Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic markers in methotrexate treatments

Abstract

Methotrexate (MTX), a structural analog of folic acid, is widely employed in the treatment of different cancers and autoimmune diseases. Despite the successful results observed, the main disadvantage lies in interpatient variability in the pharmacokinetic and pharmacodynamic parameters. In particular, adverse events and toxicities induced by MTX are a matter of concern and can be the cause of dose reduction or treatment discontinuation. Among the different approaches to reduce MTX therapeutic limitations, pharmacogenomics contributes by considering the effect of inherited genetic differences on those parameters. This review provides an update on MTX pharmacogenomics. It reports the contribution of main gene polymorphisms involved in the influx, efflux, cellular effect, and elimination on MTX toxicity and efficacy, on all the diseases treated with this drug. From the analysis of the data presented in this review, we concluded that only gene polymorphisms MTHFR rs1801133, SLC19A1 rs1051266, and TYMS rs34743033 could influence clinical decision-making.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bleyer WA. The clinical pharmacology of methotrexate. Cancer. 1978;41:36–51.

    CAS  PubMed  Google Scholar 

  2. Chan ESL, Cronstein BN. Mechanisms of action of methotrexate. Bull Hosp Jt Dis. 2013;71(Suppl 1):S5–8.

    Google Scholar 

  3. Farber S, Diamond LK, Mercer RD, Sylvester RF Jr, Wolff JA. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid (aminopterin). New Engl J Med. 1948;238:787–93.

    CAS  PubMed  Google Scholar 

  4. DeVita VT, Lawrence TS, Rosenberg SA. Cancer: principles and practice of oncology-advances in oncology. Vol. 1. Philadelphia: Lippincott Williams & Wilkins; 2010.

  5. Abolmaali SS, Tamaddon AM, Dinarvan R. A review of therapeutic challenges and achievements of methotrexate delivery systems for treatment of cancer and rheumatoid arthritis. Cancer Chemother Pharmacol. 2013;71:1115–30.

    CAS  Google Scholar 

  6. Cronstein BN, Bertino JR. Methotrexate. Springer Science & Business Media; 2000. https://doi.org/10.1007/978-3-0348-8452-5

    Google Scholar 

  7. Gaies E, Jebabli N, Trabelsi S, Salouage I, Charfi R, Lakhal M, et al. Methotrexate side effects: review article. J Drug Metab Toxicol. 2012;3:2.

    Google Scholar 

  8. Campbell JM, Bateman E, Stephenson MD, Bowen JM, Keefe DM, Peters MD. Methotrexate-induced toxicity pharmacogenetics: an umbrella review of systematic reviews and meta-analyses. Cancer Chemother Pharmacol. 2016;78:27–39.

    CAS  PubMed  Google Scholar 

  9. Plumpton CO, Roberts D, Pirmohamed M, Hughes DA. A systematic review of economic evaluations of pharmacogenetic testing for prevention of adverse drug reactions. Pharmacoeconomics. 2016;34:771–93.

    PubMed  Google Scholar 

  10. Hazarika M, White RM, Johnson JR, Pazdur R. FDA drug approval summaries: pemetrexed (Alimta®). Oncologist. 2004;9:482–8.

    CAS  PubMed  Google Scholar 

  11. Thompson CA. FDA approves pralatrexate for treatment of rare lymphoma. Am J Health Syst Pharm. 2009;66:1890.

    PubMed  Google Scholar 

  12. Chen Y, Zou K, Sun J, Yang Y, Liu G. Are gene polymorphisms related to treatment outcomes of methotrexate in patients with rheumatoid arthritis? A systematic review and meta-analysis. Pharmacogenomics. 2017;18:175–95.

    PubMed  Google Scholar 

  13. Muralidharan N, Mariaselvam CM, Mithun CB, Negi VS. Reduced folate carrier-1 80G>A gene polymorphism is not associated with methotrexate treatment response in South Indian Tamils with rheumatoid arthritis. Clin Rheumatol. 2016;35:879–85.

    PubMed  Google Scholar 

  14. He HR, Liu P, He GH, Dong WH, Wang MY, Dong YL, et al. Association between reduced folate carrier G80A polymorphism and methotrexate toxicity in childhood acute lymphoblastic leukemia: a meta-analysis. Leuk Lymphoma. 2014;55:2793–2800.

    CAS  PubMed  Google Scholar 

  15. Lopez-Lopez E, Ballesteros J, Piñan MA, de Toledo JS, de Andoin NG, Garcia-Miguel P, et al. Polymorphisms in the methotrexate transport pathway: a new tool for MTX plasma level prediction in pediatric acute lymphoblastic leukemia. Pharm Genomics. 2013;23:53–61.

    CAS  Google Scholar 

  16. Kato T, Hamada A, Mori S, Saito H. Genetic polymorphisms in metabolic and cellular transport pathway of methotrexate impact clinical outcome of methotrexate monotherapy in Japanese patients with rheumatoid arthritis. Drug Metab Pharmacokinet. 2012;27:192–9.

    CAS  PubMed  Google Scholar 

  17. Takatori R, Takahashi KA, Tokunaga D, Hojo T, Fujioka M, Asano T, et al. ABCB1 C3435T polymorphism influences methotrexate sensitivity in rheumatoid arthritis patients. Clin Exp Rheumatol. 2006;24:546–54.

    CAS  PubMed  Google Scholar 

  18. Sharma S, Das M, Kumar A, Marwaha V, Shankar S, Aneja R, et al. Interaction of genes from influx-metabolism-efflux pathway and their influence on methotrexate efficacy in rheumatoid arthritis patients among Indians. Pharm Genomics. 2008;18:1041–9.

