Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A genome-wide association study of tramadol metabolism from post-mortem samples

Abstract

Phase I tramadol metabolism requires cytochrome p450 family 2, subfamily D, polypeptide 6 (CYP2D6) to form O-desmethyltramadol (M1). CYP2D6 genetic variants may infer metabolizer phenotype; however, drug ADME (absorption, distribution, metabolism, and excretion) and response depend on protein pathway(s), not CYP2D6 alone. There is a paucity of data regarding the contribution of trans-acting proteins to idiosyncratic phenotypes following drug exposure. A genome-wide association study identified five markers (rs79983226/kgp11274252, rs9384825, rs62435418/kgp10370907, rs72732317/kgp3743668, and rs184199168/exm1592932) associated with the conversion of tramadol to M1 (M1:T). These SNPs reside within five genes previously implicated with adverse reactions. Analysis of accompanying toxicological meta-data revealed a significant positive linear relationship between M1:T and degree of sample polypharmacy. Taken together, these data identify candidate loci for potential clinical inferences of phenotype following exposure to tramadol and highlight sample polypharmacy as a possible diagnostic covariate in post-mortem genetic studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. DePriest AZ, Puet BL, Holt AC, Roberts A, Cone EJ. Metabolism and disposition of prescription opioids: a review. Forensic Sci Rev. 2015;27:115–45.

    CAS  PubMed  Google Scholar 

  2. Gong L, Stamer UM, Tzvetkov MV, Altman RB, Klein TE. PharmGKB summary: tramadol pathway. Pharm Genom. 2014;24:374–80.

    Article  CAS  Google Scholar 

  3. Gillen C, Haurand M, Kobelt DJ, Wnendt S. Affinity, potency and efficacy of tramadol and its metabolites at the cloned human mu-opioid receptor. Naunyn Schmiedes Arch Pharmacol. 2000;362:116–21.

    Article  CAS  Google Scholar 

  4. Grond S, Sablotzki A. Clinical pharmacology of tramadol. Clin Pharmacokinet. 2004;43:879–923.

    Article  CAS  PubMed  Google Scholar 

  5. Kerr GW, McGuffie AC, Wilkie S. Tricyclic antidepressant overdose: a review. Emerg Med J. 2001;18:236–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Koren G, Cairns J, Chitayat D, Gaedigk A, Leeder SJ. Pharmacogenetics of morphine poisoning in a breastfed neonate of a codeine-prescribed mother. Lancet. 2006;368:704.

    Article  PubMed  Google Scholar 

  7. Koski A, Ojanpera I, Sistonen J, Vuori E, Sajantila A. A fatal doxepin poisoning associated with a defective CYP2D6 genotype. Am J Forensic Med Pathol. 2007;28:259–61.

    Article  PubMed  Google Scholar 

  8. Orliaguet G, Hamza J, Couloigner V, Denoyelle F, Loriot MA, Broly F, et al. A case of respiratory depression in a child with ultrarapid CYP2D6 metabolism after tramadol. Pediatrics. 2015;135:e753–755.

    Article  PubMed  Google Scholar 

  9. Aklillu E, Persson I, Bertilsson L, Johansson I, Rodrigues F, Ingelman-Sundberg M. Frequent distribution of ultrarapid metabolizers of debrisoquine in an ethiopian population carrying duplicated and multiduplicated functional CYP2D6 alleles. J Pharmacol Exp Ther. 1996;278:441–6.

    CAS  PubMed  Google Scholar 

  10. Bagheri A, Kamalidehghan B, Haghshenas M, Azadfar P, Akbari L, Sangtarash MH, et al. Prevalence of the CYP2D6*10 (C100T), *4 (G1846A), and *14 (G1758A) alleles among Iranians of different ethnicities. Drug Des Dev Ther. 2015;9:2627–34.

    Google Scholar 

  11. Bernard S, Neville KA, Nguyen AT, Flockhart DA. Interethnic differences in genetic polymorphisms of CYP2D6 in the U.S. population: clinical implications. Oncologist. 2006;11:126–35.

    Article  CAS  PubMed  Google Scholar 

  12. Bradford LD. CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics. 2002;3:229–43.

    Article  CAS  PubMed  Google Scholar 

  13. Contreras AV, Monge-Cazares T, Alfaro-Ruiz L, Hernandez-Morales S, Miranda-Ortiz H, Carrillo-Sanchez K, et al. Resequencing, haplotype construction and identification of novel variants of CYP2D6 in Mexican Mestizos. Pharmacogenomics. 2011;12:745–56.

