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Mutualism reduces the severity of gene disruptions in
predictable ways across microbial communities
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Predicting evolution in microbial communities is critical for problems from human health to global nutrient cycling. Understanding
how species interactions impact the distribution of fitness effects for a focal population would enhance our ability to predict
evolution. Specifically, does the type of ecological interaction, such as mutualism or competition, change the average effect of a
mutation (i.e., the mean of the distribution of fitness effects)? Furthermore, how often does increasing community complexity alter
the impact of species interactions on mutant fitness? To address these questions, we created a transposon mutant library in
Salmonella enterica and measured the fitness of loss of function mutations in 3,550 genes when grown alone versus competitive co-
culture or mutualistic co-culture with Escherichia coli and Methylorubrum extorquens. We found that mutualism reduces the average
impact of mutations, while competition had no effect. Additionally, mutant fitness in the 3-species communities can be predicted
by averaging the fitness in each 2-species community. Finally, we discovered that in the mutualism S. enterica obtained vitamins
and more amino acids than previously known. Our results suggest that species interactions can predictably impact fitness effect
distributions, in turn suggesting that evolution may ultimately be predictable in multi-species communities.
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INTRODUCTION
Predicting evolutionary dynamics in microbial communities is
critical for everything from understanding how pathogens in the
human microbiome will respond to antibiotic treatment [1] to
understanding how microbial contributions to global nutrient
cycles will be impacted by climate change [2]. To understand and
predict evolutionary outcomes in microbial communities, it is
critical that we gain an understanding of how species interactions
impact the average effect of mutations and the specific genes
under selection, as well as how the effects of mutations are
impacted as community complexity increases.
One way to assess the impact of species interactions on

evolution is to evaluate impacts on the distribution of fitness
effects caused by mutations in different conditions [3, 4]. By
measuring the fitness of many mutants one can generate a
distribution of fitness effects for a population in a defined
environment [3, 4]. The mean of this distribution is a measure of
how sensitive fitness is to perturbation by mutation for a given
population in a defined environment [5, 6]. A more mutationally
sensitive, or less robust, population will tend to have a more
negative mean fitness score as most mutations that cause effects
are expected to be deleterious [5, 6]. One approach that can be
used to measure the distribution of fitness effects is transposon
sequencing (or TnSeq) [7]. In this method, transposon mutant
libraries are generated that contain thousands of mutants, each
harboring a transposon inserted in a distinct location in the

genome [8, 9]. Through sequencing the transposon library before
and after growth under defined conditions, one can determine the
change in mutant frequency and thereby the relative fitness of
each insertion in discrete growth environments. While TnSeq
studies often focus just on outliers to identify essential genes in
different environments [8], the technique can also determine
impacts on the entire distribution of fitness effects for a given
species [4, 5, 7, 10, 11]. Indeed, the effect of mutations on a given
strain is often observed to change in different environments
[12–14].
Recent studies have shown that species interactions can change

the fitness effects of mutations in a variety of ways, but the
predictability of pair-wise effects remains unclear. For instance, a
TnSeq study of Escherichia coli found that knockouts of several
vitamin and nucleotide biosynthesis genes were deadly in
monoculture, but viable in the presence of a phototrophic
bacterium [10]. Another study tested the same E. coli library with
different species of bacteria and fungi, and found that interactions
with other species can result in either alleviation or exacerbation
of fitness costs caused by transposon insertion [11, 15]. Similarly,
co-infection has been shown to either increase or decrease the
number of essential genes in the pathogen Aggregatibacter
actinomycetemcomitans depending on the co-infecting partner
[16]. These studies demonstrate that fitness effects of species
interactions can be idiosyncratic, however there may be some
generalities based on how species interact. Specifically,

Received: 25 April 2023 Revised: 3 October 2023 Accepted: 6 October 2023
Published online: 21 October 2023

1Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA. 2BioTechnology Institute, University of Minnesota, St. Paul, MN, USA. 3Department of
Microbiology & Immunology, University of Minnesota, Minneapolis, MN, USA. 4Present address: Minnesota Super Computing Institute, University of Minnesota, Minneapolis, MN,
USA. 5These authors contributed equally: Jonathan N. V. Martinson, Jeremy M. Chacón. ✉email: harcombe@umn.edu

www.nature.com/ismej

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41396-023-01534-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41396-023-01534-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41396-023-01534-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41396-023-01534-6&domain=pdf
http://orcid.org/0009-0004-2032-2768
http://orcid.org/0009-0004-2032-2768
http://orcid.org/0009-0004-2032-2768
http://orcid.org/0009-0004-2032-2768
http://orcid.org/0009-0004-2032-2768
http://orcid.org/0000-0003-3841-1676
http://orcid.org/0000-0003-3841-1676
http://orcid.org/0000-0003-3841-1676
http://orcid.org/0000-0003-3841-1676
http://orcid.org/0000-0003-3841-1676
http://orcid.org/0000-0001-8445-2052
http://orcid.org/0000-0001-8445-2052
http://orcid.org/0000-0001-8445-2052
http://orcid.org/0000-0001-8445-2052
http://orcid.org/0000-0001-8445-2052
https://doi.org/10.1038/s41396-023-01534-6
mailto:harcombe@umn.edu
www.nature.com/ismej


