Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Potential role of PIN1 genotypes in predicting benefit from oxaliplatin-based and irinotecan-based treatment in patients with metastatic colorectal cancer

Abstract

PIN1-mediated substrate isomerization plays a role in the repair of DNA double-strand breaks. We hypothesized that genetic polymorphisms in PIN1-related pathways may affect tumor sensitivity to oxaliplatin or irinotecan in metastatic colorectal cancer (mCRC) patients. We analyzed genomic DNA from five cohorts of mCRC patients (total 950) treated with different first-line treatments: oxaliplatin cohorts 1 (n = 146) and 2 (n = 70); irinotecan cohorts 1 (n = 228), and 2 (n = 276); and combination cohort (n = 230). Single nucleotide polymorphisms of candidate genes were analyzed by PCR-based direct sequencing. In the oxaliplatin cohort 1, patients carrying any PIN1 rs2233678 C allele had shorter progression-free survival (PFS) and overall survival (OS) than the G/G variant (PFS, 7.4 vs. 15.0 months, hazard ratio [HR] 3.24, P < 0.001; OS, 16.9 vs. 31.5 months, HR: 2.38, P = 0.003). In contrast, patients with C allele had longer median PFS than patients with G/G (11.9 vs. 9.4 months, HR: 0.64, 95%CI: 0.45–0.91, P = 0.009) in the irinotecan cohort 1. No significant differences were observed in the combination cohort. In comparison between the irinotecan cohort 1 and combination cohort, the patients carrying the G/G variant benefit greatly from the combination compared with irinotecan-based regimen (PFS, 11.6 vs. 9.4 months, HR 0.61, 95%CI: 0.47–0.78, P < 0.001; OS, 30.6 vs. 24.0 months, HR 0.79, 95%CI: 0.62–1.02, P = 0.060), while no significant difference was shown in any C allele. Germline PIN1 polymorphisms may predict clinical outcomes in mCRC patients receiving oxaliplatin-based or irinotecan-based therapy, and identify specific populations favorable to oxaliplatin plus irinotecan combination therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Govindaraghavan M, Lad AA, Osmani SA. The NIMA kinase is required to execute stage-specific mitotic functions after initiation of mitosis. Eukaryot Cell. 2014;13:99–109.

    Article  CAS  Google Scholar 

  2. O’regan L, Blot J, Fry AM. Mitotic regulation by NIMA-related kinases. Cell Div. 2007;2:25.

    Article  Google Scholar 

  3. Lu KP, Hunter T. Evidence for a NIMA-like mitotic pathway in vertebrate cells. Cell. 1995;81:413–24.

    Article  CAS  Google Scholar 

  4. Osmani AH, O’Donnell K, Pu RT, Osmani SA. Activation of the nimA protein kinase plays a unique role during mitosis that cannot be bypassed by absence of the bimE checkpoint. EMBO J. 1991;10:2669–79.

    Article  CAS  Google Scholar 

  5. Ryo A, Liou YC, Lu KP, Wulf G. Prolyl isomerase Pin1: a catalyst for oncogenesis and a potential therapeutic target in cancer. J Cell Sci. 2003;116:773–83.

    Article  CAS  Google Scholar 

  6. Steger M, Murina O, Hühn D, et al. Prolyl isomerase PIN1 regulates DNA double-strand break repair by counteracting DNA end resection. Mol Cell. 2013;50:333–43.

    Article  CAS  Google Scholar 

  7. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461:1071–8.

    Article  CAS  Google Scholar 

  8. Branzei D, Foiani M. Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol. 2008;9:297–308.

    Article  CAS  Google Scholar 

  9. Vousden KH, Lu X. Live or let die: the cell’s response to p53. Nat Rev Cancer. 2002;2:594–604.

    Article  CAS  Google Scholar 

  10. Wulf GM, Liou YC, Ryo A, Lee SW, Lu KP. Role of Pin1 in the regulation of p53 stability and p21 transactivation, and cell cycle checkpoints in response to DNA damage. J Biol Chem. 2002;277:47976–9.

    Article  CAS  Google Scholar 

  11. Desantis A, Bruno T, Catena V, De Nicola F, Goeman F, Iezzi S, et al. Che-1 modulates the decision between cell cycle arrest and apoptosis by its binding to p53. Cell Death Dis. 2015;6:e1764.

    Article  CAS  Google Scholar 

  12. Berger M, Stahl N, Del Sal G, Haupt Y. Mutations in proline 82 of p53 impair its activation by Pin1 and Chk2 in response to DNA damage. Mol Cell Biol. 2005;25:5380–8.

    Article  CAS  Google Scholar 

  13. Sartori AA, Steger M. Prolyl isomerization: a new PIN code for DSB repair. Cell Cycle. 2013;12:2717–8.

    Article  CAS  Google Scholar 

  14. Pinna LA. Protein kinase CK2: a challenge to canons. J Cell Sci. 2002;115:3873–8.

    Article  CAS  Google Scholar 

  15. Ahmad KA, Wang G, Unger G, Slaton J, Ahmed K. Protein kinase CK2--a key suppressor of apoptosis. Adv Enzym Regul. 2008;48:179–87.

