7.

    Article  Google Scholar 

  14. Stocco G, Yang W, Crews KR, Thierfelder WE, Decorti G, Londero M, et al. PACSIN2 polymorphism influences TPMT activity and mercaptopurine-related gastrointestinal toxicity. Hum Mol Genet. 2012;21:4793–804.

    Article  CAS  Google Scholar 

  15. Liu S, Xiong X, Zhao X, Yang X, Wang H. F-BAR family proteins, emerging regulators for cell membrane dynamic changes-from structure to human diseases. J Hematol Oncol. 2015;8:47.

    Article  Google Scholar 

  16. Quan A, Robinson PJ. Syndapin-a membrane remodelling and endocytic F-BAR protein. FEBS J. 2013;280:5198–212.

    Article  CAS  Google Scholar 

  17. Senju Y, Itoh Y, Takano K, Hamada S, Suetsugu S. Essential role of PACSIN2/syndapin-II in caveolae membrane sculpting. J Cell Sci. 2011;124:2032–40.

    Article  CAS  Google Scholar 

  18. Senju Y, Suetsugu S. Possible regulation of caveolar endocytosis and flattening by phosphorylation of F-BAR domain protein PACSIN2/Syndapin II. Bioarchitecture. 2015;5:70–77.

    Article  Google Scholar 

  19. Kostan J, Salzer U, Orlova A, Törö I, Hodnik V, Senju Y, et al. Direct interaction of actin filaments with F-BAR protein pacsin2. EMBO Rep. 2014;15:1154–62.

    Article  CAS  Google Scholar 

  20. de Kreuk BJ, Nethe M, Fernandez-Borja M, Anthony EC, Hensbergen PJ, Deelder AM, et al. The F-BAR domain protein PACSIN2 associates with Rac1 and regulates cell spreading and migration. J Cell Sci. 2011;124:2375–88.

    Article  CAS  Google Scholar 

  21. Chouchana L, Fernández-Ramos AA, Dumont F, Marchetti C, Ceballos-Picot I, Beaune P, et al. Molecular insight into thiopurine resistance: transcriptomic signature in lymphoblastoid cell lines. Genome Med. 2015;7:37.

    Article  Google Scholar 

  22. Seinen ML, van Nieuw Amerongen GP, de Boer NK, Mulder CJ, van Bezu J, van Bodegraven AA, et al. Rac1 as a potential pharmacodynamic biomarker for thiopurine therapy in inflammatory bowel disease. Ther Drug Monit. 2016;38:621–7.

    Article  CAS  Google Scholar 

  23. Dervieux T, Boulieu R. Simultaneous determination of 6-thioguanine and methyl 6-mercaptopurine nucleotides of azathioprine in red blood cells by HPLC. Clin Chem. 1998;44:551–5.

    Article  CAS  Google Scholar 

  24. Anglicheau D, Sanquer S, Loriot MA, Beaune P, Thervet E. Thiopurine methyltransferase activity: new conditions for reversed-phase high-performance liquid chromatographic assay without extraction and genotypic-phenotypic correlation. J Chromatogr B Anal Technol Biomed Life Sci. 2002;773:119–27.

    Article  CAS  Google Scholar 

  25. Paugh SW, Bonten EJ, Savic D, Ramsey LB, Thierfelder WE, Gurung P, et al. NALP3 inflammasome upregulation and CASP1 cleavage of the glucocorticoid receptor cause glucocorticoid resistance in leukemia cells. Nat Genet. 2015;47:607–14.

    Article  CAS  Google Scholar 

  26. Hyams JS, Ferry GD, Mandel FS, Gryboski JD, Kibort PM, Kirschner BS, et al. Development and validation of a pediatric Crohn’s disease activity index. J Pediatr Gastroenterol Nutr. 1991;12:439–47.

    Article  CAS  Google Scholar 

  27. Turner D, Otley AR, Mack D, Hyams J, de Bruijne J, Uusoue K, et al. Development, validation, and evaluation of a pediatric ulcerative colitis activity index: a prospective multicenter study. Gastroenterology. 2007;133:423–32.

    Article  Google Scholar 

  28. Rothman KJ. No adjustments are needed for multiple comparisons. Epidemiology. 1990;1:43–46.

    Article  CAS  Google Scholar 

  29. Liu C, Yang W, Pei D, Cheng C, Smith C, Landier W, et al. Genomewide approach validates thiopurine methyltransferase activity is a monogenic pharmacogenomic trait. Clin Pharm Ther. 2017;101:373–81.

