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Sulfur cycling connects microbiomes and biogeochemistry in
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In globally distributed deep-sea hydrothermal vent plumes, microbiomes are shaped by the redox energy landscapes created by
reduced hydrothermal vent fluids mixing with oxidized seawater. Plumes can disperse over thousands of kilometers and their
characteristics are determined by geochemical sources from vents, e.g., hydrothermal inputs, nutrients, and trace metals. However,
the impacts of plume biogeochemistry on the oceans are poorly constrained due to a lack of integrated understanding of
microbiomes, population genetics, and geochemistry. Here, we use microbial genomes to understand links between biogeography,
evolution, and metabolic connectivity, and elucidate their impacts on biogeochemical cycling in the deep sea. Using data from 36
diverse plume samples from seven ocean basins, we show that sulfur metabolism defines the core microbiome of plumes and
drives metabolic connectivity in the microbial community. Sulfur-dominated geochemistry influences energy landscapes and
promotes microbial growth, while other energy sources influence local energy landscapes. We further demonstrated the
consistency of links among geochemistry, function, and taxonomy. Amongst all microbial metabolisms, sulfur transformations had
the highest MW-score, a measure of metabolic connectivity in microbial communities. Additionally, plume microbial populations
have low diversity, short migration history, and gene-specific sweep patterns after migrating from background seawater. Selected
functions include nutrient uptake, aerobic oxidation, sulfur oxidation for higher energy yields, and stress responses for adaptation.
Our findings provide the ecological and evolutionary bases of change in sulfur-driven microbial communities and their population
genetics in adaptation to changing geochemical gradients in the oceans.
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INTRODUCTION
Hydrothermal vents are abundant and widely distributed across
the deep oceans. The mixing of hot hydrothermally-derived fluids
rich in reduced elements, compounds, and gasses, with cold
seawater forms hydrothermal plumes [1, 2]. Generally, plumes rise
up to hundreds of meters from the seafloor and can disperse over
hundreds to thousands of kilometers through the pelagic oceans
[3]. Surrounding microbes migrate into the plume and thrive on
substantial reductants as the energy sources, making plumes
“hotspots” of microbial activity and geochemical transformations
[1, 2]. Plumes constitute a relatively closed ecosystem that
depends on chemical energy-based primary production and is
mostly removed from receiving inputs of energy from the outside
[4, 5]. Thus, plumes serve as an ideal natural bioreactor to study
the processes and links between microbiome and biogeochem-
istry and the underlying ecological and evolutionary bases of
microbial adaptation to contrasting conditions between energy-
rich plumes and the energy-starved deep-sea [2].

The most abundant energy substrates for microorganisms in
hydrothermal plumes include reduced sulfur compounds, hydro-
gen, ammonia, methane, and iron [2]. Amongst these, sulfur is a
major energy substrate for diverse microorganisms in plumes
across the globe [2, 6–8]. Sulfur transformations in plumes are
dominated by oxidation of reduced sulfur species, primarily
hydrogen sulfide and elemental sulfur. The metabolic pathways
include oxidation of sulfide to elemental sulfur (fcc, sqr), oxidation
of sulfur to sulfite (dsr, sor, and sdo), disproportionation of
thiosulfate (phs) to hydrogen sulfide and sulfite, disproportiona-
tion of thiosulfate to elemental sulfur and sulfate (sox), thiosulfate
oxidation to sulfate (sox, tst, and glpE), and sulfite oxidation to
sulfate (sat, apr) [7, 9–11]. Complete oxidation of sulfur would
involve oxidation of hydrogen sulfide all the way to sulfate.
However, recent observations in other ecosystems indicate that
individual microbes rarely possess a full set of the complete
sulfide/sulfur oxidation pathway [10, 12], instead individual steps
are distributed across different community members. This likely
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suggests that sulfur oxidation is a microbial community-driven
process that is dependent on metabolic interactions, and asks for
revisiting sulfur metabolism and biogeochemistry based on a
holistic perspective of the entire community.
Recent microbiome-based ecological studies have focused on

