Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The effect of vitamin D pathway genes and deferasirox pharmacogenetics on liver iron in thalassaemia major patients

Abstract

Monitoring and treating iron overload is crucial in transfusion-dependent thalassaemia patients. Liver stiffness measurement by transient elastography and T2* magnetic resonance imaging represent non-invasive ways to evaluate the adequacy of the iron chelation treatment. We explored the role of single nucleotide polymorphisms involved in vitamin D metabolism, transport and activity, and in deferasirox metabolism on liver iron burden parameters. One-hundred and five beta-thalassaemia patients, treated with deferasirox, have been enrolled. Drug plasma Ctrough and AUC were measured by a HPLC-UV method. Allelic discrimination was performed by real-time PCR. Age, UGT1A1-364 CT/TT and CYP27B1 -1260 GT/TT positively predicted liver stiffness values. Deferasirox dose and serum ferritin negatively predicted T2* data, whereas age and CYP2D6 1457 GG genotype positively influenced these values. The discoveries of this research may be useful for personalized medicine and the proposed method could be applied in patients with hereditary hemochromatosis and myelodysplastic syndromes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hoffbrand AV, Taher A, Cappellini MD. How I treat transfusional iron overload. Blood. 2012;120:3657–69.

    CAS  PubMed  Google Scholar 

  2. Rachmilewitz EA, Giardina PJ. How I treat thalassemia. Blood. 2011;118:3479–88.

    CAS  PubMed  Google Scholar 

  3. Bayanzay K, Alzoebie L. Reducing the iron burden and improving survival in transfusion-dependent thalassemia patients: current perspectives. J Blood Med. 2016;7:159–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Coates TD, Carson S, Wood JC, Berdoukas V. Management of iron overload in hemoglobinopathies: what is the appropriate target iron level? Ann N Y Acad Sci. 2016;1368:95–106.

    CAS  PubMed  Google Scholar 

  5. Kwiatkowski JL. Current recommendations for chelation for transfusion-dependent thalassemia. Ann N Y Acad Sci. 2016;1368:107–14.

    CAS  PubMed  Google Scholar 

  6. Oikonomidou PR, Casu C, Rivella S. New strategies to target iron metabolism for the treatment of beta thalassemia. Ann N Y Acad Sci. 2016;1368:162–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hamidieh AA, Shazad B, Ostovaneh MR, Behfar M, Tayebi S, Malekzadeh R, et al. Noninvasive measurement of liver fibrosis using transient elastography in pediatric patients with major thalassemia who are candidates for hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2014;20:1912–7.

    PubMed  Google Scholar 

  8. Musallam KM, Motta I, Salvatori M, Fraquelli M, Marcon A, Taher AT, et al. Longitudinal changes in serum ferritin levels correlate with measures of hepatic stiffness in transfusion-independent patients with beta-thalassemia intermedia. Blood Cells Mol Dis. 2012;49:136–9.

    CAS  PubMed  Google Scholar 

  9. Poustchi H, Eslami M, Ostovaneh MR, Modabbernia A, Saeedian FS, Taslimi S, et al. Transient elastography in hepatitis C virus-infected patients with beta-thalassemia for assessment of fibrosis. Hepatol Res. 2013;43:1276–83.

    PubMed  Google Scholar 

  10. Cappellini MD, Cohen A, Piga A, Bejaoui M, Perrotta S, Agaoglu L, et al. A phase 3 study of deferasirox (ICL670), a once-daily oral iron chelator, in patients with beta-thalassemia. Blood. 2006;107:3455–62.

    CAS  PubMed  Google Scholar 

  11. Nisbet-Brown E, Olivieri NF, Giardina PJ, Grady RW, Neufeld EJ, Sechaud R, et al. Effectiveness and safety of ICL670 in iron-loaded patients with thalassaemia: a randomised, double-blind, placebo-controlled, dose-escalation trial. Lancet. 2003;361:1597–602.

    CAS  PubMed  Google Scholar 

  12. Waldmeier F, Bruin GJ, Glaenzel U, Hazell K, Sechaud R, Warrington S, et al. Pharmacokinetics, metabolism, and disposition of deferasirox in beta-thalassemic patients with transfusion-dependent iron overload who are at pharmacokinetic steady state. Drug Metab Dispos. 2010;38:808–16.

    CAS  PubMed  Google Scholar 

  13. Bruin GJ, Faller T, Wiegand H, Schweitzer A, Nick H, Schneider J, et al. Pharmacokinetics, distribution, metabolism, and excretion of deferasirox and its iron complex in rats. Drug Metab Dispos. 2008;36:2523–38.

