Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Statin-induced LDL cholesterol response and type 2 diabetes: a bidirectional two-sample Mendelian randomization study

Abstract

It remains unclear whether the increased risk of new-onset type 2 diabetes (T2D) seen in statin users is due to low LDL-C concentrations, or due to the statin-induced proportional change in LDL-C. In addition, genetic instruments have not been proposed before to examine whether liability to T2D might cause greater proportional statin-induced LDL-C lowering. Using summary-level statistics from the Genomic Investigation of Statin Therapy (GIST, nmax = 40,914) and DIAGRAM (nmax = 159,208) consortia, we found a positive genetic correlation between LDL-C statin response and T2D using LD score regression (rgenetic = 0.36, s.e. = 0.13). However, mendelian randomization analyses did not provide support for statin response having a causal effect on T2D risk (OR 1.00 (95% CI: 0.97, 1.03) per 10% increase in statin response), nor that liability to T2D has a causal effect on statin-induced LDL-C response (0.20% increase in response (95% CI: −0.40, 0.80) per doubling of odds of liability to T2D). Although we found no evidence to suggest that proportional statin response influences T2D risk, a definitive assessment should be made in populations comprised exclusively of statin users, as the presence of nonstatin users in the DIAGRAM dataset may have substantially diluted our effect estimate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of two-sample Mendelian randomization (MR) study on the bidirectional association between statin-induced LDL cholesterol response and type 2 diabetes (T2D).
Fig. 2: Scatterplots of per-allele effects.
Fig. 3: Funnel plots of individual causal effect estimates.

Similar content being viewed by others

References

  1. Adhyaru BB, Jacobson TA. Safety and efficacy of statin therapy. Nat Rev Cardiol. 2018;15:757–69.

    Article  CAS  PubMed  Google Scholar 

  2. Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AM Jr., Kastelein JJ, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N. Engl J Med. 2008;359:2195–207.

    Article  CAS  PubMed  Google Scholar 

  3. Sattar N, Preiss D, Murray HM, Welsh P, Buckley BM, de Craen AJM, et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet. 2010;375:735–42.

    Article  CAS  PubMed  Google Scholar 

  4. Preiss D, Seshasai SR, Welsh P, Murphy SA, Ho JE, Waters DD, et al. Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy: a meta-analysis. JAMA. 2011;305:2556–64.

    Article  CAS  PubMed  Google Scholar 

  5. Navarese EP, Buffon A, Andreotti F, Kozinski M, Welton N, Fabiszak T, et al. Meta-analysis of impact of different types and doses of statins on new-onset diabetes mellitus. Am J Cardiol. 2013;111:1123–30.

    Article  CAS  PubMed  Google Scholar 

  6. Besseling J, Kastelein JJ, Defesche JC, Hutten BA, Hovingh GK. Association between familial hypercholesterolemia and prevalence of type 2 diabetes mellitus. JAMA. 2015;313:1029–36.

    Article  CAS  PubMed  Google Scholar 

  7. Fall T, Xie W, Poon W, Yaghootkar H, Mägi R, GENESIS consortium. et al. Using genetic variants to assess the relationship between circulating lipids and type 2 diabetes. Diabetes. 2015;64:2676–84.

    Article  CAS  PubMed  Google Scholar 

  8. White J, Swerdlow DI, Preiss D, Fairhurst-Hunter Z, Keating BJ, Asselbergs FW, et al. Association of lipid fractions with risks for coronary artery disease and diabetes. JAMA Cardiol. 2016;1:692–9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Liu DJ, Peloso GM, Yu H, Butterworth AS, Wang X, Mahajan A, et al. Exome-wide association study of plasma lipids in >300,000 individuals. Nat Genet. 2017;49:1758–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Swerdlow DI, Preiss D, Kuchenbaecker KB, Holmes MV, Engmann JEL, Shah T, et al. HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials. Lancet. 2015;385:351–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schmidt AF, Swerdlow DI, Holmes MV, Patel RS, Fairhurst-Hunter Z, Lyall DM, et al. PCSK9 genetic variants and risk of type 2 diabetes: a mendelian randomisation study. Lancet Diabetes Endocrinol. 2017;5:97–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lotta LA, Sharp SJ, Burgess S, Perry JRB, Stewart ID, Willems SM, et al. Association between low-density lipoprotein cholesterol-lowering genetic variants and risk of type 2 diabetes: a meta-analysis. JAMA. 2016;316:1383–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ference BA, Robinson JG, Brook RD, Catapano AL, Chapman MJ, Neff DR, et al. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N. Engl J Med. 2016;375:2144–53.

    Article  CAS  PubMed  Google Scholar 

  14. Labos C, Brophy JM, Smith GD, Sniderman AD, Thanassoulis G. Evaluation of the pleiotropic effects of statins: a reanalysis of the randomized trial evidence using egger regression-brief report. Arterioscler Thromb Vasc Biol. 2018;38:262–5.

    Article  CAS  PubMed  Google Scholar 

  15. Zhou Q, Liao JK. Pleiotropic effects of statins. Circulation J. 2010;74:818–26.

    Article  CAS  Google Scholar 

  16. Postmus I, Trompet S, Deshmukh HA, Barnes MR, Li X, Warren HR, et al. Pharmacogenetic meta-analysis of genome-wide association studies of LDL cholesterol response to statins. Nat Commun. 2014;5:5068.