    CAS  Google Scholar 

  19. Pakakasama S, Kanchanakamhaeng K, Kajanachumpol S, Udomsubpayakul U, Sirachainan N, Thithapandha A, et al. Genetic polymorphisms of folate metabolic enzymes and toxicities of high dose methotrexate in children with acute lymphoblastic leukemia. Ann Hematol. 2007;86:609–11.

    PubMed  Google Scholar 

  20. Hashiguchi M, Tsuru T, Miyawaki K, Suzaki M, Hakamata J, Shimizu M, et al. Preliminary study for predicting better methotrexate efficacy in Japanese patients with rheumatoid arthritis. J Pharm Health Care Sci. 2016;2:13.

    PubMed  PubMed Central  Google Scholar 

  21. Dervieux T, Greenstein N, Kremer J. Pharmacogenomic and metabolic biomarkers in the folate pathway and their association with methotrexate effects during dosage escalation in rheumatoid arthritis. Arthritis Rheumatol. 2006;54:3095–103.

    CAS  Google Scholar 

  22. Vejnovic D, Milic V, Damnjanovic T, Maksimovic N, Bunjevacki V, Lukovic L, et al. Analysis of association between polymorphisms of MTHFR, MTHFD1 and RFC1 genes and efficacy and toxicity of methotrexate in rheumatoid arthritis patients. Genetika. 2016;48:395–408.

    Google Scholar 

  23. Giletti A, Vital M, Lorenzo M, Cardozo P, Borelli G, Gabus R, et al. Methotrexate pharmacogenetics in Uruguayan adults with hematological malignant diseases. Eur J Pharm Sci. 2017. https://doi.org/10.1016/j.ejps.2017.09.006

    CAS  PubMed  Google Scholar 

  24. Kotnik BF, Jazbec J, Grabar PB, Rodriguez-Antona C, Dolzan V. Association between SLC19A1 gene polymorphism and high dose methotrexate toxicity in childhood acute lymphoblastic leukaemia and non Hodgkin malignant lymphoma: introducing a haplotype based approach. Radiol Oncol. 2017;51:455–62.

    PubMed  PubMed Central  Google Scholar 

  25. Liu SG, Gao C, Zhang RD, Zhao XX, Cui L, Li WJ, et al. Polymorphisms in methotrexate transporters and their relationship to plasma methotrexate levels, toxicity of high-dose methotrexate, and outcome of pediatric acute lymphoblastic leukemia. Oncotarget. 2017;8:37761.

    PubMed  PubMed Central  Google Scholar 

  26. Jenko B, Lusa L, Tomsic M, Praprotnik S, Dolzan V. Clinical–pharmacogenetic predictive models for MTX discontinuation due to adverse events in rheumatoid arthritis. Pharm J. 2016;17:412–8.

    Google Scholar 

  27. Świerkot J, Ślęzak R, Karpiński P, Pawłowska J, Noga L, Szechiński J, et al. Associations between single-nucleotide polymorphisms of RFC-1, GGH, MTHFR, TYMS, and TCII genes and the efficacy and toxicity of methotrexate treatment in patients with rheumatoid arthritis. PolskieArchiwumMedycynyWewnętrznej. 2015;125:152–61.

    Google Scholar 

  28. Lima A, Bernardes M, Sousa H, Azevedo R, Costa L, Ventura F, et al. SLC19A1 80G allele as a biomarker of methotrexate-related gastrointestinal toxicity in Portuguese rheumatoid arthritis patients. Pharmacogenomics. 2014;15:807–20.

    CAS  PubMed  Google Scholar 

  29. Lima A, Bernardes M, Azevedo R, Monteiro J, Sousa H, Medeiros R, et al. SLC19A1, SLC46A1 and SLCO1B1 polymorphisms as predictors of methotrexate-related toxicity in Portuguese rheumatoid arthritis patients. Toxicol Sci. 2014;142:196–209.

    CAS  PubMed  Google Scholar 

  30. Samara SA, Irshaid YM, Mustafa KN. Association of MDR1 C3435T and RFC1 G80A polymorphisms with methotrexate toxicity and response in Jordanian rheumatoid arthritis patients. Int J Clin Pharmacol Ther. 2014;52:746–55.

    CAS  PubMed  Google Scholar 

  31. Campalani E, Arenas M, Marinaki AM, Lewis CM, Barker JN, Smith CH. Polymorphisms in folate, pyrimidine, and purine metabolism are associated with efficacy and toxicity of methotrexate in psoriasis. J Invest Dermatol. 2007;127:1860–7.

    CAS  PubMed  Google Scholar 

  32. Park JA, Shin HY. Influence of genetic polymorphisms in the folate pathway on toxicity after high-dose methotrexate treatment in pediatric osteosarcoma. Blood Res. 2016;51:50–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Faganel Kotnik B, Grabnar I, Bohanec Grabar P, Dolžan V, Jazbec J. Association of genetic polymorphism in the folate metabolic pathway with methotrexate pharmacokinetics and toxicity in childhood acute lymphoblastic leukaemia and malignant lymphoma. Eur J Clin Pharmacol. 2011;67:993–1006.

    CAS  PubMed  Google Scholar 

  34. Gregers J, Christensen IJ, Dalhoff K, Lausen B, Schroeder H, Rosthoej S, et al. The association of reduced folate carrier 80G>A polymorphism to outcome in childhood acute lymphoblastic leukemia interacts with chromosome 21 copy number. Blood. 2010;115:4671–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kishi S, Cheng C, French D, Pei D, Das S, Cook EH, et al. Ancestry and pharmacogenetics of antileukemic drug toxicity. Blood. 2007;109:4151–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Jenko B, Tomsic M, Praprotnik S, Jekic B, Milic V, Dolzan V. Clinical pharmacogenetic models of treatment response to methotrexate monotherapy in Slovenian and Serbian rheumatoid arthritis patients: differences in patient’s management may preclude generalization of the models. Front Pharmacol. 2018;9:20.

