Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Astrocyte-specific transcriptome responses to chronic ethanol consumption

Abstract

Astrocytes play critical roles in central nervous system (CNS) homeostasis and are implicated in the pathogenesis of neurological and psychiatric conditions, including drug dependence. Little is known about the effects of chronic ethanol consumption on astrocyte gene expression. To address this gap in knowledge, we performed transcriptome-wide RNA sequencing of astrocytes isolated from the prefrontal cortex (PFC) of mice following chronic ethanol consumption. Differential expression analysis revealed ethanol-induced changes unique to astrocytes that were not identified in total homogenate preparations. Astrocyte-specific gene expression revealed calcium-related signaling and regulation of extracellular matrix genes as responses to chronic ethanol use. These findings emphasize the importance of investigating expression changes in specific cellular populations to define molecular consequences of chronic ethanol consumption in mammalian brain.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Khakh BS, Sofroniew MV. Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci. 2015;18:942–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Chung WS, Allen NJ, Eroglu C. Astrocytes control synapse formation, function, and elimination. Cold Spring Harb Perspect Biol. 2015;7:a020370.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Chung W-S, Welsh CA, Barres BA, Stevens B. Do glia drive synaptic and cognitive impairment in disease? Nat Neurosci. 2015;18:1539–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Sery O, Sultana N, Kashem MA, Pow DV, Balcar VJ. GLAST but not least-distribution, function, genetics and epigenetics of L-glutamate transport in brain-focus on GLAST/EAAT1. Neurochem Res. 2015;40:2461–72.

    Article  PubMed  CAS  Google Scholar 

  5. Bazargani N, Attwell D. Astrocyte calcium signaling: the third wave. Nat Neurosci. 2016;19:182–9.

    Article  PubMed  CAS  Google Scholar 

  6. Jones EV, Bouvier DS. Astrocyte-secreted matricellular proteins in CNS remodeling during development and disease. Neural Plast. 2014;2014:321209–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Bull C, Freitas KCC, Zou S, Poland RS, Syed WA, Urban DJ, et al. Rat nucleus accumbens core astrocytes modulate reward and the motivation to self-administer ethanol after abstinence. Neuropsychopharmacology. 2014;39:2835–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Bennett MV, Contreras JE, Bukauskas FF, Saez JC. New roles for astrocytes: gap junction hemichannels have something to communicate. Trends Neurosci. 2003;26:610–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Miguel-Hidalgo J, Shoyama Y, Wanzo V. Infusion of gliotoxins or a gap junction blocker in the prelimbic cortex increases alcohol preference in Wistar rats. J Psychopharmacol. 2009;23:550–7.

    Article  PubMed  CAS  Google Scholar 

  10. Liu J, Lewohl JM, Harris RA, Iyer VR, Dodd PR, Randall PK, et al. Patterns of gene expression in the frontal cortex discriminate alcoholic from nonalcoholic individuals. Neuropsychopharmacology. 2006;31:1574–82.

    Article  PubMed  CAS  Google Scholar 

  11. Ponomarev I, Wang S, Zhang L, Harris RA, Mayfield RD. Gene coexpression networks in human brain identify epigenetic modifications in alcohol dependence. J Neurosci. 2012;32:1884–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Osterndorff-Kahanek E, Ponomarev I, Blednov YA, Harris RA. Gene expression in brain and liver produced by three different regimens of alcohol consumption in mice: comparison with immune activation. PLoS One. 2013;8:e59870.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Osterndorff-Kahanek EA, Becker HC, Lopez MF, Farris SP, Tiwari GR, Nunez YO, et al. Chronic ethanol exposure produces time- and brain region-dependent changes in gene coexpression networks. PLoS One. 2015;10:e0121522.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Saba LM, Flink SC, Vanderlinden LA, Israel Y, Tampier L, Colombo G, et al. The sequenced rat brain transcriptome--its use in identifying networks predisposing alcohol consumption. FEBS J. 2015;282:3556–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Blanco AM, Pascual M, Valles SL, Guerri C. Ethanol-induced iNOS and COX-2 expression in cultured astrocytes via NF-kappa B. Neuroreport. 2004;15:681–5.

