Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetic polymorphisms in ABCG2 and CYP1A2 are associated with imatinib dose reduction in patients treated for gastrointestinal stromal tumors

Abstract

Imatinib has a mild toxicity profile, although severe adverse events may develop. In this pharmacogenetic pathway analysis the need for dose reduction and cessation of therapy was tested for an association with single nucleotide polymorphisms (SNPs) in genes related to imatinib pharmacology. Retrospective data from 315 patients with a gastrointestinal stromal tumor who received imatinib 400 mg o.d. was associated with 36 SNPs. SNPs that showed a trend in univariate testing were tested in a multivariate model with clinical factors and correction for multiple testing was performed. Dose reduction was associated with carriership of the A-allele in rs2231137 in ABCG2 (OR 7.35, p = 0.0002) and two C-alleles in rs762551 in CYP1A2 (OR 7.12, p = 0.001). Results remained significant after correction for multiple testing. Therapy cessation did not show an association with any of the tested SNPs. These results may help identifying patients at increased risk for toxicity who could benefit from intensified follow-up.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hochhaus A, Saussele S, Rosti G, Mahon FX, Janssen J, Hjorth-Hansen H, et al. Chronic myeloid leukaemia: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28:iv41–iv51.

    Article  CAS  Google Scholar 

  2. Casali PG, Abecassis N, Bauer S, Biagini R, Bielack S, Bonvalot S, et al. Soft tissue and visceral sarcomas: ESMO-EURACAN clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018;29(Supplement_4):iv267.

  3. Mathijssen RH, Sparreboom A, Verweij J. Determining the optimal dose in the development of anticancer agents. Nat Rev Clin Oncol. 2014;11:272–81.

    Article  CAS  Google Scholar 

  4. Tonyali O, Coskun U, Yildiz R, Karakan T, Demirci U, Akyurek N, et al. Imatinib mesylate-induced acute liver failure in a patient with gastrointestinal stromal tumors. Med Oncol. 2010;27:768–73.

    Article  Google Scholar 

  5. Van Glabbeke M, Verweij J, Casali PG, Simes J, Le Cesne A, Reichardt P, et al. Predicting toxicities for patients with advanced gastrointestinal stromal tumours treated with imatinib: a study of the European Organisation for Research and Treatment of Cancer, the Italian Sarcoma Group, and the Australasian Gastro-Intestinal Trials Group (EORTC-ISG-AGITG). Eur J Cancer. 2006;42:2277–85.

    Article  Google Scholar 

  6. Van Erp NP, Eechoute K, van der Veldt AA, Haanen JB, Reyners AK, Mathijssen RH, et al. Pharmacogenetic pathway analysis for determination of sunitinib-induced toxicity. J Clin Oncol. 2009;27:4406–12.

    Article  Google Scholar 

  7. Qiu HB, Zhuang W, Wu T, Xin S, Lin CZ, Ruan HL, et al. Imatinib-induced ophthalmological side-effects in GIST patients are associated with the variations of EGFR, SLC22A1, SLC22A5 and ABCB1. Pharmacogenomics J. 2018;18:460–6.

    Article  Google Scholar 

  8. Ravegnini G, Nannini M, Zenesini C, Simeon V, Sammarini G, Urbini M, et al. An exploratory association of polymorphisms in angiogenesis-related genes with susceptibility, clinical response and toxicity in gastrointestinal stromal tumors receiving sunitinib after imatinib failure. Angiogenesis. 2017;20:139–48.

    Article  CAS  Google Scholar 

  9. Angelini S, Ravegnini G, Fletcher JA, Maffei F, Hrelia P. Clinical relevance of pharmacogenetics in gastrointestinal stromal tumor treatment in the era of personalized therapy. Pharmacogenomics. 2013;14:941–56.

    Article  CAS  Google Scholar 

  10. Verboom MC, Kloth JSL, Swen JJ, van der Straaten T, Bovee J, Sleijfer S, et al. Genetic polymorphisms in angiogenesis-related genes are associated with worse progression-free survival of patients with advanced gastrointestinal stromal tumours treated with imatinib. Eur J Cancer. 2017;86:226–32.

    Article  CAS  Google Scholar 

  11. Oosterhuis JW, Coebergh JW, van Veen EB. Tumour banks: well-guarded treasures in the interest of patients. Nat Rev Cancer. 2003;3:73–7.

    Article  CAS  Google Scholar 

  12. Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF, et al. Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther. 2012;92:414–7.

    Article  CAS  Google Scholar 

  13. Baak-Pablo R, Dezentje V, Guchelaar HJ, van der Straaten T. Genotyping of DNA samples isolated from formalin-fixed paraffin-embedded tissues using preamplification. J Mol Diagn. 2010;12:746–9.