    PubMed  PubMed Central  Google Scholar 

  37. Li X, Hu M, Li W, Gu L, Chen M, Ding H, et al. The association between reduced folate carrier-1 gene 80G/A polymorphism and methotrexate efficacy or methotrexate related-toxicity in rheumatoid arthritis: A meta-analysis. Int Immunopharmacol. 2016;38:8–15.

    CAS  PubMed  Google Scholar 

  38. Kung TN, Dennis J, Ma Y, Xie G, Bykerk V, Pope J, et al. RFC1 80G>A is a genetic determinant of methotrexate efficacy in rheumatoid arthritis: a human genome epidemiologic review and meta-analysis of observational studies. Arthritis Rheumatol. 2014;66:1111–20.

    CAS  PubMed  Google Scholar 

  39. Drozdzik M, Rudas T, Pawlik A, Gornik W, Kurzawski M, Herczynska M. Reduced folate carrier-1 80G>A polymorphism affects methotrexate treatment outcome in rheumatoid arthritis. Pharm J. 2007;7:404–7.

    CAS  Google Scholar 

  40. Lima A, Sousa H, Monteiro J, Azevedo R, Medeiros R, Seabra V. Genetic polymorphisms in low-dose methotrexate transporters: current relevance as methotrexate therapeutic outcome biomarkers. Pharmacogenomics. 2014;15:1611–35.

    CAS  PubMed  Google Scholar 

  41. Badagnani I, Castro RA, Taylor TR, Brett CM, Huang CC, Stryke D, et al. Interaction of methotrexate with organic-anion transporting polypeptide 1A2 and its genetic variants. J Pharmacol Exp Ther. 2006;318:521–9.

    CAS  PubMed  Google Scholar 

  42. Fukushima H, Fukushima T, Sakai A, Suzuki R, Nakajima-Yamaguchi R, Kobayashi C, et al. Polymorphisms of MTHFR associated with higher relapse/death ratio and delayed weekly MTX administration in pediatric lymphoid malignancies. Leuk Res Treat. 2013. https://doi.org/10.1155/2013/238528

    Google Scholar 

  43. Ramsey LB, Bruun GH, Yang W, Treviño LR, Vattathil S, Scheet P, et al. Rare versus common variants in pharmacogenetics: SLCO1B1 variation and methotrexate disposition. Genome Res. 2012;22:1–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Trevino LR, Shimasaki N, Yang W, Panetta JC, Cheng C, Pei D, et al. Germ line genetic variation in an organic anion transporter polypeptide associated with methotrexate pharmacokinetics and clinical effects. J Clin Oncol. 2009;27:5972–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Radtke S, Zolk O, Renner B, Paulides M, Zimmermann M, Moricke A, et al. Germline genetic variations in methotrexate candidate genes are associated with pharmacokinetics, toxicity, and outcome in childhood acute lymphoblastic leukemia. Blood. 2013;121:5153–4.

    Google Scholar 

  46. Zgheib NK, Akra-Ismail M, Aridi C, Mahfouz R, Abboud MR, Solh H, et al. Genetic polymorphisms in candidate genes predict increased toxicity with methotrexate therapy in Lebanese children with acute lymphoblastic leukemia. Pharm Genomics. 2014;24:387–96.

    CAS  Google Scholar 

  47. Rau T, Erney B, Göres R, Eschenhagen T, Beck J, Langer T. High-dose methotrexate in pediatric acute lymphoblastic leukemia: Impact of ABCC2 polymorphisms on plasma concentrations. Clin Pharmacol Ther. 2006;80:468–76.

    CAS  PubMed  Google Scholar 

  48. Liu Y, Yin Y, Sheng Q, Lu X, Wang F, Lin Z, et al. Association of ABCC2− 24C>T polymorphism with high-dose methotrexate plasma concentrations and toxicities in childhood acute lymphoblastic leukemia. PLoS ONE. 2014;9:e82681 https://doi.org/10.1371/journal.pone.0082681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sharifi MJ, Bahoush G, Zaker F, Ansari S, Rafsanjani KA, Sharafi H. Association of-24CT, 1249GA, and 3972CT ABCC2 gene polymorphisms with methotrexate serum levels and toxic side effects in children with acute lymphoblastic leukemia. Pediatr Hematol Oncol. 2014;31:169–77.

    CAS  PubMed  Google Scholar 

  50. Ranganathan P, Culverhouse R, Marsh S, Mody A, Scott-Horton TJ, Brasington R, et al. Methotrexate (MTX) pathway gene polymorphisms and their effects on MTX toxicity in Caucasian and African American patients with rheumatoid arthritis. J Rheumatol. 2008;35:572–9.

    CAS  PubMed  Google Scholar 

  51. Hakamata J, Hashiguchi M, Kaneko Y, Yamaoka K, Shimizu M, Maruyama J, et al. Risk factors for abnormal hepatic enzyme elevation by methotrexate treatment in patients with rheumatoid arthritis: a hospital based-cohort study. Mod Rheumatol. 2017. https://doi.org/10.1080/14397595.2017.1414765

    CAS  PubMed  Google Scholar 

  52. Zgheib NK, Akra-Ismail M, Aridi C, Mahfouz R, Saab R, Abboud MR, et al. Genetic polymorphisms in candidate genes predict increased toxicity with methotrexate therapy in children with acute lymphoblastic leukemia in Lebanon. Blood. 2013;122:4926.