    Article  CAS  PubMed  Google Scholar 

  14. Gaedigk A, Sangkuhl K, Whirl-Carrillo M, Klein T, Leeder JS. Prediction of CYP2D6 phenotype from genotype across world populations. Genet Med. 2017;19:69–76.

    Article  PubMed  Google Scholar 

  15. He X, He N, Ren L, Ouyang Y, Zhang N, Ma Y, et al. Genetic polymorphisms analysis of CYP2D6 in the Uygur population. BMC Genomics. 2016;17:409.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Sistonen J, Fuselli S, Palo JU, Chauhan N, Padh H, Sajantila A. Pharmacogenetic variation at CYP2C9, CYP2C19, and CYP2D6 at global and microgeographic scales. Pharm Genomics. 2009;19:170–9.

    Article  CAS  Google Scholar 

  17. Sistonen J, Sajantila A, Lao O, Corander J, Barbujani G, Fuselli S. CYP2D6 worldwide genetic variation shows high frequency of altered activity variants and no continental structure. Pharm Genomics. 2007;17:93–101.

    Article  CAS  Google Scholar 

  18. Baber M, Chaudhry S, Kelly L, Ross C, Carleton B, Berger H, et al. The pharmacogenetics of codeine pain relief in the postpartum period. Pharm J. 2015;15:430–5.

    CAS  Google Scholar 

  19. Lam J, Woodall KL, Solbeck P, Ross CJ, Carleton BC, Hayden MR, et al. Codeine-related deaths: the role of pharmacogenetics and drug interactions. Forensic Sci Int. 2014;239:50–56.

    Article  CAS  PubMed  Google Scholar 

  20. Altar CA, Carhart J, Allen JD, Hall-Flavin D, Winner J, Dechairo B. Clinical utility of combinatorial pharmacogenomics-guided antidepressant therapy: evidence from three clinical studies. Mol Neuropsychiatry. 2015;1:145–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Altar CA, Carhart JM, Allen JD, Hall-Flavin DK, Dechairo BM, Winner JG. Clinical validity: combinatorial pharmacogenomics predicts antidepressant responses and healthcare utilizations better than single gene phenotypes. Pharm J. 2015;15:443–51.

    CAS  Google Scholar 

  22. Wendt FR, Sajantila A, Moura-Neto RS, Woerner AE, Budowle B. Full-gene haplotypes refine CYP2D6 metabolizer phenotype inferences. Int J Legal Med 2018;132:1007–24.

    Article  PubMed  Google Scholar 

  23. World Health Organization. (2004). ICD-10: international statistical classification of diseases and related health problems: tenth revision, 2nd ed. Geneva: World Health Organization. http://www.who.int/iris/handle/10665/42980. Accessed 8 April 2019.

  24. QIAamp(R) DNA Mini and Blood Mini Handbook Fifth Edition. 2016. http://www.qiagen.com/us/resources/. Accessed 8 April 2019.

  25. Quantifilerâ„¢ HP and Trio DNA Quantification Kits User Guide. Publication Number 4485354 Revision G. https://www.thermofisher.com/order/catalog/product/4482910. Accessed 8 April 2019.

  26. Infinium® LCG Assay Protocol Guide. Part # 15023139 Rev. D. 2015. https://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/infinium_assays/infinium_lcg_assay/infinium-lcg-assay-guide-15023139-d.pdf. Accessed 8 April 2019.

  27. Infinium Omni2. 5-8 Kit Support. https://support.illumina.com/array/array_kits/humanomni2_5-8_beadchip_kit/downloads.html. Accessed 8 April 2019.

  28. Infinium Omni2.5-8 v1.3 Support Files. Infinium Omni2.5Exome-8 v1.3 Loci Name to rsID Conversion File. https://support.illumina.com/downloads.html. Accessed 8 April 2019.

  29. Infinium® Genotyping Data Analysis: a guide for analyzing Infinium genotyping data using the GenomeStudio® Genotyping Module. https://www.illumina.com/Documents/products/technotes/technote_infinium_genotyping_data_analysis.pdf.

  30. Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2009.

    Book  Google Scholar 

  31. R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2018.

  32. Turner S, Armstrong LL, Bradford Y, Carlson CS, Crawford DC, Crenshaw AT, et al. Quality control procedures for genome-wide association studies. Curr Protoc Hum Genet 2011;Chapter 1:Unit 1.19.

  33. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Turner S. qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots. J Open Source Softw. 2018;3:731.