    Article  CAS  PubMed  Google Scholar 

  17. Scott RA, Scott LJ, Mägi R, Marullo L, Gaulton KJ, Kaakinen M, et al. An expanded genome-wide association study of type 2 diabetes in Europeans. Diabetes. 2017;66:2888–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J. Schizophrenia Working Group of the Psychiatric Genomics C et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet. 2015;47:291–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh PR, et al. An atlas of genetic correlations across human diseases and traits. Nat Genet. 2015;47:1236–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Morris AP, Voight BF, Teslovich TM, Ferreira T, Segre AV, Steinthorsdottir V, et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet. 2012;44:981–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zheng J, Erzurumluoglu AM, Elsworth BL, Kemp JP, Howe L, Haycock PC, et al. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics. 2017;33:272–9.

    Article  CAS  PubMed  Google Scholar 

  22. Stock J, Yogo M. Testing for Weak Instruments in Linear IV Regression, Cambridge, New York, 2005.

  23. Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol. 2013;37:658–65.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44:512–25.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40:304–14.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol. 2017;46:1985–98.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rucker G, Schwarzer G, Carpenter JR, Binder H, Schumacher M. Treatment-effect estimates adjusted for small-study effects via a limit meta-analysis. Biostatistics. 2011;12:122–42.

    Article  PubMed  Google Scholar 

  28. Bowden J, Del Greco MF, Minelli C, Davey Smith G, Sheehan N, Thompson J. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat Med. 2017;36:1783–802.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Burgess S, Thompson SG. Multivariable mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects. Am J Epidemiol. 2015;181:251–60.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, et al. Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013;45:1274–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2017.

    Google Scholar 

  32. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife. 2018;7:e34408.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Everett BM, Mora S, Glynn RJ, MacFadyen J, Ridker PM. Safety profile of subjects treated to very low low-density lipoprotein cholesterol levels (<30 mg/dl) with rosuvastatin 20 mg daily (from JUPITER). Am J Cardiol. 2014;114:1682–9.

    Article  CAS  PubMed  Google Scholar 

  34. Hsia J, MacFadyen JG, Monyak J, Ridker PM. Cardiovascular event reduction and adverse events among subjects attaining low-density lipoprotein cholesterol <50 mg/dl with rosuvastatin. The JUPITER trial (Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin). J Am Coll Cardiol. 2011;57:1666–75.

    Article  CAS  PubMed  Google Scholar 

  35. Feng Q, Wei WQ, Chung CP, Levinson RT, Sundermann AC, Mosley JD, et al. Relationship between very low low-density lipoprotein cholesterol concentrations not due to statin therapy and risk of type 2 diabetes: A US-based cross-sectional observational study using electronic health records. PLoS Med. 2018;15:e1002642.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Gage SH, Jones HJ, Taylor AE, Burgess S, Zammit S, Munafo MR. Investigating causality in associations between smoking initiation and schizophrenia using Mendelian randomization. Sci Rep. 2017;7:40653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ware JJ, van den Bree MB, Munafo MR. Association of the CHRNA5-A3-B4 gene cluster with heaviness of smoking: a meta-analysis. Nicotine Tob Res. 2011;13:1167–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cholesterol Treatment Trialist’ (CTT) Collaborators, Kearney PM, Blackwell L, Collins R, Keech A, Simes J, et al. Efficacy of cholesterol-lowering therapy in 18 686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet. 2008;371:117–25.

    Article  CAS  Google Scholar 

  39. van Rheenen W, Peyrot WJ, Schork AJ, Lee SH, Wray NR. Genetic correlations of polygenic disease traits: from theory to practice. Nat Rev Genet. 2019;20:567–81.

    Article  CAS  PubMed  Google Scholar 

  40. Brainstorm C, Anttila V, Bulik-Sullivan B, Finucane HK, Walters RK, Bras J, et al. Analysis of shared heritability in common disorders of the brain. Science. 2018;360:1–12.

  41. Burgess S, Foley CN, Zuber V. Inferring causal relationships between risk factors and outcomes from genome-wide association study data. Annu Rev Genomics Hum Genet. 2018;19:303–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Burgess S, Thompson SG. Use of allele scores as instrumental variables for Mendelian randomization. Int J Epidemiol. 2013;42:1134–44.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Pierce BL, Burgess S. Efficient design for Mendelian randomization studies: subsample and 2-sample instrumental variable estimators. Am J Epidemiol. 2013;178:1177–84.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the DIAGRAM consortium for making their GWAS summary data publicly available. In addition, we wish to express our gratitude to all studies participating in the GIST consortium. Full study-specific acknowledgments for the GIST consortium are given in ref. [16].

Funding

JWJ is an Established Clinical Investigator of the Netherlands Heart Foundation (grant 2001 D 032). This work is also supported in part by the National Heart, Lung, and Blood Institute grants HL105756 (infrastructure grant for the Cohorts for Heart and Ageing Research in Genetic Epidemiology (CHARGE) consortium, to BMP), GM109145 (to CMS), and GM120523 (to QF).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Roelof A. J. Smit.

Ethics declarations

Conflict of interest

BMP serves on the Steering Committee of the Yale Open Data Access Project funded by Johnson & Johnson. DIC received research support for independent genetic analysis in JUPITER from AstraZeneca. RMK serves on the Merck Global Atherosclerosis Advisory Board. The remaining authors declare no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smit, R.A.J., Trompet, S., Leong, A. et al. Statin-induced LDL cholesterol response and type 2 diabetes: a bidirectional two-sample Mendelian randomization study. Pharmacogenomics J 20, 462–470 (2020). https://doi.org/10.1038/s41397-019-0125-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-019-0125-x

This article is cited by

Search

Quick links