    Google Scholar 

  53. Suthandiram S, Gan GG, Zain SM, Bee PC, Lian LH, Chang KM, et al. Effect of polymorphisms within methotrexate pathway genes on methotrexate toxicity and plasma levels in adults with hematological malignancies. Pharmacogenomics. 2014;15:1479–94.

    CAS  PubMed  Google Scholar 

  54. Den Hoed MAH, Lopez-Lopez E, Te Winkel ML, Tissing W, de Rooij JDE, Gutierrez-Camino A, et al. Genetic and metabolic determinants of methotrexate-induced mucositis in pediatric acute lymphoblastic leukemia. Pharm J. 2015;15:248–54.

    Google Scholar 

  55. Iparraguirre L, Gutierrez-Camino A, Umerez M, Martin-Guerrero I, Astigarraga I, Navajas A, et al. MiR-pharmacogenetics of methotrexate in childhood B-cell acute lymphoblastic leukemia. Pharm Genomics. 2016;26:517–25.

    CAS  Google Scholar 

  56. Yang L, Wu H, Gelder TV, Matic M, Ruan JS, Han Y, et al. SLCO1B1 rs4149056 genetic polymorphism predicting methotrexate toxicity in Chinese patients with non-Hodgkin lymphoma. Pharmacogenomics. 2017;18:1557–62.

    CAS  PubMed  Google Scholar 

  57. Van der Straaten RJHM, Wessels JA, de Vries-Bouwstra JK, Goekoop-Ruiterman YP, Allaart CF, Bogaartz J, et al. Exploratory analysis of four polymorphisms in human GGH and FPGS genes and their effect in methotrexate-treated rheumatoid arthritis patients. Pharmacogenomics. 2007;8:141–50.

    PubMed  Google Scholar 

  58. Kurzawski M, Malinowski D, Szarmach N, Nowak A, Goryniak A, Pawlik A, et al. ATIC missense variant affects response to methotrexate treatment in rheumatoid arthritis patients. Pharmacogenomics. 2016;17:1971–8.

    CAS  PubMed  Google Scholar 

  59. Moya P, Salazar J, Arranz MJ, Díaz-Torné C, del Río E, Casademont J, et al. Methotrexate pharmacokinetic genetic variants are associated with outcome in rheumatoid arthritis patients. Pharmacogenomics. 2016;17:25–9.

    PubMed  Google Scholar 

  60. Huang Z, Tong HF, Li Y, Qian JC, Wang JX, Wang Z, et al. Effect of the polymorphism of folylpolyglutamate synthetase on treatment of high-dose methotrexate in pediatric patients with acute lymphocytic leukemia. Med Sci Monit. 2016;22:4967.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Zaruma-Torres F, Lares-Asseff I, Reyes-Espinoza A, Loera-Castañeda V, Almanza-Reyes H, Arias-Peláez MC. Impacto de polimorfismos genéticos de la vía metabólica del metotrexato sobre la sobrevida de niños mexicanos con leucemia linfoblástica aguda (LLA). Vitae. 2015;22:177–87.

    Google Scholar 

  62. Koomdee N, Hongeng S, Apibal S, Pakikisama S. Association between polymorphisms of dihydrofolate reductase and gamma glutamyl hydrolase genes and toxicity of high dose methotrexate in children with acute lymphoblastic leukemia. Asian Pac J Cancer Prev. 2012;13:3461–4.

    PubMed  Google Scholar 

  63. Chaabane S, Marzouk S, Akrout R, Hamad MB, Achour Y, Rebai A, et al. Genetic determinants of methotrexate toxicity in Tunisian patients with rheumatoid arthritis: a study of polymorphisms involved in the MTX metabolic pathway. Eur J Drug Metab Pharmacokinet. 2016;41:385–93.

    CAS  PubMed  Google Scholar 

  64. Dulucq S, St-Onge G, Gagné V, Ansari M, Sinnett D, Labuda D, et al. DNA variants in the dihydrofolate reductase gene and outcome in childhood ALL. Blood. 2008;111:3692–700.

    CAS  PubMed  Google Scholar 

  65. Horie N, Aiba H, Oguro K, Hojo H, Takeishi K. Functional analysis and DNA polymorphism of the tandemly repeated sequences in the 5’-terminal regulatory region of the human gene for thymidylate synthase. Cell Struct Funct. 1995;20:191–7.

    CAS  PubMed  Google Scholar 

  66. Owen SA, Hider SL, Martin P, Bruce IN, Barton A, Thomson W. Genetic polymorphisms in key methotrexate pathway genes are associated with response to treatment in rheumatoid arthritis patients. Pharm J. 2013;13:227–34.

    CAS  Google Scholar 

  67. Jekic B, Lukovic L, Bunjevacki V, Milic V, Novakovic I, Damnjanovic T, et al. Association of the TYMS 3G/3G genotype with poor response and GGH 354GG genotype with the bone marrow toxicity of the methotrexate in RA patients. Eur J Clin Pharmacol. 2013;69:377–83.

    CAS  PubMed  Google Scholar 

  68. Senapati S, Singh S, Das M, Kumar A, Gupta R, Kumar U, et al. Genome-wide analysis of methotrexate pharmacogenomics in rheumatoid arthritis shows multiple novel risk variants and leads for TYMS regulation. Pharm Genomics. 2014;24:211–9.

    CAS  Google Scholar 

  69. Muralidharan N, Misra DP, Jain VK, Negi VS. Effect of thymidylate synthase (TYMS) gene polymorphisms with methotrexate treatment outcome in south Indian Tamil patients with rheumatoid arthritis. Clin Rheumatol. 2017;36:1253–9.