    Article  Google Scholar 

  35. iScan Documentation and Literature. https://support.illumina.com/array/array_instruments/iscan/documentation.html. Accessed 8 April 2019.

  36. Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, et al. A global reference for human genetic variation. Nature. 2015;526:68–74.

    Article  PubMed  CAS  Google Scholar 

  37. Karolchik D, Hinrichs AS, Kent WJ. The UCSC Genome Browser. Curr Protoc Bioinformatics 2012;Chapter 1:Unit 1.4.

  38. Mi H, Muruganujan A, Thomas PD. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res. 2013;41(Database issue):D377–386.

    CAS  PubMed  Google Scholar 

  39. Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, et al. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 2003;13:2129–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Qiagen Multiplex PCR Handbook. For fast and efficient multiplex PCR without optimization. 2010. https://www.qiagen.com/us/resources/resourcedetail?id=beb1f99e-0580-42c5-85d4-ea5f37573c07&lang=en. Accessed 8 April 2019.

  41. Agilent D1000 ScreenTape System Quick Guide. https://www.agilent.com/cs/library/usermanuals/public/ScreenTape_D1000_QG.pdf. Accessed 8 April 2019.

  42. Qubit® dsDNA BR Assay Kits. MAN0002325. MP32850. Revision A.0. https://tools.thermofisher.com/content/sfs/manuals/Qubit_dsDNA_BR_Assay_UG.pdf. Accessed 8 April 2019.

  43. Nextera XT DNA Library Prep Kit Reference Guide. Document #15031942 v02. https://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/samplepreps_nextera/nextera-xt/nextera-xt-library-prep-reference-guide-15031942-03.pdf. Accessed 8 April 2019.

  44. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, et al. The Ensembl Variant Effect Predictor. Genome Biol. 2016;17:122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4:1073–81.

    Article  CAS  PubMed  Google Scholar 

  49. Ng PC, Henikoff S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31:3812–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet 2013;Chapter 7:Unit 7.20.

  51. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Choi Y, Chan AP. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics. 2015;31:2745–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. Predicting the functional effect of amino acid substitutions and indels. PLoS ONE. 2012;7:e46688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Desmet FO, Hamroun D, Lalande M, Collod-Beroud G, Claustres M, Beroud C. Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009;37:e67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012;22:1790–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46:310–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Axler-Diperte GBF, Budimlija ZM, Sajantila A, Siegel D, Tang Y. Molecular autopsy. In: Primorac D, Schanfield M, editors. Forensic DNA applications: an interdisciplinary perspective. Boca Raton, FL: CRC Press; 2014, p. 453–82.

    Google Scholar 

  58. Tu E, Waterhouse L, Duflou J, Bagnall RD, Semsarian C. Genetic analysis of hyperpolarization-activated cyclic nucleotide-gated cation channels in sudden unexpected death in epilepsy cases. Brain Pathol. 2011;21:692–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ding L, Abebe T, Beyene J, Wilke RA, Goldberg A, Woo JG, et al. Rank-based genome-wide analysis reveals the association of ryanodine receptor-2 gene variants with childhood asthma among human populations. Hum Genomics. 2013;7:16.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ortiz RA, Barnes KC. Genetics of allergic diseases. Immunol Allergy Clin North Am. 2015;35:19–44.

    Article  PubMed  Google Scholar 

  61. Cao M, Xu J, Shen C, Kam C, Huganir RL, Xia J. PICK1-ICA69 heteromeric BAR domain complex regulates synaptic targeting and surface expression of AMPA receptors. J Neurosci. 2007;27:12945–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li QJ, Wang Z, Yao YX, Jin SH, Qian MZ, Li NN, et al. Loss of ICA69 potentiates long-lasting hyperalgesia after subcutaneous formalin injection into the mouse hindpaw. Neurochem Res. 2015;40:579–90.

    Article  CAS  PubMed  Google Scholar 

  63. Xu J, Kam C, Luo JH, Xia J. PICK1 mediates synaptic recruitment of AMPA receptors at neurexin-induced postsynaptic sites. J Neurosci. 2014;34:15415–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Ehrmann I, Dalgliesh C, Liu Y, Danilenko M, Crosier M, Overman L, et al. The tissue-specific RNA binding protein T-STAR controls regional splicing patterns of neurexin pre-mRNAs in the brain. PLoS Genet. 2013;9:e1003474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Traunmuller L, Gomez AM, Nguyen TM, Scheiffele P. Control of neuronal synapse specification by a highly dedicated alternative splicing program. Science. 2016;352:982–6.