elucidating a genome-centric view of ecology and biogeochem-
istry [7, 10, 12–15]. This approach has expanded our under-
standing of microbial diversity associated with specific energy
metabolisms, including sulfur transformations in hydrothermal
plumes, the deep sea, and beyond [7, 14, 16–19]. However, the
dynamics and microdiversity of the plume microbiome, and
relevant biogeochemical impacts remain relatively underexplored
[20–24]. Understanding how environmental constraints and
selection shape the microdiversity and the genetic structure of
plume microbial populations after migration from background
seawater can provide fundamental insights into adaptation
mechanisms. These insights can also inform future predictions of
microbial responses to the changing oceans.
Here, we characterized the ecological and evolutionary bases of

the assembly of the plume microbiome, and their strategies for
sulfur cycling-based energy metabolisms. We studied globally
distributed hydrothermal plume datasets to define a core plume
microbiome. We followed this up with synthesis of genome-
resolved metagenomics, metatranscriptomics, and geochemistry
from three hydrothermal vent sites (Guaymas Basin, Mid-Cayman
Rise, and Lau Basin) to unravel community structure and
functional links to biogeochemistry, metabolic connectivity within
plume and deep-sea communities, and microdiversity in abundant
microbial populations. We demonstrate that plume microbiomes
have a distinctive community composition and function, that is
adapted towards energy conservation, metabolic interactions, and
stress response.

MATERIALS AND METHODS
Sample information and omics sequencing
Hydrothermal plume and surrounding background samples were collected
from the corresponding cruises: R/V New Horizon in Guaymas Basin, Gulf of
California (July 2004), R/V Atlantis and R/V Falkor in Mid-Cayman Rise,
Caribbean Sea (Jan 2012 and June 2013), two consecutive cruises on the R/
V Thomas G Thompson in Eastern Lau Spreading Center (ELSC), Lau Basin,
western Pacific Ocean (May-July 2009), and R/V Thomas G Thompson in
Axial Seamount, Juan de Fuca Ridge, northeastern Pacific Ocean (Aug
2015). In brief, Guaymas Basin plume and background samples were
collected by 10 L CTD-Rosette bottles and N2-pressure filtered on board for
microbial specimen collection by 0.2 µm pore size, 142 mm polycarbonate
membranes [11]. The samples were preserved immediately in RNAlater.
Mid-Cayman hydrothermal plume and surrounding background samples
were collected by Suspended Particulate Rosette (SUPR) filtration device
[25] mounted to the remotely operated vehicle Jason II. SUPR collected
water in the volume of 10–60 L from different sampling locations, and
these samples were in situ filtered for microbial specimens by 0.2 μm pore
size SUPOR polyethersulfone membranes and preserved in RNAlater
flooded conical vials and frozen at −80 °C. For Lau Basin samples, SUPR
collected samples were in situ filtered by SUPOR polyethersulfone
membranes with 0.8 μm and 0.2/0.8 μm pore size for geochemical analysis
and microbial specimen collection, respectively [26]. Samples were
preserved in RNAlater flooded conical vials and frozen at −80 °C. For
Axial Seamount samples, both plume and background samples were
collected by a Seabird SBE911 CTD and 10 L Niskin bottles [27]. Samples of
3 L were then transferred into cubitainers, filtered through 0.22 μm
Sterivex filters, and preserved for downstream analysis [27].
For details of sample collection, preservation, geochemical analysis, and

metagenomic/metatranscriptomic sequencing, refer to previous publica-
tions [22, 27, 28]. Detailed cruise and sampling information is provided in
Supplementary Data 1. The geological map and schematic diagram
represent the details of sampling locations (Fig. 1a, Supplementary Fig. S1).
The metagenomic DNA and metatranscriptomic cDNA were extracted and
synthesized from corresponding samples and processed for HiSeq 2000/
2500 (Illumina) sequencing as described previously [11, 14, 18, 27, 29]. The
distribution of acquired metagenomes (DNAs, labeled as “D”) and

