Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Concordance between glucose-6-phosphate dehydrogenase (G6PD) genotype and phenotype and rasburicase use in patients with hematologic malignancies

Abstract

Phenotypic rather than genotypic tests remain the gold standard for diagnosing glucose-6-phosphate dehydrogenase (G6PD) deficiency. However, with increasing use of genomic arrays and whole exome or genome sequencing, G6PD genetic data are increasingly available. We examined the utility of G6PD genetic data in patients with hematologic malignancies and the association of G6PD genotype and phenotype with rasburicase-induced methemoglobinemia. We analyzed G6PD activity for 990 patients. Genotype data were available from the Affymetrix DMET array (n = 379), whole exome sequencing (n = 374), and/or the Illumina exome array (n = 634) for 645 patients. Medical records of 341 patients with methemoglobin measures were assessed for the administration of rasburicase. We observed 5 non-synonymous SNPs, 4 of which were known to be associated with deficient G6PD activity (WHO Class I–III). Genotyping 367 males resulted in a positive predictive value of 81.8% (47.8–96.8%), and two males with a Class I-III allele having normal activity both received a red blood cell transfusion prior to the activity assay. However, genotyping males had only 39.1% (20.5–61.2%) sensitivity. Two of the 12 heterozygous females had deficient G6PD activity. Rasburicase-induced methemoglobinemia occurred in 6 patients, 5 of whom had at least one Class I–III allele, despite 2 of these having normal G6PD activity. We conclude that although an apparent nondeficient genotype does not necessarily imply a normal phenotype, a deficient genotype result indicates a deficient phenotype in those without transfusions, and may be a useful adjuct to phenotype to prevent adverse drug reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Luzzatto L, Nannelli C, Notaro R. Glucose-6-phosphate dehydrogenase deficiency. Hematol Oncol Clin North Am. 2016;30:373–93.

    Article  Google Scholar 

  2. Pandolfi PP, Sonati F, Rivi R, Mason P, Grosveld F, Luzzatto L. Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehydrogenase (G6PD): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress. EMBO J. 1995;14:5209–15.

    Article  CAS  Google Scholar 

  3. Sivilotti ML. Oxidant stress and haemolysis of the human erythrocyte. Toxicol Rev. 2004;23:169–88.

    Article  CAS  Google Scholar 

  4. Mason PJ, Bautista JM, Gilsanz F. G6PD deficiency: the genotype-phenotype association. Blood Rev. 2007;21:267–83.

    Article  CAS  Google Scholar 

  5. McDonagh EM, Bautista JM, Youngster I, Altman RB, Klein TE. PharmGKB summary: methylene blue pathway. Pharm Genom. 2013;23:498–508.

    Article  CAS  Google Scholar 

  6. Relling MV, McDonagh EM, Chang T, Caudle KE, McLeod HL, Haidar CE, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for rasburicase therapy in the context of G6PD deficiency genotype. Clin Pharmacol Ther. 2014;96:169–74.

    Article  CAS  Google Scholar 

  7. Nkhoma ET, Poole C, Vannappagari V, Hall SA, Beutler E. The global prevalence of glucose-6-phosphate dehydrogenase deficiency: a systematic review and meta-analysis. Blood Cells, Mol & Dis. 2009;42:267–78.

    Article  CAS  Google Scholar 

  8. Standardization of procedures for the study of glucose-6-phosphate dehydrogenase.. Report of a WHO Scientific Group. World Health Organ Tech Report Ser. 1967;366:1–53.

    Google Scholar 

  9. Domingo GJ, Satyagraha AW, Anvikar A, Baird K, Bancone G, Bansil P, et al. G6PD testing in support of treatment and elimination of malaria: recommendations for evaluation of G6PD tests. Malar J. 2013;12:391.

    Article  Google Scholar 

  10. Abdulrazzaq YM, Micallef R, Qureshi M, Dawodu A, Ahmed I, Khidr A, et al. Diversity in expression of glucose-6-phosphate dehydrogenase deficiency in females. Clin Genet. 1999;55:13–9.