    Article  CAS  Google Scholar 

  16. Duncan JS, Litchfield DW. Too much of a good thing: the role of protein kinase CK2 in tumorigenesis and prospects for therapeutic inhibition of CK2. Biochim Biophys Acta. 2008;1784:33–47.

    Article  CAS  Google Scholar 

  17. Homma MK, Homma Y. Cell cycle and activation of CK2. Mol Cell Biochem. 2008;316:49–55.

    Article  CAS  Google Scholar 

  18. Messenger MM, Saulnier RB, Gilchrist AD, Diamond P, Gorbsky GJ, Litchfield DW. Interactions between protein kinase CK2 and Pin1. Evidence for phosphorylation-dependent interactions. J Biol Chem. 2002;277:23054–64.

    Article  CAS  Google Scholar 

  19. Bandyopadhyay K, Gjerset RA. Protein kinase CK2 is a central regulator of topoisomerase I hyperphosphorylation and camptothecin sensitivity in cancer cell lines. Biochemistry. 2011;50:704–14.

    Article  CAS  Google Scholar 

  20. Tournigand C, André T, Achille E, Lledo G, Flesh M, Mery-Mignard D, et al. FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study. J Clin Oncol. 2004;22:229–37.

    Article  CAS  Google Scholar 

  21. Cheung-Ong K, Giaever G, Nislow C. DNA-damaging agents in cancer chemotherapy: serendipity and chemical biology. Chem Biol. 2013;20:648–59.

    Article  CAS  Google Scholar 

  22. Faivre S, Chan D, Salinas R, Woynarowska B, Woynarowski JM. DNA strand breaks and apoptosis induced by oxaliplatin in cancer cells. Biochem Pharmacol. 2003;66:225–37.

    Article  CAS  Google Scholar 

  23. Suenaga M, Mizunuma N, Matsusaka S, Shinozaki E, Ueno M, Yamaguchi T. Retrospective analysis on the efficacy of bevacizumab with FOLFOX as a first-line treatment in Japanese patients with metastatic colorectal cancer. Asia Pac J Clin Oncol. 2014;10:322–9.

    Article  Google Scholar 

  24. Loupakis F, Cremolini C, Masi G, Lledo G, Flesh M, Mery-Mignard D, et al. Initial therapy with FOLFOXIRI and bevacizumab for metastatic colorectal cancer. N Engl J Med. 2014;371:1609–18.

    Article  Google Scholar 

  25. Stintzing S, Modest DP, Rossius L, Lerch MM, von Weikersthal LF, Decker T, et al. FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab for metastatic colorectal cancer (FIRE-3): a post-hoc analysis of tumour dynamics in the final RAS wild-type subgroup of this randomised open-label phase 3 trial. Lancet Oncol. 2016;17:1426–34.

    Article  CAS  Google Scholar 

  26. Polonio-Vallon T, Krüger D, Hofmann TG. ShaPINg cell fate upon DNA damage: role of Pin1 isomerase in DNA damage-induced cell death and repair. Front Oncol. 2014;4:148.

    Article  Google Scholar 

  27. Lu KP, Hanes SD, Hunter T. A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature. 1996;380:544–7.

    Article  CAS  Google Scholar 

  28. Lu J, Hu Z, Wei S, Lerch MM, von Weikersthal LF, Decker T, et al. A novel functional variant (-842G>C) in the PIN1 promoter contributes to decreased risk of squamous cell carcinoma of the head and neck by diminishing the promoter activity. Carcinogenesis. 2009;30:1717–21.

    Article  CAS  Google Scholar 

  29. De Oliveira LP, López I, Dos Santos EM, Lerch MM, von Weikersthal LF, Decker T, et al. Association of the p53 codon 72 polymorphism with clinicopathological characteristics of colorectal cancer through mRNA analysis. Oncol Rep. 2014;31:1396–406.

    Article  Google Scholar 

Download references

Acknowledgements

The National Institutes of Health (P30CA014089-27S1), the Gloria Borges Wunderglo Project, the Dhont Family Foundation, the Dave Butler Research Fund, and the Call to Cure Research Fund partially supported this work. Mitsukuni Suenaga received a grant from the Takashi Tsuruo Memorial Fund. Martin D. Berger received a grant from the Swiss Cancer League (BIL KLS-3334-02-2014) and the Werner and Hedy Berger-Janser Foundation for Cancer Research. Yuji Miyamoto received a grant from the Japan Society for the Promotion of Science (S2606).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz-Josef Lenz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suenaga, M., Schirripa, M., Cao, S. et al. Potential role of PIN1 genotypes in predicting benefit from oxaliplatin-based and irinotecan-based treatment in patients with metastatic colorectal cancer. Pharmacogenomics J 18, 623–632 (2018). https://doi.org/10.1038/s41397-018-0030-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-018-0030-8

Search

Quick links