    CAS  PubMed  Google Scholar 

  14. Taher A, Cappellini MD, Vichinsky E, Galanello R, Piga A, Lawniczek T, et al. Efficacy and safety of deferasirox doses of >30 mg/kg per day in patients with transfusion-dependent anaemia and iron overload. Br J Haematol. 2009;147:752–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. EPAR. Exjade (deferasirox) prescribing information. East Hanover, New Jersey: Novartis Pharmaceuticals Corporation; 2007.

  16. Nick H, Wong A, Acklin P, Faller B, Jin Y, Lattmann R, et al. ICL670A: preclinical profile. Adv Exp Med Biol. 2002;509:185–203.

    CAS  PubMed  Google Scholar 

  17. Nick H, Acklin P, Lattmann R, Buehlmayer P, Hauffe S, Schupp J, et al. Development of tridentate iron chelators: from desferrithiocin to ICL670. Curr Med Chem. 2003;10:1065–76.

    CAS  PubMed  Google Scholar 

  18. Chirnomas D, Smith AL, Braunstein J, Finkelstein Y, Pereira L, Bergmann AK, et al. Deferasirox pharmacokinetics in patients with adequate versus inadequate response. Blood. 2009;114:4009–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Cusato J, Allegra S, Massano D, De Francia S, Piga A, D'Avolio A. Influence of single-nucleotide polymorphisms on deferasirox C trough levels and effectiveness. Pharmacogenomics J. 2014;15:263–71.

    PubMed  Google Scholar 

  20. Allegra S, Cusato J, Francia SD, Massano D, Piga A, D'Avolio A. Role of pharmacogenetic on deferasirox AUC and efficacy. Glasgow: European Society of Human Genetics; 2015.

  21. Allegra S, Cusato J, De Francia S, Massano D, Piga A, D'Avolio A. Deferasirox AUC efficacy cut-off and role of pharmacogenetics. Eur J Clin Pharmacol. 2016;72:1155–7.

    CAS  PubMed  Google Scholar 

  22. Dimitriadou M, Christoforidis A, Fidani L, Economou M, Vlachaki E, Athanassiou-Metaxa M, et al. A 2-year prospective densitometric study on the influence of Fok-I gene polymorphism in young patients with thalassaemia major. Osteoporos Int. 2016;27:781–8.

    PubMed  Google Scholar 

  23. Moulas A, Challa A, Chaliasos N, Lapatsanis PD. Vitamin D metabolites (25-hydroxyvitamin D, 24,25-dihydroxyvitamin D and 1,25-dihydroxyvitamin D) and osteocalcin in beta-thalassaemia. Acta Paediatr. 1997;86:594–9.

    CAS  PubMed  Google Scholar 

  24. Napoli N, Carmina E, Bucchieri S, Sferrazza C, Rini GB, Di Fede G. Low serum levels of 25-hydroxy vitamin D in adults affected by thalassemia major or intermedia. Bone. 2006;38:888–92.

    CAS  PubMed  Google Scholar 

  25. Wood JC, Claster S, Carson S, Menteer JD, Hofstra T, Khanna R, et al. Vitamin D deficiency, cardiac iron and cardiac function in thalassaemia major. Br J Haematol. 2008;141:891–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Christakos S, Ajibade DV, Dhawan P, Fechner AJ, Mady LJ. Vitamin D: metabolism. Rheum Dis Clin North Am. 2012;38:1–11.

    PubMed  Google Scholar 

  27. Weisman Y, Harell A, Edelstein S, David M, Spirer Z, Golander A. 1 alpha, 25-Dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 in vitro synthesis by human decidua and placenta. Nature. 1979;281:317–9.

    CAS  PubMed  Google Scholar 

  28. Gray TK, Lester GE, Lorenc RS. Evidence for extra-renal 1 alpha-hydroxylation of 25-hydroxyvitamin D3 in pregnancy. Science. 1979;204:1311–3.

    CAS  PubMed  Google Scholar 

  29. Stoffels K, Overbergh L, Bouillon R, Mathieu C. Immune regulation of 1alpha-hydroxylase in murine peritoneal macrophages: unravelling the IFNgamma pathway. J Steroid Biochem Mol Biol. 2007;103:567–71.

    CAS  PubMed  Google Scholar 

  30. Esteban L, Vidal M, Dusso A. 1alpha-Hydroxylase transactivation by gamma-interferon in murine macrophages requires enhanced C/EBPbeta expression and activation. J Steroid Biochem Mol Biol. 2004;89-90:131–7.