    Article  PubMed  CAS  Google Scholar 

  16. Pignataro L, Varodayan FP, Tannenholz LE, Protiva P, Harrison NL. Brief alcohol exposure alters transcription in astrocytes via the heat shock pathway. Brain Behav. 2013;3:114–33.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci. 2008;28:264–78.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, et al. Genomic analysis of reactive astrogliosis. J Neurosci. 2012;32:6391–410.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Srinivasan K, Friedman BA, Larson JL, Lauffer BE, Goldstein LD, Appling LL, et al. Untangling the brain’s neuroinflammatory and neurodegenerative transcriptional responses. Nat Commun. 2016;7:11295.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34:11929–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Zhang Y, Sloan SA, Clarke LE, Caneda C, Plaza CA, Blumenthal PD, et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron. 2016;89:37–53.

    Article  PubMed  CAS  Google Scholar 

  22. Melendez RI. Intermittent (every-other-day) drinking induces rapid escalation of ethanol intake and preference in adolescent and adult C57BL/6J mice. Alcohol Clin Exp Res. 2011;35:652–8.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Goldstein RZ, Volkow ND. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci. 2011;12:652–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Most D, Ferguson L, Blednov Y, Mayfield RD, Harris RA. The synaptoneurosome transcriptome: a model for profiling the molecular effects of alcohol. Pharm J. 2015;15:177–88.

    CAS  Google Scholar 

  25. Repunte-Canonigo V, Shin W, Vendruscolo LF, Lefebvre C, van der Stap L, Kawamura T, et al. Identifying candidate drivers of alcohol dependence-induced excessive drinking by assembly and interrogation of brain-specific regulatory networks. Genome Biol. 2015;16:68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Holt LM, Olsen ML. Novel applications of magnetic cell sorting to analyze cell-type specific gene and protein expression in the central nervous system. PLoS One. 2016;11:e0150290.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Kantzer CG, Boutin C, Herzig ID, Wittwer C, Reiß S, Tiveron MC, et al. Anti-ACSA-2 defines a novel monoclonal antibody for prospective isolation of living neonatal and adult astrocytes. Glia. 2017;101:8384–1004.

    Google Scholar 

  28. Batiuk MY, de Vin F, Duqué SI, Li C, Saito T, Saido T, et al. An immunoaffinity-based method for isolating ultrapure adult astrocytes based on ATP1B2 targeting by the ACSA-2 antibody. J Biol Chem. 2017;292:8874–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Andrews S. FastQC: a quality control tool for high throughput sequence data. bioinformatics.babraham.ac.uk. 2010. http://www.bioinformatics.babraham.ac.uk/projects/fastqc. Accessed 27 Sep 2016.

  30. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Anders S, Pyl PT, Huber W. HTSeq—a python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–9.

    Article  PubMed  CAS  Google Scholar 

  32. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7:562–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44:W90–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Sharma K, Schmitt S, Bergner CG, Tyanova S, Kannaiyan N, Manrique-Hoyos N, et al. Cell type- and brain region-resolved mouse brain proteome. Nat Neurosci. 2015;18:1819–31.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Cao X, Li L-P, Wang Q, Wu Q, Hu H-H, Zhang M, et al. Astrocyte-derived ATP modulates depressive-like behaviors. Nat Med. 2013;19:773–7.

    Article  PubMed  CAS  Google Scholar 

  38. Matos M, Shen HY, Augusto E, Wang Y, Wei CJ, Wang YT, et al. Deletion of adenosine A2A receptors from astrocytes disrupts glutamate homeostasis leading to psychomotor and cognitive impairment: relevance to schizophrenia. Biol Psychiatry. 2015;78:763–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Orre M, Kamphuis W, Osborn LM, Melief J, Kooijman L, Huitinga I, et al. Acute isolation and transcriptome characterization of cortical astrocytes and microglia from young and aged mice. Neurobiol Aging. 2014;35:1–14.

    Article  PubMed  CAS  Google Scholar 

  40. Simpson JE, Ince PG, Shaw PJ, Heath PR, Raman R, Garwood CJ, et al. Microarray analysis of the astrocyte transcriptome in the aging brain: relationship to Alzheimer’s pathology and APOE genotype. Neurobiol Aging. 2011;32:1795–807.

    Article  PubMed  CAS  Google Scholar 

  41. Farris SP, Arasappan D, Hunicke-Smith S, Harris RA, Mayfield RD. Transcriptome organization for chronic alcohol abuse in human brain. Mol Psychiatry. 2015;20:1438–47.