    Article  CAS  Google Scholar 

  14. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–5.

    Article  CAS  Google Scholar 

  15. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.

    Article  CAS  Google Scholar 

  16. Verweij J, Casali PG, Zalcberg J, Le Cesne A, Reichardt P, Blay JY, et al. Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet. 2004;364:1127–34.

    Article  CAS  Google Scholar 

  17. Blanke CD, Rankin C, Demetri GD, Ryan CW, Von Mehren M, Benjamin RS, et al. Phase III randomized, intergroup trial assessing imatinib mesylate at two dose levels in patients with unresectable or metastatic gastrointestinal stromal tumors expressing the kit receptor tyrosine kinase: S0033. J Clin Oncol. 2008;26:626–32.

    Article  CAS  Google Scholar 

  18. DeMatteo RP, Ballman KV, Antonescu CR, Corless C, Kolesnikova V, von Mehren M, et al. Long-term results of adjuvant imatinib mesylate in localized, high-risk, primary gastrointestinal stromal tumor: ACOSOG Z9000 (Alliance) intergroup phase 2 trial. Ann Surg. 2013;258:422–9.

    Article  Google Scholar 

  19. Eechoute K, Sparreboom A, Burger H, Franke RM, Schiavon G, Verweij J, et al. Drug transporters and imatinib treatment: implications for clinical practice. Clin Cancer Res. 2011;17:406–15.

    Article  CAS  Google Scholar 

  20. Burger H, van Tol H, Boersma AW, Brok M, Wiemer EA, Stoter G, et al. Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump. Blood. 2004;104:2940–2.

    Article  CAS  Google Scholar 

  21. Au A, Aziz Baba A, Goh AS, Wahid Fadilah SA, Teh A, Rosline H, et al. Association of genotypes and haplotypes of multi-drug transporter genes ABCB1 and ABCG2 with clinical response to imatinib mesylate in chronic myeloid leukemia patients. Biomed Pharmacother. 2014;68:343–9.

    Article  CAS  Google Scholar 

  22. Kim DH, Sriharsha L, Xu W, Kamel-Reid S, Liu X, Siminovitch K, et al. Clinical relevance of a pharmacogenetic approach using multiple candidate genes to predict response and resistance to imatinib therapy in chronic myeloid leukemia. Clin Cancer Res. 2009;15:4750–8.

    Article  CAS  Google Scholar 

  23. Koo DH, Ryu MH, Ryoo BY, Beck MY, Na YS, Shin JG, et al. Association of ABCG2 polymorphism with clinical efficacy of imatinib in patients with gastrointestinal stromal tumor. Cancer Chemother Pharmacol. 2015;75:173–82.

    Article  CAS  Google Scholar 

  24. Liu J, Chen Z, Chen H, Hou Y, Lu W, He J, et al. Genetic polymorphisms contribute to the individual variations of imatinib mesylate plasma levels and adverse reactions in Chinese GIST patients. Int J Mol Sci. 2017;18:3.

    Article  CAS  Google Scholar 

  25. Loeuillet C, Weale M, Deutsch S, Rotger M, Soranzo N, Wyniger J, et al. Promoter polymorphisms and allelic imbalance in ABCB1 expression. Pharm Genom. 2007;17:951–9.

    Article  CAS  Google Scholar 

  26. Zu B, Li Y, Wang X, He D, Huang Z, Feng W. MDR1 gene polymorphisms and imatinib response in chronic myeloid leukemia: a meta-analysis. Pharmacogenomics. 2014;15:667–77.

    Article  CAS  Google Scholar 

  27. van Oosterom AT, Judson I, Verweij J, Stroobants S, Donato di Paola E, Dimitrijevic S, et al. Safety and efficacy of imatinib (STI571) in metastatic gastrointestinal stromal tumours: a phase I study. Lancet. 2001;358:1421–3.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Inge Briaire-de Bruijn for her work on DNA isolation, and Tahar van der Straaten, Renee Baak-Pablo, and Daniëlle Klootwijk for their work on DNA isolation and SNP genotyping. This study was partly funded by unrestricted grants from Novartis and ‘Stichting Een Gift voor GIST’, which were used for SNP genotyping

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michiel C. Verboom.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verboom, M.C., Kloth, J.S.L., Swen, J.J. et al. Genetic polymorphisms in ABCG2 and CYP1A2 are associated with imatinib dose reduction in patients treated for gastrointestinal stromal tumors. Pharmacogenomics J 19, 473–479 (2019). https://doi.org/10.1038/s41397-019-0079-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-019-0079-z

Search

Quick links