    PubMed  Google Scholar 

  70. Lima A, Seabra V, Bernardes M, Azevedo R, Sousa H, Medeiros R. Role of key TYMS polymorphisms on methotrexate therapeutic outcome in portuguese rheumatoid arthritis patients. PLoS ONE. 2014;9:e108165 https://doi.org/10.1371/journal.pone.0108165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kumagai K, Hiyama K, Oyama T, Maeda H, Kohno N. Polymorphisms in the thymidylate synthase and methylenetetrahydrofolate reductase genes and sensitivity to the low-dose methotrexate therapy in patients with rheumatoid arthritis. Int J Mol Med. 2003;11:593–600.

    CAS  PubMed  Google Scholar 

  72. Dervieux T, Wessels JA, van der Straaten T, Penrod N, Moore JH, Guchelaar HJ, et al. Gene–gene interactions in folate and adenosine biosynthesis pathways affect methotrexate efficacy and tolerability in rheumatoid arthritis. Pharm Genomics. 2009;19:935–44.

    CAS  Google Scholar 

  73. Bae SC, Lee YH. TYMS polymorphisms and responsiveness to or toxicity of methotrexate in rheumatoid arthritis. ZeitschriftfürRheumatologie. 2018. https://doi.org/10.1007/s00393-018-0419-4

    CAS  PubMed  Google Scholar 

  74. Dolnick BJ. The rTS signaling pathway as a target for drug development. Clin Colorectal Cancer. 2005;5:57–60.

    CAS  PubMed  Google Scholar 

  75. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995;10:111–3.

    CAS  PubMed  Google Scholar 

  76. Berkani LM, Rahal F, Allam I, Benani SM, Laadjouz A, Djidjik R. Association of MTHFR C677T and A1298C gene polymorphisms with methotrexate efficiency and toxicity in Algerian rheumatoid arthritis patients. Heliyon. 2017;3:e00467.

    PubMed  PubMed Central  Google Scholar 

  77. Zhao M, Liang L, Ji L, Chen D, Zhang Y, Zhu Y, et al. MTHFR gene polymorphisms and methotrexate toxicity in adult patients with hematological malignancies: a meta-analysis. Pharmacogenomics. 2016;17:1005–17.

    CAS  PubMed  Google Scholar 

  78. Song GG, Bae SC, Lee YH. Association of the MTHFR C677T and A1298C polymorphisms with methotrexate toxicity in rheumatoid arthritis: a meta-analysis. Clin Rheumatol. 2014;33:1715–24.

    PubMed  Google Scholar 

  79. Ayad MW, El Naggar AA, El Naggar M. MTHFR C677T polymorphism: association with lymphoid neoplasm and effect on methotrexate therapy. Eur J Haematol. 2014;93:63–9.

    CAS  PubMed  Google Scholar 

  80. Eissa DS, Ahmed TM. C677T and A1298C polymorphisms of the methylenetetrahydrofolate reductase gene: effect on methotrexate-related toxicity in adult acute lymphoblastic leukaemia. Blood Coagul Fibrinolysis. 2013;24:181–8.

    CAS  PubMed  Google Scholar 

  81. Yang L, Hu X, Xu L. Impact of methylenetetrahydrofolate reductase (MTHFR) polymorphisms on methotrexate-induced toxicities in acute lymphoblastic leukemia: a meta-analysis. Tumor Biol. 2012;33:1445–54.

    CAS  Google Scholar 

  82. Fisher MC, Cronstein BN. Metaanalysis of methylenetetrahydrofolate reductase (MTHFR) polymorphisms affecting methotrexate toxicity. J Rheumatol. 2009;36:539–45.

    PubMed  PubMed Central  Google Scholar 

  83. Robien K, Schubert MM, Bruemmer B, Lloid ME, Potter JD, Ulrich CM. Predictors of oral mucositis in patients receiving hematopoietic stem cell transplants for chronic myelogenous leukemia. J Clin Oncol. 2004;22:1268–75.

    PubMed  Google Scholar 

  84. Chiusolo P, Reddiconto G, Casorelli I, Laurenti L, Sora F, Mele L, et al. Preponderance of methylenetetrahydrofolate reductase C677T homozygosity among leukemia patients intolerant to methotrexate. Ann Oncol. 2002;13:1915–8.

    CAS  PubMed  Google Scholar 

  85. Ulrich CM, Yasui Y, Storb R, Schubert MM, Wagner JL, Bigler J, et al. Pharmacogenetics of methotrexate: toxicity among marrow transplantation patients varies with the methylenetetrahydrofolate reductase C677T polymorphism. Blood. 2001;98:231–4.

    CAS  PubMed  Google Scholar 

  86. D’Angelo V, Ramaglia M, Iannotta A, Francese M, Pota E, Affinita MC, et al. Influence of methylenetetrahydrofolate reductase gene polymorphisms on the outcome of pediatric patients with non-Hodgkin lymphoma treated with high-dose methotrexate. Leuk Lymphoma. 2013;54:2639–44.

    PubMed  Google Scholar 

  87. Chiusolo P, Giammarco S, Bellesi S, Metafuni E, Piccirillo N, De Ritis D, et al. The role of MTHFR and RFC1 polymorphisms on toxicity and outcome of adult patients with hematological malignancies treated with high-dose methotrexate followed by leucovorin rescue. Cancer Chemother Pharmacol. 2012;69:691–6.