    Article  PubMed  CAS  Google Scholar 

  42. Oberheim NA, Takano T, Han X, He W, Lin JHC, Wang F, et al. Uniquely hominid features of adult human astrocytes. J Neurosci. 2009;29:3276–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Herculano-Houzel S. The glia/neuron ratio: how it varies uniformly across brain structures and species and what that means for brain physiology and evolution. Glia. 2014;62:1377–91.

    Article  PubMed  Google Scholar 

  44. Chai H, Diaz-Castro B, Shigetomi E, Monte E, Octeau JC, Yu X, et al. Neural circuit-specialized astrocytes: transcriptomic, proteomic, morphological, and functional evidence. Neuron 2017. https://doi.org/10.1016/j.neuron.2017.06.029.

  45. Sun W, Cornwell A, Li J, Peng S, Osorio MJ, Aalling N, et al. SOX9 is an astrocyte-specific nuclear marker in the adult brain outside the neurogenic regions. J Neurosci. 2017;37:4493–507.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Braun A. The multifunctional calcium/calmodulin-dependent protein kinase: from form to function. Annu Rev Physiol. 1995;57:417–45.

    Article  PubMed  CAS  Google Scholar 

  47. Roman DL, Traynor JR. Regulators of G protein signaling (RGS) proteins as drug targets: modulating G-protein-coupled receptor (GPCR) signal transduction. J Med Chem. 2011;54:7433–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Mulligan MK, Rhodes JS, Crabbe JC, Mayfield RD, Harris RA, Ponomarev I. Molecular profiles of drinking alcohol to intoxication in C57BL/6J mice. Alcohol Clin Exp Res. 2011;35:659–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Ashpole NM, Chawla AR, Martin MP, Brustovetsky T, Brustovetsky N, Hudmon A. Loss of calcium/calmodulin-dependent protein kinase II activity in cortical astrocytes decreases glutamate uptake and induces neurotoxic release of ATP. J Biol Chem. 2013;288:14599–611.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Lee MR, Ruby CL, Hinton DJ, Choi S, Adams CA, Young Kang N, et al. Striatal adenosine signaling regulates EAAT2 and astrocytic AQP4 expression and alcohol drinking in mice. Neuropsychopharmacology. 2013;38:437–45.

    Article  PubMed  CAS  Google Scholar 

  51. Smith KL, John CS, Sypek EI, Ongur D, Cohen BM, Barry SM, et al. Exploring the role of central astrocytic glutamate uptake in ethanol reward in mice. Alcohol Clin Exp Res. 2014;38:1307–14.

    Article  PubMed  CAS  Google Scholar 

  52. Lasek AW. Effects of ethanol on brain extracellular matrix: implications for alcohol use disorder. Alcohol Clin Exp Res 2016. https://doi.org/10.1111/acer.13200.

  53. Smith AC, Scofield MD, Kalivas PW. The tetrapartite synapse: extracellular matrix remodeling contributes to corticoaccumbens plasticity underlying drug addiction. Brain Res. 2015;1628:29–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Melchor JP, Strickland S. Tissue plasminogen activator in central nervous system physiology and pathology. Thromb Haemost. 2005;93:655–60.

    PubMed  PubMed Central  CAS  Google Scholar 

  55. Pawlak R, Melchor JP, Matys T, Skrzypiec AE, Strickland S. Ethanol-withdrawal seizures are controlled by tissue plasminogen activator via modulation of NR2B-containing NMDA receptors. Proc Natl Acad Sci USA. 2005;102:443–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Frischknecht R, Gundelfinger ED. The brain’s extracellular matrix and its role in synaptic plasticity. Adv Exp Med Biol. 2012;970:153–71.

    Article  PubMed  CAS  Google Scholar 

  57. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, et al. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006;313:1929–35.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mendy Black and Adriana Dacosta for assisting with drinking experiments.

Funding

Funding

The work published in this paper represents original research, not previously submitted or published elsewhere. This work was supported by NIH/NIAAA INIA Consortium U01 AA13520, R01 AA06399, U01 AA020926, R01 AA012404, and a donation from June Waggoner.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma K. Erickson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erickson, E.K., Farris, S.P., Blednov, Y.A. et al. Astrocyte-specific transcriptome responses to chronic ethanol consumption. Pharmacogenomics J 18, 578–589 (2018). https://doi.org/10.1038/s41397-017-0012-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-017-0012-2

This article is cited by

Search

Quick links