competition may tend to render gene disruptions more deleter-
ious by further penalizing slow growth, while mutualism may tend
to buffer the effect of gene loss through constraining growth rates
to match those of a partner. To evaluate this possibility, data are
needed on mutational effects in a system in which species identity
can be held constant, while species interactions can be changed.
Another open question is whether the impact of mutations in

complex communities can be predicted from the impact of
mutations in simpler systems. Previous research found that only
28% of the interaction-associated fitness effects in a 4-species
community were also observed in pairwise interactions [15]. This
work suggests that higher order interactions (i.e., emergent
properties) are prevalent and that the impact of mutations in
communities may be difficult to predict from pairwise interactions.
However, this contrasts with many studies suggesting that higher
order interactions are relatively rare in microbial communities
[17, 18]. The predictability of mutational impacts in a community
setting remains unclear.
Here we use a randomly barcoded transposon-mutant (RB-

TnSeq) library of Salmonella enterica (abbreviated as “S”) to
investigate how species interactions impact the average effect of
mutations, and the effect of disrupting specific genes. Changes in
the nutrients provided in the media were used to switch S. enterica
between mutualism and competition with E. coli and Methyloru-
brum extorquens (abbreviated as “E” and “M”, respectively). Our
strain of S. enterica secretes methionine [19]. In lactose minimal
medium, this S. enterica strain forms an obligate mutualism with
an E. coli methionine auxotroph by providing methionine in
exchange for carbon byproducts (Fig. 1A) [20]. The S. enterica can
also form an obligate mutualism with M. extorquens in galactose

minimal medium providing carbon byproducts in exchange for
nitrogen when methylamine is the only nitrogen source [21]. Thus,
all three species form an obligate mutualism in lactose minimal
medium with methylamine (Fig. 1A). However, if succinate,
methionine, and ammonium are each provided in the medium,
all three strains can grow independently and act as competitors of
each other (Fig. 1A). We grew the S. enterica RB-TnSeq library
alone, with E. coli, with M. extorquens and with both species in
either mutualism or competition (Supplementary Fig. S1) and
sequenced the transposon barcodes in a process called BarSeq [9].
Monocultures were grown in galactose minimal medium for
comparison against mutualistic growth, and succinate minimal
medium to compare against competitive growth. We compared
the effect of co-culture relative to its paired monoculture to
determine whether the distribution of fitness effects varies in
competition versus mutualism. We ran all experiments on agar
surfaces as spatial structure can increase selection for novel
cooperation between cross-feeding partners [20, 22].
We found that species interactions changed both the average

effect of disrupting a gene as well as which genes were under
selection. When S. enterica engaged in mutualism it was less
affected by gene deletions than in monoculture, while in the
competitive environment species interactions had no significant
impact on the average fitness effect of gene disruption. The
BarSeq data highlighted some expected interaction-specific
selection such as the increased selection on genes associated
with nitrogen uptake when S. enterica was reliant on nitrogen
from M. extorquens [10]. The BarSeq data also illuminated some
unanticipated selection, such as changes in the importance of
vitamin biosynthesis in mutualism. Our data suggest that selection

Fig. 1 Distributions of fitness effects during mutualism and competition. A Interactions between S. enterica (S), E. coli (E), and M. extorquens
(M) can be switched from mutualism (left) to competition (right) by changing the media. Central dotted inset–S. enterica population is
composed of a transposon insertion (gene knockout) library. The circle within each cell represents a DNA chromosome–each ‘X’ represents a
transposon insertion site (knockout). The library was tested in monoculture, 2-species co-culture, and 3-species co-culture (rightmost box).
Plate color indicates carbon source—yellow= galactose; blue= lactose; orange= succinate. B Histograms of gene-level fitness effects. The
fitness effect of each gene is the average across five replicates within a given treatment. Fitness effect, as described in the Materials and
methods, is the normalized fitness where a value of zero indicates a neutral knockout. The y-axis scaling is log2-transformed. C Means of the
fitness effects over all genes within a replicate. Each point is the mean of one replicate’s fitness effects. The bold horizontal line is the mean of
these means. The mean fitness effect of knockouts in S monoculture was significantly (p= 2e-10) negative. There was a significant increase in
the mean fitness effect when S depended on E (p= 2e-7) or M (p= 1e-5). Dependence on both E and M did not additively increase mean
fitness effect, and instead lowered the mean below that for dependence on either species (p= 1.8e-6). The mean fitness effect of knockouts in
competitive treatments was significantly below zero (intercept p < 2e-16) and the community members had no effect (smallest p= 0.144).
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in 3-species communities can be well predicted from fitness in
pairwise associations.