metatranscriptomes (cDNA, labeled as “C”) was represented in Supple-
mentary Fig. S1b (only for samples with detailed location and physico-
chemical characterization; distribution of other samples refers to
Supplementary Data 1). The raw reads (both DNA/cDNA reads) were
dereplicated by SeqTools v4.28 (https://www.sanger.ac.uk/tool/seqtools/)
and processed by Sickle v1.33 (https://github.com/najoshi/sickle) to trim
reads of low quality with default settings. Command “reformat.sh” in
BBTools (last modified on Feb 11, 2019; https://www.sourceforge.net/
projects/bbmap/) was used to calculate fastq sequence and nucleotide
numbers.

Core hydrothermal plume microbiome analysis
In total, 47 hydrothermal plume and background 16S rRNA gene datasets
were used for analyzing the microbiome of hydrothermal plumes, within
which 19 datasets were obtained in this study, containing datasets from
samples of Mid-Cayman Rise, Guaymas Basin, Lau Basin (Supplementary
Data 2). For hydrothermal plume and background samples with only
metagenome datasets, 16S rRNA gene sequences were parsed out from
metagenomes and these sequences were weighted according to their
coverages. Simulated 16S rRNA gene datasets were used in subsequent
analyses. The original datasets of paired-end reads were merged into
combined 16S rRNA gene tags by FLASH v1.2.11 [30] with default settings.
The bioinformatic analyses, including pre-analysis quality control, 16S rRNA
gene chimera checking, open-reference OTU picking, taxonomy assign-
ment, OTU table file ‘biom’ generation and rarefaction, OTU representative
sequence filtering and alignment, alignment filtering, and phylogenetic
tree reconstruction, were performed according to the instructions of QIIME
v1.9.1 [31], respectively. The 16S rRNA gene reference database used was
“SILVA_138_SSURef_NR99_tax_silva” [32]. The resulting ‘biom’ (OTU table
file), ‘tre’ (phylogenetic tree), and “map” (sample characterization map) files
were imported into R (using R package ‘phyloseq’) for downstream analysis
and visualization. Taxa summary and principal coordinates analysis (PCoA)
were conducted accordingly to delineate the community structure and
biogeographic pattern of hydrothermal plume and background seawater
microbiome. Genus-level taxa summary table was used to find the core
hydrothermal plume microbiome from 36 hydrothermal plume datasets by
filtering genera that exist in >66% plume datasets and have >1% relative
abundance on average. Core plume microbiome metabolic profiles were
conducted by choosing MAGs (see the following sections for obtaining
these MAGs) from this study that contain 16S rRNA genes affiliated to the
core plume microbial genera. The approach for metabolic profiling of these
MAGs is described in “MAG phylogeny, genomic properties, and protein
annotation”.

Metagenomic assembly and genome binning
QC-processed reads were assembled de novo by MEGAHIT v1.1.2 [33] with
settings as “--k-min 45 --k-max 95 --k-step 10”. Hydrothermal plume and
background metagenomes from the same hydrothermal site were
assembled together. QC-processed reads were re-mapped to assemblies
by Bowtie 2 v2.2.8 [34] with default settings. For each hydrothermal site,
hydrothermal plume and background reads were mapped to correspond-
ing assemblies separately; bam files by plume and background samples for
individual assemblies were used for downstream binning. Subsequently,
the assemblies were subjected to a MetaBAT v0.32.4 [35] based binning
with 12 combinations of parameters. Afterward, DAS Tool v1.0 [36] was
applied to screen MetaBAT MAGs, resulting in high quality and
completeness MAGs. This MetaBAT/DAS Tool method enables a compre-
hensive “slice-layer profiling” for searching potential MAGs with a better
outcome (in-house tested). CheckM v1.0.7 [37] was used to assess MAG
quality and phylogeny. Outlier scaffolds with abnormal coverage,
tetranucleotide signals, and GC pattern within potential high contamina-
tion MAGs (by CheckM) and erroneous SSU sequences within MAGs were
screened out and decontaminated by RefineM v0.0.20 [38] with default
settings. Afterwards, further MAG refinement for decontaminating certain
MAGs was conducted by manual inspection based on VizBin [39]. MAGs
were picked using a threshold of <10% contamination (namely genome
redundancy) and >50% completeness.