    Article  CAS  Google Scholar 

  30. Tamm R, Mägi R, Tremmel R, Winter S, Mihailov E, Smid A, et al. Polymorphic variation in TPMT is the principal determinant of TPMT phenotype: a meta-analysis of three genome-wide association studies. Clin Pharm Ther. 2017;101:684–95.

    Article  CAS  Google Scholar 

  31. Lennard L, Chew TS, Lilleyman JS. Human thiopurine methyltransferase activity varies with red blood cell age. Br J Clin Pharm. 2001;52:539–46.

    Article  CAS  Google Scholar 

  32. Boyle EA, Li YI, Pritchard JK. An expanded view of complex traits: from polygenic to omnigenic. Cell. 2017;169:1177–86.

    Article  CAS  Google Scholar 

  33. Karas-Kuželički N, Šmid A, Tamm R, Metspalu A, Mlinarič-Raščan I. From pharmacogenetics to pharmacometabolomics: SAM modulates TPMT activity. Pharmacogenomics. 2014;15:1437–49.

    Article  Google Scholar 

  34. Smid A, Karas-Kuzelicki N, Jazbec J, Mlinaric-Rascan I. PACSIN2 polymorphism is associated with thiopurine-induced hematological toxicity in children with acute lymphoblastic leukaemia undergoing maintenance therapy. Sci Rep. 2016;6:30244.

    Article  CAS  Google Scholar 

  35. Pettersson B, Almer S, Albertioni F, Söderhäll S, Peterson C. Differences between children and adults in thiopurine methyltransferase activity and metabolite formation during thiopurine therapy: possible role of concomitant methotrexate. Ther Drug Monit. 2002;24:351–8.

    Article  CAS  Google Scholar 

  36. McLeod HL, Krynetski EY, Wilimas JA, Evans WE. Higher activity of polymorphic thiopurine S-methyltransferase in erythrocytes from neonates compared to adults. Pharmacogenetics. 1995;5:281–6.

    Article  CAS  Google Scholar 

  37. Serpe L, Calvo PL, Muntoni E, D’Antico S, Giaccone M, Avagnina A, et al. Thiopurine S-methyltransferase pharmacogenetics in a large-scale healthy Italian-Caucasian population: differences in enzyme activity. Pharmacogenomics. 2009;10:1753–65.

    Article  CAS  Google Scholar 

  38. van Egmond R, Barclay ML, Chin PK, Sies CW, Florkowski CM. Preanalytical stringency: what factors may confound interpretation of thiopurine S-methyl transferase enzyme activity? Ann Clin Biochem. 2013;50:479–84.

    Article  Google Scholar 

  39. Fisel P, Schaeffeler E, Schwab M. DNA methylation of ADME genes. Clin Pharm Ther. 2016;99:512–27.

    Article  CAS  Google Scholar 

  40. Rothman KJ. Six persistent research misconceptions. J Gen Intern Med. 2014;29:1060–1.

    Article  Google Scholar 

Download references

Acknowledgements

We thank AGMEN (Associazione Genitori Malati Emopatici Neoplastici) Friuli Venezia Giulia (Italy) and IRCCS Burlo Garofolo in Trieste (Italy) for supporting the pharmacogenetics project. Andrea Biondi was supported by AIRC 2017 investigator grant 20564 and AIRC 5 × 1000.

Author information

Authors and Affiliations

Authors

Contributions

RF contributed to the study design, genetic analysis, data interpretation, and paper writing; GS contributed to study design, statistical analysis, data interpretation, and paper writing; DF performed HPLC analysis; NG, ID, LV, AC, EB, and SM recruited patients and collected clinical data; MP contributed to western blotting analysis; FL, AB, FF, and AV discussed results and revised the manuscript; GD contributed to study design, results discussion, and paper writing; MR contributed to the study design, coordinated the clinical part, discussed results, and revised the manuscript.

Corresponding author

Correspondence to Giuliana Decorti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franca, R., Stocco, G., Favretto, D. et al. PACSIN2 rs2413739 influence on thiopurine pharmacokinetics: validation studies in pediatric patients. Pharmacogenomics J 20, 415–425 (2020). https://doi.org/10.1038/s41397-019-0130-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-019-0130-0

Search

Quick links