MATERIALS AND METHODS
Bacterial strains
Strains used in this study (Supplementary Table S1) including Salmonella
enterica LT2 (WH102), and Methylorubrum extorquens AM1 have been
described in previous studies [20, 23]. Briefly, the S. enterica contains
mutations in metA and metJ causing it to secrete methionine [19], and the
M. extorquens has a deletion of hprA making it unable to assimilate carbon
from methylamine. The E. coli strain was generated using a P1 transduction
method [24, 25] to move the metB deletion from the Keio clone JW3910
into E. coli MG1655. The resistance cassette was removed with flippase
[24, 25].
Single gene knockouts in S. enterica were constructed using P22 HT int

transduction to move knockouts from the BEI Resources S. enterica 14028 s
knockout library. BEI plate IDs for the strains used were: ΔaceA –SGD_156/
157_Cm, NR-42890 well A02; ΔpanC – SGD_051/052_Cm, NR-42877, well
D10; ΔilvA – SGD_156/157_Cm, NR-42890 well F08. Transductions were
carried out in a similar fashion to the P1 transductions described above,
however, antibiotic resistance cassettes were left intact.

Media
Routine culturing of E. coli (E) and S. enterica (S) was carried out on Lysogeny
broth (LB), while M. extorquens (M) was cultured on Nutrient broth. The
BarSeq experiments were carried out on hypho minimal medium [26]. Each
component (Supplementary Table S2) was sterilized before mixing. The
carbon source of the mutualistic treatments was either 5.56mM galactose
(for S and SM) or 2.78mM lactose (for SE and SEM). Competitive treatments
were provided 8.33mM succinate as the carbon source.
Mutualistic treatments without M. extorquens (S and SE) and the

competitive treatments were provided 3.7 mM (NH4)2SO4 as the nitrogen
source. Mutualistic treatments with M. extorquens (SM and SEM) were
provided 3.78mM Na2SO4 and 1.16mM methylamine. The competitive
medium was supplemented with 0.05mM methionine to allow for
unrestricted E coli growth. All media was supplemented with 1.2 µM
ZnSO4, 1 µM MnCl2, 18 µM FeSO4, 2 µM (NH4)6Mo7O24, 1 µM CuSO4, 2 mM
CoCl2, 0.33 µM Na2WO4, and 20 µM CaCl2.

RB-TnSeq library construction for Salmonella enterica
A randomly barcoded transposon library (RB-TnSeq) was generated in
S. enterica WH102 using the conjugation method previously described [9].
Briefly, the donor E. coli strain APA752 containing the suicide transposon-
plasmid, pKMW3, was conjugated with WH102 at a 1:1 ratio on LB
supplemented with 300 µM diaminopimelic acid for 24 h at 37 °C. Roughly
300,000 transconjugant colonies were scraped and resuspended in saline
(0.9%). The cells were then diluted to OD600 0.25 in LB with kanamycin
(50 µg/mL) and grown to an OD600 of 0.97 prior to being frozen in 10%
glycerol at −80 °C. The library was sequenced on a NovaSeq S1 (Illumina)
2 × 150 bp flow cell at the University of Minnesota Genomics Center and
analyzed using the FEBA pipeline [9] against the S. enterica LT2 genome
(GenBank accession: AE006468.2).

BarSeq experimental setup
A 1mL RB-TnSeq library aliquot was thawed, inoculated into 25mL LB with
50 µg/mL kanamycin, and incubated at 37 °C until it reached mid-log
phase (OD600 0.64). E. coli (MG1655 ΔmetB) was cultured overnight and
then diluted to mid-log in LB 37 °C. M. extorquens ΔhprA AM1 was cultured
for 2 days in nutrient broth at 30 °C. All species were washed and adjusted
to OD600= 0.2 (for S. enterica and E. coli) or 0.4 (for M. extorquens). 25 µL of
each species (~106 cells) was plated onto minimal media (five replicates/
treatment) then incubated at 30 °C.
To harvest cells from the experimental plates, 4 mL saline was pipetted

into each replicate plate and colonies were scraped with a cell spreader. A
sample of the cell slurry was plated for CFU quantification on hypho agar
plates that were selective for each species (Supplementary Table S3). The
remaining cell slurry was pelleted by centrifugation and frozen at −20 °C.
DNA was extracted from pelleted cells using the Qiagen DNeasy Blood

and Tissue kit. The resultant DNA was quantified with the Quant-iT
PicoGreen dsDNA Assay kit. We performed the BarSeq98 PCR method
previously described [9] with NEB Q5 polymerase and 200 ng of genomic
DNA. In total, 55 samples with unique sequencing index barcodes were

sequenced on a single lane on a NextSeq P2 (Illumina) 1 × 100-bp run that
generated 315 million reads.