    CAS  PubMed  Google Scholar 

  31. Lin R, Nagai Y, Sladek R, Bastien Y, Ho J, Petrecca K, et al. Expression profiling in squamous carcinoma cells reveals pleiotropic effects of vitamin D3 analog EB1089 signaling on cell proliferation, differentiation, and immune system regulation. Mol Endocrinol. 2002;16:1243–56.

    CAS  PubMed  Google Scholar 

  32. Wood RJ, Tchack L, Angelo G, Pratt RE, Sonna LA. DNA microarray analysis of vitamin D-induced gene expression in a human colon carcinoma cell line. Physiol Genomics. 2004;17:122–9.

    CAS  PubMed  Google Scholar 

  33. Wang TT, Tavera-Mendoza LE, Laperriere D, Libby E, MacLeod NB, Nagai Y, et al. Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005;19:2685–95.

    CAS  PubMed  Google Scholar 

  34. Allegra S, Cusato J, De Francia S, Arduino A, Longo F, Pirro E, et al. Role of CYP24A1, VDR and GC gene polymorphisms on deferasirox pharmacokinetics and clinical outcomes. Pharmacogenomics J. 2017;18:506–15.

    PubMed  Google Scholar 

  35. Allegra S, Cusato J, De Francia S, Longo F, Pirro E, Massano D, et al. Effect of pharmacogenetic markers of vitamin D pathway on deferasirox pharmacokinetics in children. Pharmacogenet Genomics. 2017;28:17–22.

    Google Scholar 

  36. Brittenham GM, Badman DG. Noninvasive measurement of iron: report of an NIDDK workshop. Blood. 2003;101:15–9.

    CAS  PubMed  Google Scholar 

  37. Jensen PD. Evaluation of iron overload. Br J Haematol. 2004;124:697–711.

    CAS  PubMed  Google Scholar 

  38. Sandrin L, Fourquet B, Hasquenoph JM, Yon S, Fournier C, Mal F, et al. Transient elastography: a new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med Biol. 2003;29:1705–13.

    PubMed  Google Scholar 

  39. Tsochatzis EA, Gurusamy KS, Ntaoula S, Cholongitas E, Davidson BR, Burroughs AK. Elastography for the diagnosis of severity of fibrosis in chronic liver disease: a meta-analysis of diagnostic accuracy. J Hepatol. 2010;54:650–9.

    PubMed  Google Scholar 

  40. Di Tucci AA, Matta G, Deplano S, Gabbas A, Depau C, Derudas D, et al. Myocardial iron overload assessment by T2* magnetic resonance imaging in adult transfusion dependent patients with acquired anemias. Haematologica. 2008;93:1385–8.

    PubMed  Google Scholar 

  41. De Francia S, Massano D, Piccione FM, Pirro E, Racca S, Di Carlo F, et al. A new HPLC UV validated method for therapeutic monitoring of deferasirox in thalassaemic patients. J Chromatogr B. 2012;893–4:127–33.

    Google Scholar 

  42. Rodriguez S, Gaunt TR, Day IN. Hardy–Weinberg equilibrium testing of biological ascertainment for Mendelian randomization studies. Am J Epidemiol. 2009;169:505–14.

    PubMed  PubMed Central  Google Scholar 

  43. Reich DE, Cargill M, Bolk S, Ireland J, Sabeti PC, Richter DJ, et al. Linkage disequilibrium in the human genome. Nature. 2001;411:199–204.

    CAS  PubMed  Google Scholar 

  44. Schwertner HA, Vitek L. Gilbert syndrome, UGT1A1*28 allele, and cardiovascular disease risk: possible protective effects and therapeutic applications of bilirubin. Atherosclerosis. 2008;198:1–11.

    CAS  PubMed  Google Scholar 

  45. Schulz C, Heinemann V, Schalhorn A, Moosmann N, Zwingers T, Boeck S, et al. UGT1A1 gene polymorphism: impact on toxicity and efficacy of irinotecan-based regimens in metastatic colorectal cancer. World J Gastroenterol. 2009;15:5058–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Argikar UA, Iwuchukwu OF, Nagar S. Update on tools for evaluation of uridine diphosphoglucuronosyltransferase polymorphisms. Expert Opin Drug Metab Toxicol. 2008;4:879–94.

    CAS  PubMed  Google Scholar 

  47. Bosma PJ, Chowdhury JR, Bakker C, Gantla S, de Boer A, Oostra BA, et al. The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert's syndrome. N Engl J Med. 1995;333:1171–5.