MAG phylogeny, genomic properties, and protein annotation
Genome phylogeny was determined by RefineM and GTDB-Tk v0.2.1 [40]
(GTDB database, release 83). Additionally, phylogenies of those genomes
that could not be assigned to a meaningful microbial group were inferred
from ribosomal protein (RP) trees using the phylogenetic reconstruction
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method described below. Genomic properties, including genome cover-
age, genome and 16S rRNA gene taxonomy, tRNAs, genome completeness,
and scaffold parameters, were parsed from results that were calculated by
CheckM and tRNAscan-SE 2.0 [41]. Relative genome coverages were

normalized by setting each metagenomic dataset size as 100M paired-end
reads. MAG ORFs were parsed out by the Prokka annotation pipeline v1.12
[42] with default settings. For ORF annotation, GhostKOALA v2.0 [27], and
KAAS v2.1 [26] were applied to thoroughly annotate ORFs to KOs. When

−50

0

50

−100 0 100 200

Guaymas Basin

Juan de Fuca Ridge
 

Mid-
Cayman 

Rise Menez 
Gwen

Southern 
Mid-Atlantic 

Ridge

Manus 
Basin

 

(11)

(1)
(4)

(2)

(6)

(3)

Lau Basin
(9)

Kilo Moana

Tahi Moana
Abe

Tui Malia
Mariner

Mid-Cayman Piccard

Mid-Cayman Von Damm

Guaymas 
Basin

a

c

Core microbiome metabolic profile
Actinobacteriota | Sva0996 marine group (5 MAGs)
Campilobacterota | Sulfurimonas (1 MAGs)
Chloroflexi | SAR202 clade (17 MAGs)
Marinimicrobia (16 MAGs)
Planctomycetota | JL-ETNP-F27 (4 MAGs)
Planctomycetota | Pla3 lineage (3 MAGs)
Gammaproteobacteria | Alteromonas (2 MAGs)
Gammaproteobacteria | SAR86 clade (5 MAGs)
Gammaproteobacteria | SUP05 cluster (7 MAGs)
SAR324 clade (8 MAGs)

 

 

Arse
nit

e o
xid

ati
on

Arse
na

te 
red

uc
tio

n

Iro
n o

xid
ati

on

b
Actinobacteriota | Sva0996 marine group
Campilobacterota | Sulfurimonas
Chloroflexi | SAR202 clade
Marinimicrobia
Planctomycetota | JL-ETNP-F27
Planctomycetota | Pla3 lineage
Alphaproteobacteria | Magnetospiraceae
Gammaproteobacteria | Alteromonas
Gammaproteobacteria | Marinobacter
Gammaproteobacteria | HOC36
Gammaproteobacteria | Pseudomonas
Gammaproteobacteria | SAR86 clade
Gammaproteobacteria | SUP05 cluster
SAR324 clade

Menez 
Gwen

Mid-
Cayman 

Rise

Guaymas
 Basin

Juan de Fuca Ridge
 

Lau Basin
 

Manus 
Basin

 