Data filtering
Data filtering followed much of the same procedure described previously
[9]. First, we removed barcodes which were not in chromosomal genes.
Second, we removed barcodes that fell in the first, or last, 10% of a gene.
Third, we removed barcodes which had three or fewer reads in any Time 0
(T0) sample. All samples had a median of more than 50 reads per gene.
Fourth, we removed genes from the analysis if any T0 sample had fewer
than 30 reads total in a gene or fewer than 15 reads in the first or last half
of the gene. This left 105,000 barcodes across 3550 genes. One sample
failed to pass quality check scores (competitive SEM replicate 1) and was
removed from the analysis.

Barcode-level fitness calculation
We calculated barcode-level fitness using a hybrid of the approaches
described previously [9, 27]. First, a pseudocount of 0.1 was added to each
barcode count to avoid taking log of zeros. Second, we divided each
replicate’s read counts by the average number of barcode reads in five
reference genes which we expected to have no fitness effect when
knocked-out; this was done per-sample (the reference genes were
STM0604, STM1237, STM0329, STM2774, and STM0333). To put the
normalized counts back onto the original count scale, we multiplied the
within sample normalized counts by the average number of barcode reads
in the five reference genes over all samples. Finally, barcode-level fitness
was calculated by log2(normalized counts)− log2(normalized counts of
T0 sample). There were five T0 samples. Each sample within each
treatment was designated as replicate 1–5, and each used a different
T0 sample for the fitness calculation. Barcode-level fitness variance was
calculated as previously performed [9].

Gene-level fitness calculation
Fitness for each gene within each replicate was calculated as a weighted
average of barcode-level fitness calculations. Specifically, fitness was
weighted by 1/barcode-level variance. We set the maximum weight a
barcode could receive at 20 reads [9]. Gene-level fitness was then
calculated as Σ(barcode fitnesses X barcode weights)/Σ(barcode weights).
We also corrected for chromosome position. Following a previously

published protocol [9], within each sample, we calculated a rolling median
of gene-level fitness along the chromosome with a window size of 251
genes. This rolling median was subtracted from each gene’s fitness to
obtain the final gene-level fitness value used in downstream analyses.

Statistics
We used the gene-level fitness calculations to determine the mean effect
of mutations across all gene disruptions. We calculated the arithmetic
average effect of all mutations for each replicate. To determine whether
species presence had a significant effect on the mean of the fitness
distributions we used a linear regression model with species presence
coded as a binary variable (0= absence, 1= presence). The model
assessed whether the average fitness differed significantly between the
four treatments within each environmental condition. The model was run
separately for the competitive and mutualistic environmental conditions.
To compare fitness values of specific gene deletions across species

addition treatments we used the same linear regression approach as
above, but applied per-gene. To correct for multiple comparisons, we
controlled the false-discovery rate by adjusting the p values across genes
using Benjamini-Hochberg (BH) corrections and designated adjusted
p < 0.05 as significant.
To predict gene fitness in the three-species communities, three different

methods were tested. The additive, strongest, or average effects of E and
M terms for each gene were added to the monoculture fitness for each
gene. Predictions for all genes were correlated with the observed ESM
fitness value and the R2 was examined. To compare prediction metrics a
bootstrap analysis with 2001 iterations (with resampling) was performed.
For each iteration, prediction values and ESM values were resampled, R2

values were calculated, and the frequency of times R2 values differed for
each prediction was calculated. This process was repeated independently
for both competition and mutualism.
In the overrepresentation analysis (ORA), we filtered for significant terms

(BH adjusted p < 0.05) and classified gene effects as either positive or
negative. ORA was then performed separately on the genes classified as
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positive and negative using the “enrichKEGG” function from the R package,
‘ClusterProfiler’ (version 4.7.1, downloaded 3/1/23) [28] with a universe size
of 3550.

Growth measurements
Growth curves in liquid were performed on overnight cultures grown in
minimal medium. Cells were washed three times in saline, adjusted to an
OD600 of 0.2, and diluted 1:100 in the relevant minimal medium. Cells were
incubated at 30 °C in a Tecan Infinite Pro200 and shaken at 432 rotations
per minute. Growth curve parameters were obtained by fitting a Baranyi
function to the OD600.
Growth measurements on solid agar were performed by growing

bacteria as in the ‘BarSeq Experimental Setup’ except that wildtype S.
enterica was used in place of the library (Supplementary Fig. S2) using a
methodology similar to previous timelapse imaging methods [29]. Plates
were scanned (600 dpi) once per hour on an Epson Perfection
V600 scanner at 30 °C. Lawn density was calculated by converting to gray
scale, performing a Gaussian blur, and measuring the mean gray value for
each plate using a custom script written with assistance from GPT-4 [30].
Growth curve parameters were obtained by fitting a Baranyi function to
the mean gray value [31].