    CAS  PubMed  Google Scholar 

  48. Mimura Y, Maruo Y, Ohta Y, Sato H, Takeuchi Y. Effect of common exon variant (p.P364L) on drug glucuronidation by the human UDP-glucuronosyltransferase 1 family. Basic Clin Pharmacol Toxicol. 2011;109:486–93.

    CAS  PubMed  Google Scholar 

  49. Kang TW, Kim HJ, Ju H, Kim JH, Jeon YJ, Lee HC, et al. Genome-wide association of serum bilirubin levels in Korean population. Hum Mol Genet. 2010;19:3672–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Johnson AD, Kavousi M, Smith AV, Chen MH, Dehghan A, Aspelund T, et al. Genome-wide association meta-analysis for total serum bilirubin levels. Hum Mol Genet. 2009;18:2700–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sanna S, Busonero F, Maschio A, McArdle PF, Usala G, Dei M, et al. Common variants in the SLCO1B3 locus are associated with bilirubin levels and unconjugated hyperbilirubinemia. Hum Mol Genet. 2009;18:2711–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Cusato J, Allegra S, De Francia S, Massano D, Piga A, D'Avolio A. Role of pharmacogenetics on deferasirox AUC and efficacy. Pharmacogenomics. 2016;17:561–72.

    CAS  PubMed  Google Scholar 

  53. DeLuca HF. Evolution of our understanding of vitamin D. Nutr Rev. 2008;66:S73–87.

    PubMed  Google Scholar 

  54. Lange CM, Bojunga J, Ramos-Lopez E, von Wagner M, Hassler A, Vermehren J, et al. Vitamin D deficiency and a CYP27B1-1260 promoter polymorphism are associated with chronic hepatitis C and poor response to interferon-alfa based therapy. J Hepatol. 2010;54:887–93.

    Google Scholar 

  55. Lange CM, Bibert S, Kutalik Z, Burgisser P, Cerny A, Dufour JF, et al. A genetic validation study reveals a role of vitamin D metabolism in the response to interferon-alfa-based therapy of chronic hepatitis C. PLoS One. 2012;7:e40159.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kitanaka S, Isojima T, Takaki M, Numakura C, Hayasaka K, Igarashi T. Association of vitamin D-related gene polymorphisms with manifestation of vitamin D deficiency in children. Endocr J. 2012;59:1007–14.

    CAS  PubMed  Google Scholar 

  57. Rukin NJ, Strange RC. What are the frequency, distribution, and functional effects of vitamin D receptor polymorphisms as related to cancer risk? Nutr Rev. 2007;65:S96–101.

    PubMed  Google Scholar 

  58. Uitterlinden AG, Fang Y, Van Meurs JB, Pols HA, Van Leeuwen JP. Genetics and biology of vitamin D receptor polymorphisms. Gene. 2004;338:143–56.

    CAS  Google Scholar 

  59. Wang TJ, Zhang F, Richards JB, Kestenbaum B, van Meurs JB, Berry D, et al. Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet. 2010;376:180–8.

  60. Plum LA, DeLuca HF. Vitamin D, disease and therapeutic opportunities. Nat Rev Drug Discov. 2010;9:941–55.

    CAS  PubMed  Google Scholar 

  61. Bikle DD. Vitamin D regulation of immune function. Vitam Horm. 2011;86:1–21.

    CAS  PubMed  Google Scholar 

  62. Poon AH, Gong L, Brasch-Andersen C, Litonjua AA, Raby BA, Hamid Q, et al. Very important pharmacogene summary for VDR. Pharmacogenet Genomics. 2012;22:758–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Nesic D, Cheng J, Maquat LE. Sequences within the last intron function in RNA 3'-end formation in cultured cells. Mol Cell Biol. 1993;13:3359–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Cusato J, Allegra S, Boglione L, De Nicolo A, Baietto L, Cariti G, et al. Vitamin D pathway gene variants and HCV-2/3 therapy outcomes. Antivir Ther. 2014;20:335–41.

    PubMed  Google Scholar 

  65. Allegra S, Fatiguso G, Calcagno A, Baietto L, Motta I, Favata F, et al. Role of vitamin D pathway gene polymorphisms on rifampicin plasma and intracellular pharmacokinetics. Pharmacogenomics. 2017;18:865–80.