    CAS  PubMed  Google Scholar 

  88. Lopez-Lopez E, Martin-Guerrero I, Ballesteros J, Garcia-Orad A. A systematic review and meta-analysis of MTHFR polymorphisms in methotrexate toxicity prediction in pediatric acute lymphoblastic leukemia. Pharm J. 2013;13:498–506.

    CAS  Google Scholar 

  89. Hagleitner MM, Coenen MJH, Aplenc R, Patiño-Garcia A, Chiusolo P, Gemmati D, et al. The role of the MTHFR 677C>T polymorphism in methotrexate-induced liver toxicity: a meta-analysis in patients with cancer. Pharm J. 2013;14:115–9.

    Google Scholar 

  90. Owen SA, Lunt M, Bowes J, Hider SL, Bruce IN, Thomson W, et al. MTHFR gene polymorphisms and outcome of methotrexate treatment in patients with rheumatoid arthritis: analysis of key polymorphisms and meta-analysis of C677T and A1298C polymorphisms. Pharm J. 2013;13:137–47.

    CAS  Google Scholar 

  91. Scheuern A, Fischer N, McDonald J, Brunner HI, Haas JP, Hügle B. Mutations in the MTHFR gene are not associated with Methotrexate intolerance in patients with juvenile idiopathic arthritis. Pediatr Rheumatol. 2016;14:11.

    Google Scholar 

  92. Lee YH, Song GG. Associations between the C677T and A1298C polymorphisms of MTHFR and the efficacy and toxicity of methotrexate in rheumatoid arthritis. Clin Drug Investig. 2010;30:101–8.

    CAS  PubMed  Google Scholar 

  93. Lambrecht L, Sleurs C, Labarque V, Dhooge C, Laenen A, Sinnaeve F, et al. The role of the MTHFR C677T polymorphism in methotrexate-induced toxicity in pediatric osteosarcoma patients. Pharmacogenomics. 2017;18:787–95.

    CAS  PubMed  Google Scholar 

  94. Boughrara W, Benzaoui A, Aberkane M, Moghtit FZ, Dorgham S, Lardjam-Hetraf AS, et al. No correlation between MTHFR c. 677 C>T, MTHFR c. 1298 A>C, and ABCB1 c. 3435 C>T polymorphisms and methotrexate therapeutic outcome of rheumatoid arthritis in West Algerian population. Inflamm Res. 2017;66:505–13.

    CAS  PubMed  Google Scholar 

  95. Auepemkiate S. The association of MTHFR C677T and A1298C polymorphisms with methotrexate response and toxicity in psoriasis. Siriraj Med J. 2016;68:271–6.

    Google Scholar 

  96. Salazar J, Moya P, Altés A, Díaz-Torné C, Casademont J, Cerdà-Gabaroi D, et al. Polymorphisms in genes involved in the mechanism of action of methotrexate: are they associated with outcome in rheumatoid arthritis patients? Pharmacogenomics. 2014;15:1079–90.

    CAS  PubMed  Google Scholar 

  97. Hughes LB, Beasley TM, Patel H, Tiwari HK, Morgan SL, Baggott JE, et al. Racial or ethnic differences in allele frequencies of single-nucleotide polymorphisms in the methylenetetrahydrofolate reductase gene and their influence on response to methotrexate in rheumatoid arthritis. Ann Rheum Dis. 2006;65:1213–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Berkun Y, Levartovsky D, Rubinow A, Orbach H, Aamar S, Grenader T, et al. Methotrexate related adverse effects in patients with rheumatoid arthritis are associated with the A1298C polymorphism of the MTHFR gene. Ann Rheum Dis. 2004;63:1227–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Krajinovic M, Lemieux-Blanchard E, Chiasson S, Primeau M, Costea I, Moghrab A. Role of polymorphisms in MTHFR and MTHFD1 genes in the outcome of childhood acute lymphoblastic leukemia. Pharm J. 2004;4:66–72.

    CAS  Google Scholar 

  100. Kałużna E, Strauss E, Zając-Spychała O, Gowin E, Świątek-Kościelna B, Nowak J, et al. Functional variants of gene encoding folate metabolizing enzyme and methotrexate-related toxicity in children with acute lymphoblastic leukemia. Eur J Pharmacol. 2015;769:93–9.

    PubMed  Google Scholar 

  101. Kooloos WM, Wessels JAM, Van Der Kooij SM, Allaart CF, Huizinga TWJ, Guchelaar HJ. Optimisation of the clinical pharmacogenetic model to predict methotrexate treatment response: the influence of the number of haplotypes of MTHFR 1298A–677C alleles on probability to respond. Ann Rheum Dis. 2009;68:1371.

    CAS  PubMed  Google Scholar 

  102. Urano W, Taniguchi A, Yamanaka H, Tanaka E, Nakajima H, Matsuda Y, et al. Polymorphisms in the methylenetetrahydrofolate reductase gene were associated with both the efficacy and the toxicity of methotrexate used for the treatment of rheumatoid arthritis, as evidenced by single locus and haplotype analyses. Pharm Genomics. 2002;12:183–90.

    CAS  Google Scholar 

  103. Stamp LK, Chapman PT, O’Donnell JL, Zhang M, James J, Frampton C, et al. Polymorphisms within the folate pathway predict folate concentrations but are not associated with disease activity in rheumatoid arthritis patients on methotrexate. Pharm Genomics. 2010;20:367–76.

    CAS  Google Scholar 

  104. Erčulj N, Kotnik BF, Debeljak M, Jazbec J, Dolžan V. Influence of folate pathway polymorphisms on high-dose methotrexate-related toxicity and survival in childhood acute lymphoblastic leukemia. Leuk Lymphoma. 2012;53:1096–104.