    Article  CAS  Google Scholar 

  11. Beutler E, Yeh M, Fairbanks VF. The normal human female as a mosaic of X-chromosome activity: studies using the gene for C-6-PD-deficiency as a marker. Proc Natl Acad Sci USA. 1962;48:9–16.

    Article  CAS  Google Scholar 

  12. Nance WE. Genetic tests with a sex-linked marker: glucose-6-phosphate dehydrogenase. Cold Spring Harb Symp Quant Biol. 1964;29:415–25.

    Article  CAS  Google Scholar 

  13. Rinaldi A, Filippi G, Siniscalco M. Variability of red cell phenotypes between and within individuals in an unbiased sample of 77 heterozygotes for G6PD deficiency in Sardinia. Am J Hum Genet. 1976;28:496–505.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Luzzatto L, Seneca E. G6PD deficiency: a classic example of pharmacogenetics with on-going clinical implications. Br J Haematol. 2014;164:469–80.

    Article  CAS  Google Scholar 

  15. Xia Z, Chen P, Tang N, Yan T, Zhou Y, Xiao Q, et al. Rapid detection of G6PD mutations by multicolor melting curve analysis. Mol Genet Metab. 2016;119:168–73.

    Article  CAS  Google Scholar 

  16. Yoshida A, Beutler E, Motulsky AG. Human glucose-6-phosphate dehydrogenase variants. Bull World Health Organ. 1971;45:243–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lin Z, Fontaine JM, Freer DE, Naylor EW. Alternative DNA-based newborn screening for glucose-6-phosphate dehydrogenase deficiency. Mol Genet Metab. 2005;86:212–9.

    Article  CAS  Google Scholar 

  18. Fernandez CA, Smith C, Yang W, Lorier R, Crews KR, Kornegay N, et al. Concordance of DMET plus genotyping results with those of orthogonal genotyping methods. Clin Pharmacol Ther. 2012;92:360–5.

    Article  CAS  Google Scholar 

  19. Burmester JK, Sedova M, Shapero MH, Mansfield E. DMET microarray technology for pharmacogenomics-based personalized medicine. Methods Mol Biol. 2010;632:99–124.

    Article  CAS  Google Scholar 

  20. Grove ML, Yu B, Cochran BJ, Haritunians T, Bis JC, Taylor KD, et al. Best practices and joint calling of the HumanExome BeadChip: the CHARGE Consortium. PLoS ONE. 2013;8:e68095.

    Article  CAS  Google Scholar 

  21. Yang W, Wu G, Broeckel U, Smith CA, Turner V, Haidar CE, et al. Comparison of genome sequencing and clinical genotyping for pharmacogenes. Clin Pharmacol Ther. 2016;100:380–8.

    Article  CAS  Google Scholar 

  22. Davidson D, Barefield ES, Kattwinkel J, Dudell G, Damask M, Straube R, et al. Inhaled nitric oxide for the early treatment of persistent pulmonary hypertension of the term newborn: a randomized, double-masked, placebo-controlled, dose-response, multicenter study. The I-NO/PPHN Study Group. Pediatrics. 1998;101(3 Pt 1):325–34.

    Article  CAS  Google Scholar 

  23. Dellinger RP, Zimmerman JL, Taylor RW, Straube RC, Hauser DL, Criner GJ, et al. Effects of inhaled nitric oxide in patients with acute respiratory distress syndrome: results of a randomized phase II trial. Inhaled nitric oxide in ARDS Study Group. Crit Care Med. 1998;26:15–23.

    Article  CAS  Google Scholar 

  24. Mandrell BN, McCormick JN. Dapsone-induced methemoglobinemia in pediatric oncology patients: case examples. J Pediatr Oncol Nurs. 2001;18:224–8.