    CAS  PubMed  Google Scholar 

  66. Andraos C, Koorsen G, Knight JC, Bornman L. Vitamin D receptor gene methylation is associated with ethnicity, tuberculosis, and TaqI polymorphism. Hum Immunol. 2011;72:262–8.

    CAS  PubMed  Google Scholar 

  67. Saeki M, Kurose K, Tohkin M, Hasegawa R. Identification of the functional vitamin D response elements in the human MDR1 gene. Biochem Pharmacol. 2008;76:531–42.

    CAS  PubMed  Google Scholar 

  68. Song YH, Naumova AK, Liebhaber SA, Cooke NE. Physical and meiotic mapping of the region of human chromosome 4q11-q13 encompassing the vitamin D binding protein DBP/Gc-globulin and albumin multigene cluster. Genome Res. 1999;9:581–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Malik S, Fu L, Juras DJ, Karmali M, Wong BY, Gozdzik A, et al. Common variants of the vitamin D binding protein gene and adverse health outcomes. Crit Rev Clin Lab Sci. 2013;50:1–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Carpenter TO, Zhang JH, Parra E, Ellis BK, Simpson C, Lee WM, et al. Vitamin D binding protein is a key determinant of 25-hydroxyvitamin D levels in infants and toddlers. J Bone Miner Res. 2013;28:213–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wjst M, Altmuller J, Faus-Kessler T, Braig C, Bahnweg M, Andre E. Asthma families show transmission disequilibrium of gene variants in the vitamin D metabolism and signalling pathway. Respir Res. 2006;7:60.

    PubMed  PubMed Central  Google Scholar 

  72. Anderson LN, Cotterchio M, Cole DE, Knight JA. Vitamin D-related genetic variants, interactions with vitamin D exposure, and breast cancer risk among Caucasian women in Ontario. Cancer Epidemiol Biomark Prev. 2011;20:1708–17.

    CAS  Google Scholar 

  73. Kim SU, Choi GH, Han WK, Kim BK, Park JY, Kim DY, et al. What are “true normal” liver stiffness values using FibroScan? A prospective study in healthy living liver and kidney donors in South Korea. Liver Int. 2009;30:268–74.

    PubMed  Google Scholar 

  74. Colombo S, Belloli L, Zaccanelli M, Badia E, Jamoletti C, Buonocore M, et al. Normal liver stiffness and its determinants in healthy blood donors. Dig Liver Dis. 2010;43:231–6.

    Google Scholar 

  75. Kim BK, Kim SU, Choi GH, Han WK, Park MS, Kim EH, et al. “Normal” liver stiffness values differ between men and women: a prospective study for healthy living liver and kidney donors in a native Korean population. J Gastroenterol Hepatol. 2011;27:781–8.

    Google Scholar 

  76. Ling W, Lu Q, Quan J, Ma L, Luo Y. Assessment of impact factors on shear wave based liver stiffness measurement. Eur J Radiol. 2012;82:335–41.

    PubMed  Google Scholar 

  77. Jin Y, Desta Z, Stearns V, Ward B, Ho H, Lee KH, et al. CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J Natl Cancer Inst. 2005;97:30–9.

    CAS  PubMed  Google Scholar 

  78. Singh S, Kumar V, Vashisht K, Singh P, Banerjee BD, Rautela RS, et al. Role of genetic polymorphisms of CYP1A1, CYP3A5, CYP2C9, CYP2D6, and PON1 in the modulation of DNA damage in workers occupationally exposed to organophosphate pesticides. Toxicol Appl Pharmacol. 2011;257:84–92.

    CAS  PubMed  Google Scholar 

  79. Surekha D, Sailaja K, Rao DN, Padma T, Raghunadharao D, Vishnupriya S. Association of a CYP17 gene polymorphism with development of breast cancer in India. Asian Pac J Cancer Prev. 2011;11:1653–7.

    Google Scholar 

  80. Glickstein H, El RB, Shvartsman M, Cabantchik ZI. Intracellular labile iron pools as direct targets of iron chelators: a fluorescence study of chelator action in living cells. Blood. 2005;106:3242–50.

    CAS  PubMed  Google Scholar 

  81. Glickstein H, El RB, Link G, Breuer W, Konijn AM, Hershko C, et al. Action of chelators in iron-loaded cardiac cells: accessibility to intracellular labile iron and functional consequences. Blood. 2006;108:3195–203.

    CAS  PubMed  Google Scholar 

  82. Bonner F, Janzarik N, Jacoby C, Spieker M, Schnackenburg B, Range F, et al. Myocardial T2 mapping reveals age- and sex-related differences in volunteers. J Cardiovasc Magn Reson. 2014;17:9.