Spent media preparation
Spent media was prepared by inoculating hypho minimal media with a
1:100 dilution of washed cells grown overnight. M. extorquens spent media
was prepared in SM competitive broth (Supplementary Table S2). E. coli
spent media was prepared in hypho with lactose and methionine. E. coli
were grown to mid-log phase (OD600 ~ 0.2) or stationary phase (OD600 ~
0.4). Spent media was supplemented with 1% galactose, 10% P solution,
and 10% S solution. S. enterica spent media was made in either galactose
or succinate+methionine hypho. Spent media from mid-log phase was
then mixed at a 1:1 ratio with fresh galactose hypho. All spent media was
centrifuged and then filter sterilized (0.2 µm).

Vitamin and amino acid gradients
Galactose or succinate+methionine hypho were supplemented with
either calcium pantothenate (0.5 µM to 5e-7 µM; Fisher Scientific) or DL-
isoleucine (1 mM to 1e-6 mM; Alfa Aesar). The ΔpanC and ΔilvA were grown
overnight, washed, adjusted to OD600= 0.2, and diluted 1:100 before
growth was measured.

High performance liquid chromatography (HPLC) analysis
Quantification of organic acids in spent media was completed using a
Dionex UltiMate 3000 RS HPLC system equipped with an Acclaim organic
acid (OA) 5 μm 120 A° 4.0 × 250mm column and accompanying guard
column. Analyte separation was achieved using a 32-min isocratic run
method consisting of an 8-min equilibration step followed by a 24-min
static flow step with 100mM NaSO4 (pH adjusted to pH 2.6 using
CH3SO3H) at a rate of 1 mL/min. The RS column oven compartment
temperature was maintained at 30 °C and the RS diode array was
configured to collect UV readings at a wavelength of 210 nm with default
frequency. All standards and samples were filtered through 0.22 μm
polyethersulfone polymer filter membranes prior to injection (6 μL per
sample). Chromeleon software (v.7.0) was used to configure all run
sequence settings as well as view chromatogram data. Analyte peaks were
identified, gated, and measured via the integrated Cobra Wizard prior to
data export and processing.

RESULTS
The overall goal of our study was to determine how ecological
interactions (i.e., mutualism versus competition) impact the
distribution of fitness effects of mutation during growth on agar
plates. The BarSeq experiment resulted in 3550 S. enterica gene
disruptions which passed quality control (see Methods) and
therefore entered downstream analyses. The S. enterica popula-
tions from which the BarSeq data were obtained experienced a
similar number of generations between treatments within each
ecological category of mutualism or competition (Supplementary
Fig. S3), which allowed us to make direct comparisons within a
category but not between. In the mutualism treatments all co-

cultures grew more slowly than the monoculture (Supplementary
Fig. S2). S. enterica had slightly but significantly lower yield in
competitive co-culture than monoculture consistent with weak
competition (t test, p < 0.05, Supplementary Fig. S3).

Mutualism alters the distribution of fitness effects
As expected, most gene disruptions were neutral, with a longer tail
towards knockouts causing low fitness than high fitness in all
treatments (Fig. 1B). The large number of neutral mutations caused
the median to be close to zero in all cases (Supplementary Fig. S4).
The mean effect of mutations was negative in all cases, as the
majority of mutations that altered fitness were deleterious (Fig. 1C).
To specifically evaluate the impact of species interactions on the

effect of mutations we performed linear regression analysis with the
presence/absence of each species coded as a binary 1 or 0
(Supplementary Tables S4, S5). The mean fitness of gene deletions
was negative in each monoculture, because of the strongly
deleterious nature of some mutations (Fig. 1C, galactose mono-
culture intercept=−0.205 (p < 0.001), succinate+methionine
monoculture intercept=−0.231 (p < 0.001)). Species composition
significantly impacted the mean fitness effect of mutation in the
mutualistic environment (R2= 0.80, p < 0.0001, F= 26.43). The
mean fitness effect of mutations was less deleterious when S.
enterica depended on either E. coli (average increase in fitness of
β= 0.04, p < 0.0001) or M. extorquens (β= 0.03, p < 0.0001) com-
pared to when S. enterica was grown by itself (Fig. 1C, left). There
was not a significant effect of species across competitive treatments
(R2= 0.01, p > 0.05, F= 1.09).
We investigated what drives the average effect of mutations to