    PubMed  Google Scholar 

  105. Muralidharan N, Mariaselvam CM, Jain VK, Gulati R, Negi VS. ATIC 347C>G gene polymorphism may be associated with methotrexate-induced adverse events in south Indian Tamil rheumatoid arthritis. Pharmacogenomics. 2016;17:241–8.

    CAS  PubMed  Google Scholar 

  106. Lee YH, Bae SC. Association of the ATIC 347 C/G polymorphism with responsiveness to and toxicity of methotrexate in rheumatoid arthritis: a meta-analysis. Rheumatol Int. 2016;36:1591–9.

    CAS  PubMed  Google Scholar 

  107. Lima A, Bernardes M, Azevedo R, Seabra V, Medeiros R. Moving toward personalized medicine in rheumatoid arthritis: SNPs in methotrexate intracellular pathways are associated with methotrexate therapeutic outcome. Pharmacogenomics. 2016;17:1649–74.

    CAS  PubMed  Google Scholar 

  108. Garcia-Bournissen F, Moghrabi A, Krajinovic M. Therapeutic responses in childhood acute lymphoblastic leukemia (ALL) and haplotypes of gamma glutamyl hydrolase (GGH) gene. Leuk Res. 2007;31:1023–5.

    CAS  PubMed  Google Scholar 

  109. Chen X, Wen F, Yue L, Li C. Genetic polymorphism of γ-glutamyl hydrolase in Chinese acute leukemia children and identification of a novel double nonsynonymous mutation. Pediatr Hematol Oncol. 2012;29:303–12.

    CAS  PubMed  Google Scholar 

  110. Chan SL, Jin S, Loh M, Brunham LR. Progress in understanding the genomic basis for adverse drug reactions: a comprehensive review and focus on the role of ethnicity. Pharmacogenomics. 2015;16:1161–78.

    CAS  PubMed  Google Scholar 

  111. Chango A, Emery-Fillon N, de Courcy GP, Lambert D, Pfister M, Rosenblatt DS, et al. A polymorphism (80G->A) in the reduced folate carrier gene and its associations with folate status and homocysteinemia. Mol Genet Metab. 2000;70:310–5.

    CAS  PubMed  Google Scholar 

  112. Whetstine JR, Gifford AJ, Witt T, Liu XY, Flatley RM, Norris M, et al. Single nucleotide polymorphisms in the human reduced folate carrier: characterization of a high-frequency G/A variant at position 80 and transport properties of the His27 and Arg27 carriers. Clin Cancer Res. 2001;7:3416–22.

    CAS  PubMed  Google Scholar 

  113. Emad A, Cairns J, Kalari KR, Wang L, Sinha S. Knowledge-guided gene prioritization reveals new insights into the mechanisms of chemoresistance. Genome Biol. 2017;18:153.

    PubMed  PubMed Central  Google Scholar 

  114. Shao W, Yuan Y, Li Y. Association between MTHFR C677T polymorphism and methotrexate treatment outcome in rheumatoid arthritis patients: a systematic review and meta-analysis. Genet Test Mol Biomark. 2017;21:275–85.

    CAS  Google Scholar 

  115. Fan H, Li Y, Zhang L, Li Y, Li W. Lack of association between MTHFR A1298C polymorphism and outcome of methotrexate treatment in rheumatoid arthritis patients: evidence from a systematic review and meta‐analysis. Int J Rheum Dis. 2017;20:526–40.

    CAS  PubMed  Google Scholar 

  116. Jabeen S, Holmboe L, Alnæs GIG, Andersen AM, Hall KS, Kristensen VN. Impact of genetic variants of RFC1, DHFR and MTHFR in osteosarcoma patients treated with high-dose methotrexate. Pharm J. 2015;15:385–90.

    CAS  Google Scholar 

  117. Ramsey LB, Panetta JC, Smith C, Yang W, Fan Y, Winick NJ, et al. Genome-wide study of methotrexate clearance replicates SLCO1B1. Blood. 2013;120:2466.

    Google Scholar 

  118. Li J, Wang XR, Zhai XW, Wang HS, Qian XW, Miao H, et al. Association of SLCO1B1 gene polymorphisms with toxicity response of high dose methotrexate chemotherapy in childhood acute lymphoblastic leukemia. Int J Clin Exp Med. 2015;8:6109–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Payá XM, García JS, Cid AR, Catalá JC, Cervellera MIGC, Fernández CC. Marcadores genéticos de eficacia y toxicidad a metotrexato en una población española con artritis reumatoide. Rev De la Soc Valencia De Reumatol. 2015;6:2–13.

    Google Scholar 

  120. Simon N, Marsot A, Villard E, Choquet S, Khe HX, Zahr N, et al. Impact of ABCC2 polymorphisms on high-dose methotrexate pharmacokinetics in patients with lymphoid malignancy. Pharm J. 2013;13:507–13.

    CAS  Google Scholar 

  121. Hegyi M, Arany A, Semsei AF, Csordas K, Eipel O, Gezsi A, et al. Pharmacogenetic analysis of high-dose methotrexate treatment in children with osteosarcoma. Oncotarget. 2017;8:9388.

    PubMed  Google Scholar 

  122. Huang Z, Tong HF, Qian JC, Wang JX, Li Y, Chen M & Luan Z. Associationof folypolyglutamate synthetase (FPGS) gene polymorphism with blood drugconcentration as well as adverse reactions of methotrexate in children withacute leukaemia. Biomedical Research 2017;28:478–483.

  123. Sharma S, Das M, Kumar A, Marwaha V, Shankar S, Singh P, et al. Purine biosynthetic pathway genes and methotrexate response in rheumatoid arthritis patients among north Indians. Pharm Genomics. 2009;19:823–8.