    Google Scholar 

  83. Allegra S, Cusato J, De Francia S, Pirro E, Massano D, Piga A, et al. Deferasirox pharmacokinetic evaluation in beta-thalassaemia paediatric patients. J Pharm Pharmacol. 2016;69:525–8.

    PubMed  Google Scholar 

  84. Allegra S, De Francia S, Cusato J, Arduino A, Massano D, Longo F, et al. Deferasirox pharmacogenetic influence on pharmacokinetic, efficacy and toxicity in a cohort of pediatric patients. Pharmacogenomics. 2017;18:539–54.

    CAS  PubMed  Google Scholar 

  85. Allegra S, De Francia S, Cusato J, Pirro E, Massano D, Piga A, et al. Deferasirox pharmacokinetic and toxicity correlation in beta-thalassaemia major treatment. J Pharm Pharmacol. 2016;68:1417–21.

    CAS  PubMed  Google Scholar 

  86. Allegra S, De Francia S, Longo F, Massano D, Cusato J, Arduino A, et al. Deferasirox pharmacokinetics evaluation in a woman with hereditary haemochromatosis and heterozygous beta-thalassaemia. Biomed Pharmacother. 2016;84:1510–2.

    CAS  PubMed  Google Scholar 

  87. Allegra S, Massano D, De Francia S, Longo F, Piccione F, Pirro E, et al. Clinical relevance of deferasirox trough levels in beta-thalassemia patients. Clin Exp Pharmacol Physiol. 2017;45:213–6.

    PubMed  Google Scholar 

  88. Cancado R, Melo MR, de Moraes Bastos R, Santos PC, Guerra-Shinohara EM, Ballas SK, et al. Deferasirox in patients with iron overload secondary to hereditary hemochromatosis: results of a 1-year Phase 2 study. Eur J Haematol. 2015;95:545–50.

    PubMed  Google Scholar 

  89. Rose C, Brechignac S, Vassilief D, Pascal L, Stamatoullas A, Guerci A, et al. Does iron chelation therapy improve survival in regularly transfused lower risk MDS patients? A multicenter study by the GFM (Groupe Francophone des Myelodysplasies). Leuk Res. 2010;34:864–70.

    CAS  PubMed  Google Scholar 

  90. Neukirchen J, Fox F, Kundgen A, Nachtkamp K, Strupp C, Haas R, et al. Improved survival in MDS patients receiving iron chelation therapy—a matched pair analysis of 188 patients from the Dusseldorf MDS registry. Leuk Res. 2012;36:1067–70.

    CAS  PubMed  Google Scholar 

  91. Leitch HA, Chan C, Leger CS, Foltz LM, Ramadan KM, Vickars LM. Improved survival with iron chelation therapy for red blood cell transfusion dependent lower IPSS risk MDS may be more significant in patients with a non-RARS diagnosis. Leuk Res. 2012;36:1380–6.

    CAS  PubMed  Google Scholar 

  92. Wood JC, Enriquez C, Ghugre N, Tyzka JM, Carson S, Nelson MD, et al. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood. 2005;106:1460–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Brittenham GM, Farrell DE, Harris JW, Feldman ES, Danish EH, Muir WA, et al. Magnetic-susceptibility measurement of human iron stores. N Engl J Med. 1982;307:1671–5.

    CAS  PubMed  Google Scholar 

  94. Fischer R, Tiemann CD, Engelhardt R, Nielsen P, Durken M, Gabbe EE, et al. Assessment of iron stores in children with transfusion siderosis by biomagnetic liver susceptometry. Am J Hematol. 1999;60:289–99.

    CAS  PubMed  Google Scholar 

  95. Castera L, Forns X, Alberti A. Non-invasive evaluation of liver fibrosis using transient elastography. J Hepatol. 2008;48:835–47.

    PubMed  Google Scholar 

  96. Berzigotti A, Castera L. Update on ultrasound imaging of liver fibrosis. J Hepatol. 2013;59:180–2.

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank CoQuaLab (www.coqualab.it) for its methodological support and assistance in the preparation and execution of the pharmacogenetic analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Allegra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allegra, S., Cusato, J., De Francia, S. et al. The effect of vitamin D pathway genes and deferasirox pharmacogenetics on liver iron in thalassaemia major patients. Pharmacogenomics J 19, 417–427 (2019). https://doi.org/10.1038/s41397-019-0071-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-019-0071-7

This article is cited by

Search

Quick links