be less deleterious when S. enterica is engaged in mutualism.
Fitness of knockouts in monoculture and mutualistic co-culture
were generally similar (R2= 0.87 for S vs. SE, 0.85 for S vs. SM,
Fig. 2A, B). However, some knockouts had different fitness in co-
culture than in monoculture. In mutualism, deleterious mutations
tended to increase in fitness when S. enterica grown with either E.
coli (binomial test, p < 0.001, Fig. 2C) or M. extorquens (binomial
test, p < 0.001, Fig. 2C). There was a substantial degree of overlap
in gene disruptions that were rescued by both E. coli and M.
extorquens in mutualism (Fig. 2C). Conversely, mutations that were
beneficial in monoculture were more likely to decrease in fitness
when grown in mutualistic co-culture with E. coli (binomial test,
p < 0.001, Fig. 2C) but not with M. extorquens (binomial test,
p= 0.125). However, the number (and magnitude) of beneficial
mutants in monoculture was much lower than the number (and
magnitude) of deleterious mutants, leading the overall shift in
mean fitness effect to tend towards neutrality when S. enterica
depended on a partner. Competition caused fewer significant
changes in mutant fitness than the mutualistic treatments.
Competition with E. coli caused significantly more mutations that
were beneficial in monoculture to decrease than increase in
fitness (binomial test, p < 0.001, Fig. 2F). Competition with M.
extorquens caused no significant changes in fitness.

Effects of increasing community complexity are predictable
We tested whether fitness in the 3-species community could be
predicted from the fitness in each 2-species community. We
specifically evaluated whether fitness in the 3-species commu-
nities could be predicted from: (i) the additive effect on fitness of a
knockout in each 2-species co-culture (ii) the strongest effect on
fitness in either 2-species co-culture, or (iii) the average effect on
fitness in each 2-species co-culture. All three prediction methods
had high R2 (median > 0.8); however, the R2 was highest for
predictions based on average fitness effects in both mutualism
(Fig. 3A left) and competition (Fig. 3A right). The differences were
slight particularly for competition, but a bootstrap analysis
indicates a significant difference between predictive metrics for
both mutualism and competition (bootstrap p < 0.05).
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The fitness effects of knockouts in each co-culture tended to be
sub-additive in the 3-species mutualism. When both E. coli and M.
extorquens influenced the fitness of a knockout in their respective
2-species co-cultures, 30 out of the 50 knockouts had non-additive
effects of adding both species (Fig. 3B). Of the 30 knockouts with
non-additive effects, 27 exhibited sub-additivity: the typical result
was that each co-culture species ameliorated the fitness cost of a
knockout in comparison to monoculture, but the combined effect
of the species in the 3-species co-culture was less than their sum.

The fitness effects of mutualism were concentrated in specific
pathways
In addition to investigating how species interactions impacted the
distribution of fitness effects, we also sought to investigate how
species interactions altered the specific genes that contribute to

fitness. We were particularly interested in understanding the
mechanisms of interaction within the mutualism, so we performed
ORA to identify pathways that becomemore and less important as a
result of species interactions (Fig. 4A). We determined the effect of
species composition on the fitness of each gene for each ecological
treatment using multiple linear regression (Supplementary Fig. S5).
The presence of mutualists altered the relative importance of

nitrogen and carbon metabolism. Reliance on ammonium from M.
extorquens made knockouts highly deleterious for genes involved
in nitrogen stress (lrp, glnK), ammonium transport (amtB) or
glutamate biosynthesis (gltB, gltD). These knockouts were neutral
in monoculture (Fig. 4B). Similarly, reliance on carbon from E. coli
altered the importance of genes involved in carbon metabolism
(Fig. 4A). However, genes for acetate and galactose metabolism
were less important in the mutualisms than anticipated (Fig. 4C,
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Fig. 2 Mutualism tends to rescue mutants while competition slightly decreases mutant fitness. The mean fitness effect of each gene
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co-culture. The overlap bars represent genes that experienced consistent directional changes in fitness in the presence of either E or M.
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Supplementary Fig. S6). This suggests that neither acetate nor
galactose are the sole source of carbon that S. enterica acquires
from E. coli. Future work will be required to identify the complete
identity of carbon exchanged in this mutualism.
We found that several vitamin and amino acid biosynthesis

pathways became less important in the presence of mutualistic
partners suggesting the possibility of additional cross-fed
metabolites (Fig. 4A). Based on this analysis, we further
investigated the possibility that unexpected metabolites were
also being provided from E. coli and M. extorquens to S. enterica.

Vitamin and amino acids were also involved in cross-feeding
Loss of biosynthetic genes for vitamins (B1, B5, B6), isoleucine and
the co-factor NAD were less deleterious in mutualistic co-culture
than monoculture on galactose (Fig. 5A). These results suggest
that partner species may provide these nutrients to S. enterica.
However, in our competitive environment when S. enterica was
grown in monoculture on succinate we also saw that losing these
genes had little impact on fitness. To further investigate these
effects in vitro, we created new knockouts in S. enterica for critical
genes in isoleucine (ilvA) and vitamin B5 (panC) biosynthesis.
Knockout constructs supported that mutualism altered the

need for isoleucine and vitamin B5 biosynthesis. Neither ΔpanC
nor ΔilvA could grow in isolation in galactose minimal medium
(Fig. 5B); however, they could be rescued by either B5 or
isoleucine (Fig. 5C). Additionally, each mutant could be at least
partially rescued by growth in spent media from E. coli or M.
extorquens (Fig. 5B right). This was also true for mutants of nadC,
pdxB, and thiE from the BEI S. enterica knockout library
(Supplementary Fig. S7). These data are consistent with S. enterica
acquiring multiple metabolites from each mutualistic partner.