    Article  PubMed  CAS  Google Scholar 

  66. Chang H, Jeung HC, Jung JJ, Kim TS, Rha SY, Chung HC. Identification of genes associated with chemosensitivity to SAHA/taxane combination treatment in taxane-resistant breast cancer cells. Breast Cancer Res Treat. 2011;125:55–63.

    Article  CAS  PubMed  Google Scholar 

  67. Korte A, Farlow A. The advantages and limitations of trait analysis with GWAS: a review. Plant Methods. 2013;9:29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Behar DM, Yunusbayev B, Metspalu M, Metspalu E, Rosset S, Parik J, et al. The genome-wide structure of the Jewish people. Nature. 2010;466:238–42.

    Article  CAS  PubMed  Google Scholar 

  69. Pardo-Seco J, Gomez-Carballa A, Amigo J, Martinon-Torres F, Salas A. A genome-wide study of modern-day Tuscans: revisiting Herodotus's theory on the origin of the Etruscans. PLoS ONE. 2014;9:e105920.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Salas A, Pardo-Seco J, Cebey-Lopez M, Gomez-Carballa A, Obando-Pacheco P, Rivero-Calle I, et al. Whole exome sequencing reveals new candidate genes in host genomic susceptibility to respiratory syncytial virus disease. Sci Rep. 2017;7:15888.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Lim ET, Wurtz P, Havulinna AS, Palta P, Tukiainen T, Rehnstrom K, et al. Distribution and medical impact of loss-of-function variants in the Finnish founder population. PLoS Genet. 2014;10:e1004494.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Wang SR, Agarwala V, Flannick J, Chiang CW, Altshuler D, Hirschhorn JN. Simulation of Finnish population history, guided by empirical genetic data, to assess power of rare-variant tests in Finland. Am J Hum Genet. 2014;94:710–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen R, Wang H, Shi J, Shen K, Hu P. Cytochrome P450 2D6 genotype affects the pharmacokinetics of controlled-release paroxetine in healthy Chinese subjects: comparison of traditional phenotype and activity score systems. Eur J Clin Pharm. 2015;71:835–41.

    Article  CAS  Google Scholar 

  74. Gaedigk A, Simon SD, Pearce RE, Bradford LD, Kennedy MJ, Leeder JS. The CYP2D6 activity score: translating genotype information into a qualitative measure of phenotype. Clin Pharm Ther. 2008;83:234–42.

    Article  CAS  Google Scholar 

  75. Hannelius U, Salmela E, Lappalainen T, Guillot G, Lindgren CM, von Dobeln U, et al. Population substructure in Finland and Sweden revealed by the use of spatial coordinates and a small number of unlinked autosomal SNPs. BMC Genet. 2008;9:54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Jakkula E, Rehnstrom K, Varilo T, Pietilainen OP, Paunio T, Pedersen NL, et al. The genome-wide patterns of variation expose significant substructure in a founder population. Am J Hum Genet. 2008;83:787–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ward LD, Kellis M. Interpreting noncoding genetic variation in complex traits and human disease. Nat Biotechnol. 2012;30:1095–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ammar R, Paton TA, Torti D, Shlien A, Bader GD. Long read nanopore sequencing for detection of HLA and CYP2D6 variants and haplotypes. F1000Research. 2015;4:17.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bank PC, Swen JJ, Guchelaar HJ, van der Straaten T. GenoChip CYP2D6 macroarray as a method to genotype for CYP2D6 variants: results of a validation study in a Caucasian population. Pharmacogenomics. 2015;16:681–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Jie Sun, Talisa Silzer, and Dr. Nicole Phillips and Dr. August Woerner from the University of North Texas Health Science Center Department of Microbiology, Immunology, and Genetics and Center for Human Identification for their suggestions with sample preparation, imaging, and data processing. We also thank Al Bodota from Illumina for his reagent and product management support. The data presented were ancillary data generated with support of a previous project from the Department of Defense (DoD) to Parabon Computation, Inc. and Parabon NanoLabs, Inc. and sub-contracted to UNTHSC (No. 20160926-UNTHSC-SUB0085-01). The opinions and findings presented here are those of the authors and do not necessarily reflect those of the DoD, Parabon Computation, Inc., or Parabon NanoLabs, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank R. Wendt.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wendt, F.R., Rahikainen, AL., King, J.L. et al. A genome-wide association study of tramadol metabolism from post-mortem samples. Pharmacogenomics J 20, 94–103 (2020). https://doi.org/10.1038/s41397-019-0088-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-019-0088-y

Search

Quick links