    Article  CAS  Google Scholar 

  25. Plotkin JS, Buell JF, Njoku MJ, Wilson S, Kuo PC, Bartlett ST, et al. Methemoglobinemia associated with dapsone treatment in solid organ transplant recipients: a two-case report and review. Liver Transpl Surg. 1997;3:149–52.

    Article  CAS  Google Scholar 

  26. Shahani L, Sattovia S. Acquired methaemoglobinaemia related to phenazopyridine ingestion. BMJ Case Rep. 2012;2012:bcr2012006756.

    Google Scholar 

  27. Green ED, Zimmerman RC, Ghurabi WH, Colohan DP. Phenazopyridine hydrochloride toxicity: a cause of drug-induced methemoglobinemia. JACEP. 1979;8:426–31.

    Article  CAS  Google Scholar 

  28. Bayat A, Kosinski RW. Methemoglobinemia in a newborn: a case report. Pediatr Dent. 2011;33:252–4.

    PubMed  Google Scholar 

  29. Karim A, Ahmed S, Siddiqui R, Mattana J. Methemoglobinemia complicating topical lidocaine used during endoscopic procedures. Am J Med. 2001;111:150–3.

    Article  CAS  Google Scholar 

  30. Kawasumi H, Tanaka E, Hoshi D, Kawaguchi Y, Yamanaka H. Methemoglobinemia induced by trimethoprim-sulfamethoxazole in a patient with systemic lupus erythematosus. Intern Med. 2013;52:1741–3.

    Article  Google Scholar 

  31. Carroll TG, Carroll MG. Methemoglobinemia in a pediatric oncology patient receiving sulfamethoxazole/trimethoprim prophylaxis. Am J Case Rep. 2016;17:499–502.

    Article  Google Scholar 

  32. Marks PA, Johnson AB. Relationship between the age of human erythrocytes and their osmotic resistance: a basis for separating young and old erythrocytes. J Clin Invest. 1958;37:1542–8.

    Article  CAS  Google Scholar 

  33. Morelli A, Benatti U, Gaetani GF, De Flora A. Biochemical mechanisms of glucose-6-phosphate dehydrogenase deficiency. Proc Natl Acad Sci USA. 1978;75:1979–83.

    Article  CAS  Google Scholar 

  34. Beutler E. Glucose-6-phosphate dehydrogenase deficiency. Diagnosis, clinical and genetic implications. Am J Clin Pathol. 1967;47:303–11.

    Article  CAS  Google Scholar 

  35. Echler G. Determination of glucose-6-phosphate dehydrogenase levels in red cell preparations. Am J Med Technol. 1983;49:259–62.

    CAS  PubMed  Google Scholar 

  36. Morelli A, Benatti U, Lenzerini L, Sparatore B, Salomino F, Melloni E, et al. The interference of leukocytes and platelets with measurement of clucose-6-phosphate dehydrogenase activity of erythrocytes with low activity variants of the enzyme. Blood. 1981;58:642–4.

    CAS  PubMed  Google Scholar 

  37. Liumbruno G, Bennardello F, Lattanzio A, Piccoli P, Rossetti G. Recommendations for the transfusion of red blood cells. Blood Transfus Trasfus Del Sangue. 2009;7:49–64.

    Google Scholar 

  38. Filosa S, Giacometti N, Wangwei C, De Mattia D, Pagnini D, Alfinito F, et al. Somatic-cell selection is a major determinant of the blood-cell phenotype in heterozygotes for glucose-6-phosphate dehydrogenase mutations causing severe enzyme deficiency. Am J Hum Genet. 1996;59:887–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sanna G, Frau F, De Virgiliis S, Piu P, Bertolino F, Cao A. Glucose-6-phosphate dehydrogenase red blood cell phenotype in GdMediterranean heterozygous females and hemizygous males at birth. Pediatr Res. 1981;15:1443–6.

    Article  CAS  Google Scholar 

  40. Au WY, Ma ES, Lam VM, Chan JL, Pang A, Kwong YL. Glucose 6-phosphate dehydrogenase (G6PD) deficiency in elderly Chinese women heterozygous for G6PD variants. Am J Med Genet A. 2004;129a:208–11.