We investigated the neutrality of ΔpanC and ΔilvA mutants in
our competitive monoculture treatment. We found that the ΔpanC
mutant was unable to grow in succinate. Interestingly, on
succinate, the ΔilvA mutant was only able to grow after ~60 h.
Literature suggests that this growth is due to the gene tdcB [32],
encoding an enzyme that yields 2-oxobutanoate (similar to ilvA)
but only in the absence of sugar and oxygen. That said, over a 48-
hour period, we found that neither mutant was capable of
substantial growth on succinate. Furthermore, the mutants
needed more isoleucine or vitamin B5 to maintain growth on
galactose than on succinate (Fig. 5C). We also found that both
mutants grew to higher yields in spent media from wildtype S.
enterica grown on succinate than on galactose (Fig. 5D). These
results suggest that the mutants could acquire needed metabo-
lites from wildtype S. enterica (as well as from mutualistic
partners), but that both the demand and secretion of the
metabolites changed as a function of carbon source.

DISCUSSION
Using a transposon library in a defined microbial consortium, we
found that ecological interactions have distinct effects on the
impact of mutations in S. enterica. The average fitness of all
mutants was closer to neutral when S. enterica was engaged in
mutualism than when it was grown alone. However, this buffering
was not observed when S. enterica was in competition with the
same species. We also found that the impact of mutations in a
three-species community could be well predicted from the
average impact of the mutations in each two-species co-culture.
Investigation of the impact of specific gene disruptions in the
different ecological communities illuminated the mechanisms of
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species interactions. The transposon mutant fitness data high-
lighted that additional essential metabolites can be obtained from
other cells, but both the supply and demand of these metabolites
was impacted by the carbon environment.
Mutualism buffered the effect of mutations in our system. The

mean fitness of mutants was closer to zero in mutualism than
monoculture for all treatments despite the fact that the partner
species and mechanisms of mutualism were distinct. Mutualism
with either E. coli or M. extorquens caused significant increases in
fitness of deleterious mutations and decreases in fitness for
beneficial mutations, again supporting that mutualism tends to
reduce the impact of mutations on S. enterica. The buffering of
fitness effects in co-culture is likely driven in part by generic effects
on growth rate, as S. enterica grows more slowly in all mutualisms
than it does in monoculture (Supplementary Fig. S2). However,
there was not a consistent effect of growth rate on the average
effect of mutations, as within co-cultures there was no significant
correlation between growth rate and mean fitness (Supplementary
Fig. S8). We also directly demonstrated that both E. coli and M.
extorquens rescue the growth of specific mutants through the
release of metabolites rather than solely growth rate effects.
Mutualism and competition had distinct impacts on the average

effect of mutations. Competition did not alter the average effect of

mutations relative to monoculture. The lack of impact on average
fitness could in part be explained by the strength of competition.
In particular, M. extorquens is a relatively weak competitor, though
it does significantly reduce the total biomass of S. enterica relative
to monoculture (t test, p < 0.05). The species ratios are also distinct
in mutualism and competitive treatments (Supplementary
Fig. S3C). The competition results highlight that the ability of
mutants to obtain essential metabolites from other species is
strongly influenced by the environment. One cannot predict the
fitness effects of losing biosynthetic pathways simply from species
presence in a community – instead, it is critical to know how
species are interacting.
Our results suggest that the impact of mutations in complex

communities can be predicted from the impact of mutations in
simpler co-cultures. The fitness effect of mutations in the 3-species
community could be well predicted from fitness effects in each
2-species co-culture. Our results extend findings with an E. coli
BarSeq library in co-culture with cheese rind microbes [15]. The
previous work highlights that higher order interactions are
common, and the fitness effects of mutations often change as
community complexity increases. However, they find that for 16
knockouts which are consistently impacted by co-culture, the
fitness effect of increasing community complexity is additive. We