    CAS  Google Scholar 

  124. Wang SM, Sun LL, Zeng WX, Wu WS, Zhang GL. Influence of genetic polymorphisms of FPGS, GGH, and MTHFR on serum methotrexate levels in Chinese children with acute lymphoblastic leukemia. Cancer Chemother Pharmacol. 2014;74:283–9.

    CAS  PubMed  Google Scholar 

  125. Kalantari A, Zaker F, Ansari S, Sharafi H, Mohammadian M. The effect of polymorphisms of gamma-glutamyl hydrolase (GGH) gene on methotrexate-induced toxicity in acute lymphoblastic leukemia. Toxin Rev. 2015;34:136–41.

    CAS  Google Scholar 

  126. Jekic B, Vejnovic D, Milic V, Maksimovic N, Damnjanovic T, Bunjevacki V, et al. Association of 63/91 length polymorphism in the DHFR gene major promoter with toxicity of methotrexate in patients with rheumatoid arthritis. Pharmacogenomics. 2016;17:1687–91.

    CAS  PubMed  Google Scholar 

  127. Biswajit D, Kodidela S, Pradhan SC, Basu D, Prasad R, Gurusamy U. Influence of dihydrofolate reducatse (DHFR) gene polymorphisms on outcome of methotrexate maintenance therapy in patients with acute lymphoblastic leukemia. Blood. 2014;124:3661.

    Google Scholar 

  128. Ongaro A, De Mattei M, Della Porta MG, Rigolin G, Ambrosio C, Di Raimondo F, et al. Gene polymorphisms in folate metabolizing enzymes in adult acute lymphoblastic leukemia: effects on methotrexate-related toxicity and survival. Haematologica. 2009;94:1391–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Al-Shakfa F, Dulucq S, Brukner I, Milacic I, Ansari M, Beaulieu P, et al. DNA variants in region for noncoding interfering transcript of dihydrofolate reductase gene and outcome in childhood acute lymphoblastic leukemia. Clin Cancer Res. 2009;15:6931–8.

    CAS  PubMed  Google Scholar 

  130. Kurzawski M, Pawlik A, Safranow K, Herczynska M, Drozdzik M. 677C>T and 1298A>C MTHFR polymorphisms affect methotrexate treatment outcome in rheumatoid arthritis. Pharmacogenomics. 2007;8:1551–9.

    CAS  PubMed  Google Scholar 

  131. Zhu C, Liu YW, Wang SZ, Li XL, Nie X, Yu XT, et al. Associations between the C677T and A1298C polymorphisms of MTHFR and the toxicity of methotrexate in childhood malignancies: a meta-analysis. Pharm J. 2017. https://doi.org/10.1038/tpj.2017.34

    Article  Google Scholar 

  132. Lazić J, Kotur N, Krstovski N, Dokmanović L, Zukić B, Predojević-Samardžić J, et al. Importance of pharmacogenetic markers in the methylenetetrahydrofolate reductase gene during methotrexate treatment in pediatric patients with acute lymphoblastic leukemia. Arch Biol Sci. 2017;69:239–46.

    Google Scholar 

  133. Ćwiklińska M, Balwierz W, Bik-Multanowski M, Klekawka T. 677C>T 5, 10-methylenetetrahydrofolate reductase reductase (MTHFR) polymorphism and early toxicity of high-dose methotrexate in children treated for acute lymphoblastic leukemia. Post Nauk Med. 2014;4:238–44.

    Google Scholar 

  134. Morgan MD, Al­Shaarawy N, Martin S, Robinson JI, Twigg S, YEAR Consortium. et al. MTHFR functional genetic variation and methotrexate treatment response in rheumatoid arthritis: a meta­analysis. Pharmacogenomics. 2014;15:467–75.

    CAS  PubMed  Google Scholar 

  135. Mena JP, Salazar-Paramo M, Gonzalez-Lopez L, Gamez-Nava JI, Sandoval-Ramirez L, Sanchez JD, et al. Polymorphisms C677T and A1298C in the MTHFR gene in Mexican patients with rheumatoid arthritis treated with methotrexate: implication with elevation of transaminases. Pharm J. 2011;11:287–91.

    CAS  Google Scholar 

  136. Wessels JA, de Vries‐Bouwstra JK, Heijmans BT, Slagboom PE, Goekoop‐Ruiterman YP, Allaart CF, et al. Efficacy and toxicity of methotrexate in early rheumatoid arthritis are associated with single‐nucleotide polymorphisms in genes coding for folate pathway enzymes. Arthritis Rheum. 2006;54:1087–95.

    CAS  PubMed  Google Scholar 

  137. Hakamata J, Hashiguchi M, Kaneko Y, Yamaoka K, Shimizu M, Maruyama J, et al. Risk factors for abnormal hepatic enzyme elevation by methotrexate treatment in patients with rheumatoid arthritis: a hospital based-cohort study. Mod Rheumatol. 2017;1–27. https://doi.org/10.1080/14397595.2017.1414765

    CAS  PubMed  Google Scholar 

  138. Dervieux T, Furst D, Lein DO, Capps R, Smith K, Caldwell J, et al. Pharmacogenetic and metabolite measurements are associated with clinical status in patients with rheumatoid arthritis treated with methotrexate: results of a multicentred cross sectional observational study. Ann Rheum Dis. 2005;64:1180–5.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Esperon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giletti, A., Esperon, P. Genetic markers in methotrexate treatments. Pharmacogenomics J 18, 689–703 (2018). https://doi.org/10.1038/s41397-018-0047-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-018-0047-z

This article is cited by

Search

Quick links