    Article  Google Scholar 

  41. Johnson MK, Clark TD, Njama-Meya D, Rosenthal PJ, Parikh S. Impact of the method of G6PD deficiency assessment on genetic association studies of malaria susceptibility. PLoS ONE. 2009;4:e7246.

    Article  Google Scholar 

  42. Sirdah M, Reading NS, Vankayalapati H, Perkins SL, Shubair ME, Aboud L, et al. Molecular heterogeneity of glucose-6-phosphate dehydrogenase deficiency in Gaza Strip Palestinians. Blood cells Mol Dis. 2012;49:152–8.

    Article  CAS  Google Scholar 

  43. Laouini N, Bibi A, Ammar H, Kazdaghli K, Ouali F, Othmani R, et al. Glucose-6-phosphate dehydrogenase deficiency in Tunisia: molecular data and phenotype-genotype association. Mol Biol Rep. 2013;40:851–6.

    Article  CAS  Google Scholar 

  44. Sirdah MM, Shubair ME, Al-Kahlout MS, Al-Tayeb JM, Prchal JT, Reading NS. Possible association of 3‵ UTR+357 A>G, IVS11-nt 93 T>C, c.1311 C>T polymorphism with G6PD deficiency. Hematology. 2017;22:370–4.

    Article  CAS  Google Scholar 

  45. Dallol A, Banni H, Gari MA, Al-Qahtani MH, Abuzenadeh AM, Al-Sayes F, et al. Five novel glucose-6-phosphate dehydrogenase deficiency haplotypes correlating with disease severity. J Transl Med. 2012;10:199.

    Article  CAS  Google Scholar 

  46. Navolanic PM, Pui CH, Larson RA, Bishop MR, Pearce TE, Cairo MS, et al. Elitek-rasburicase: an effective means to prevent and treat hyperuricemia associated with tumor lysis syndrome, a Meeting Report, Dallas, Texas, January 2002. Leukemia. 2003;17:499–514.

    Article  CAS  Google Scholar 

  47. Pui CH. Rasburicase: a potent uricolytic agent. Expert Opin Pharmacother. 2002;3:433–42.

    Article  CAS  Google Scholar 

  48. Bontant T, Le Garrec S, Avran D, Dauger S. Methaemoglobinaemia in a G6PD-deficient child treated with rasburicase. BMJ Case Rep. 2014;2014:bcr2014204706.

    Google Scholar 

  49. Sonbol MB, Yadav H, Vaidya R, Rana V, Witzig TE. Methemoglobinemia and hemolysis in a patient with G6PD deficiency treated with rasburicase. Am J Hematol. 2013;88:152–4.

    Article  Google Scholar 

  50. Chu CS, Bancone G, Moore KA, Win HH, Thitipanawan N, Po C, et al. Haemolysis in G6PD heterozygous females treated with primaquine for plasmodium vivax malaria: a nested cohort in a trial of radical curative regimens. PLoS Med. 2017;14:e1002224.

    Article  Google Scholar 

  51. Bauters T, Mondelaers V, Robays H, De Wilde H, Benoit Y, De Moerloose B. Methemoglobinemia and hemolytic anemia after rasburicase administration in a child with leukemia. Int J Clin Pharm. 2011;33:58–60.

    Article  CAS  Google Scholar 

  52. Kizer N, Martinez E, Powell M. Report of two cases of rasburicase-induced methemoglobinemia. Leuk Lymphoma. 2006;47:2648–50.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants GM 115279 and CA 21765

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary V. Relling.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robinson, K.M., Yang, W., Haidar, C.E. et al. Concordance between glucose-6-phosphate dehydrogenase (G6PD) genotype and phenotype and rasburicase use in patients with hematologic malignancies. Pharmacogenomics J 19, 305–314 (2019). https://doi.org/10.1038/s41397-018-0043-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-018-0043-3

This article is cited by

Search

Quick links