Fig. 5 Effect of ecology on vitamin, cofactor, and amino acid metabolism gene fitness. A Normalized gene fitness scores for representative
genes involved in biosynthesis. B Final OD600 of wild type and mutant S. enterica (S) cultivated in fresh galactose media (left), E. coli (E) spent
media (middle), and M. extorquens (M) spent media (right). All experiments were performed in triplicate. C S. enterica ΔilvA mutant (left) and
ΔpanC mutant (right) normalized yield on galactose and succinate minimal media with varying amounts of supplementation. Note that the
y-axis units – relative final density – is the OD600 at a specified nutrient concentration supplemented into the medium divided by the
maximum OD600 for each supplemented nutrient. The x-axis is square root transformed. All experiments were performed in triplicate. D Final
OD600 of mutants ΔilvA and ΔpanC S. enterica grown in spent media prepared from wild type S. enterica grown to mid-log phase in galactose
(left) or succinate (right) minimal media. All experiments were performed in triplicate. For all of the absorbances shown (B–D), the absorbance
of the medium blanks were subtracted from the experimental treatments’ absorbance values.
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found that species effects in our system were typically sub-
additive, but an additive model was still able to provide strong
predictions of fitness in the 3-species community. The prediction
could be further improved by calculating the average fitness effect
over the two 2-species communities. The predictability of fitness
effects with increasing community complexity will assuredly vary
across species and environments, though it is reassuring that
some similar patterns are emerging between highly distinct
experimental systems. Our results suggest that in some commu-
nities, selection, and therefore evolutionary dynamics may be
predictable with data from simpler systems.
BarSeq identified unknown metabolite exchange in our

mutualism. Disruption of genes involved in vitamin, amino acid,
and cofactor biosynthesis was less deleterious in mutualism than
in monoculture. To better understand how mutualistic interactions
improved fitness, we generated knockouts for two genes that had
large fitness improvements in mutualism: ilvA—a gene involved in
isoleucine biosynthesis, and panC—a gene involved in the
production of vitamin B5 (pantothenate). While neither mutant
grew in isolation on galactose minimal media, each grew in the
presence of either E. coli or M. extorquens. This suggests that E. coli
and M. extorquens excrete isoleucine and vitamin B5 (or precursors
for these molecules). Several previous studies have documented
rescue of auxotrophs in co-culture. In E. coli it has been shown that
amino acids [33, 34], cofactors, and vitamins [35] can be obtained
from other cells. Additionally, the phototrophic bacterium
Rhodopseudomonas palustris has been shown to rescue E. coli
with knockouts of purine, vitamin B6, and NAD biosynthesis [10].
Previous work suggested that overproduction of essential
nutrients may be favored to avoid bottlenecks in metabolism
[36]. In our system E. coli and M. extorquens each rescued a similar
set of S. enterica auxotrophs supporting that there are a set of
metabolites commonly released into environments by
different taxa.
Carbon sources in our media impacted the ability of auxotrophs

to be rescued by other cells. Many biosynthetic genes that were
critical in monoculture on galactose were far less important when
S. enterica was grown in monoculture on succinate. This led us to
the hypothesis that mutants could obtain essential metabolites
from other S. enterica cells, but that the carbon source changed
the amount of metabolites released or the amount of metabolites
required to rescue growth. Experiments with ΔpanC and ΔilvA
mutants supported that growth on succinate led to both more
excretion of essential metabolites by S. enterica and less
metabolite being required for mutant growth. This result parallels
previous observations that carbon source alters the prevalence of
cross-feeding [37, 38]. These results highlight that carbon source
strongly impacts cross-feeding of nutrients, and the degree to
which cross-feeding buffers the impact of gene loss.
There are a number of caveats when considering the general

applicability of our results regarding mutualism, competition, and
the distribution of fitness effects. First, we only studied one form
of mutation: gene disruption. We did not study basepair changes
which may be more common drivers of adaptation. Though it is
worth noting that a recent study demonstrated that distributions
of fitness effects derived from transposon mutagenesis were
predictive of evolutionary dynamics observed in E. coli [4]. Second,
the carbon source varied across our treatments, and we
demonstrated that carbon source was sufficient to alter the
fitness effects of mutants. We found that mutualism had
consistent impacts of reducing the average effect of mutations
even though the carbon source changed between mutualistic
treatments from galactose to the carbon that S. enterica obtains
from E. coli. Third, our system has relatively few species, primarily
metabolic interactions, and an initially homogeneous environ-
ment. The ability to predict fitness in communities from co-
cultures will assuredly vary as community and environmental
complexity increase.

The challenges of predicting evolution in communities has long
been appreciated [39]. However, we observed that the fitness
effects of mutations could be predicted to a degree in synthetic
communities. All mutualisms we evaluated buffered the impact of
gene loss, and indeed there was substantial overlap in the
functions that were buffered by different mutualistic species.
Furthermore, fitness in co-cultures was sufficient to predict fitness
in more complex microbial communities. Our results suggest that
synthetic communities of mutualists may often be more robust to
genetic perturbations than synthetic communities of competitors.
Additionally, our results suggest that study of pairwise interactions
may ultimately allow us to understand, predict, and ultimately
manage evolutionary dynamics even in complex natural
communities.

DATA AVAILABILITY
Statistics and figure generation were performed using R 4.2.1 and Python 3.9 using
custom scripts available at https://github.com/JonMartinson/ecology_DFE. Raw
transposon sequencing data are available in the NCBI BioProject PRJNA1008691.
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