Southern 
Mid-Atlantic 

RidgeCore microbiome distribution

Sulfi
de

 ox
ida

tio
n

Sulf
ur 

ox
ida

tio
n

Thio
su

lfa
te 

ox
ida

tio
n

Hyd
rog

en
 ox

ida
tio

n

Meth
an

e o
xid

ati
on

 - m
moB

D

Meth
an

ol 
ox

ida
tio

n

Mon
o-/

di-
/tri

meth
yla

mine
 ut

iliz
ati

on

Form
ald

eh
yd

e o
xid

ati
on

Form
ate

 ox
ida

tio
n

CO ox
ida

tio
n

Nitra
te 

red
uc

tio
n

Nitri
te 

red
uc

tio
n

Urea
se

Z. Zhou et al.

1196

The ISME Journal (2023) 17:1194 – 1207



combining annotations from different software, we used the resulting KO
from the first software as the final annotation; if there was no annotation
from the first software, then we moved on to the next software
accordingly. Annotation by NCBI nr database (Mar 6, 2017 updated) was
conducted with default settings, and for each annotation the first
meaningful hit (hit not assigned as ‘hypothetical protein’) was extracted.
Genomic-specific metabolic traits were searched against TIGRfam, Pfam,
Kofam, and custom HMM profiles using hmmscan [43] and custom protein
database using DIAMOND BLASTP [44]. For searching against custom HMM
databases, noise cutoff values were determined according to previously
reported settings [12]. For DIAMOND BLASTP searches, a stringent criterion
of “-e 1e-20 --query-cover 65 --id 65” was applied. Carbohydrate active
enzymes (CAZymes) were searched against dbCAN2 with default settings
[45]; Peptidases were searched against MEROPS ‘pepunit’ database with
stringent DIAMOND BLASTP settings as “-e 1e-10 --subject-cover 80 --id 50”
[46].

Phylogenetic tree reconstruction
The syntenic block of universal 16 ribosomal proteins (RPs) (L2-L6, L14-L16,
L18, L22, L24, S3, S8, S10, S17, and S19) were used for inferring RP
phylogenetic tree, after hmmscan-based [43] searches for RPs from all
MAGs. The individual RP was pre-aligned with local custom RP database by
MAFFT v7.123b [47] and curated in Geneious Prime v2019.0.4 [48] by
manually masking out the beginning and end regions with lots of gaps.
Out of 206 MAGs, 177 containing >4 RPs were used; the concatenated and
curated 16RP-alignment (7741 aligned columns) was used for phylogenetic
inference by IQTREE-based maximum likelihood method (IQ-TREE multi-
core v1.6.3 [49]) with settings of “-m MFP -bb 1000 -redo -mset
WAG,LG,JTT,Dayhoff -mrate E,I,G,I+G -mfreq FU -wbtl”. The resulting
phylogenetic tree was rooted by archaeal lineages and visualized by iTOL
[50]. Functional traits were added accordingly to each MAG on the tree.
Bacterial and archaeal SSU sequences (>300 bp and the longest from
individual MAG) were parsed out (using CheckM ssuFinder [37] to pick and
RefineM to filter erroneous hits) and were aligned using SINA aligner [51]
with default settings. The 16S rRNA gene taxonomy was checked by
BLASTn searches against the “SILVA_138_SSURef_NR99_tax_silva” data-
base [32] and 16S rRNA gene sequences with resulting taxonomy different
from their MAG phylogeny (at the phylum level) were filtered due to the
high possibility of contamination. IQTREE-based [49] phylogenetic
inference was conducted with settings of “-st DNA -m MFP -bb 1000 -alrt
1000”. The 16S rRNA gene tree based on the alignment of 85 sequences
with 50000 columns was rooted by archaeal lineages, visualized by iTOL
[50], and manually curated.

Metagenomic and metatranscriptomic read mapping
QC-passed metagenomic reads were mapped to MAGs separately
(metagenomic datasets from Guaymas Basin, Mid-Cayman Rise, and Lau
Basin sites were mapped individually to the corresponding MAGs) using
Bowtie 2 v2.2.8 with default settings [34]. MetaBAT integrated “jgi_sum-
marize_bam_contig_depths” script and homemade Perl scripts were used
to calculate MAG coverage (normalized coverage with each metagenomic
dataset size set as 100M paired-end reads). QC-passed metatranscriptomic
reads (use the same QC-process as described above with an additional
SortMeRNA v2.1 [52] rRNA filtering step) were mapped to MAGs separately,
with TPM (Transcripts Per Kilobase Million) calculated for individual genes
within each genome.

Statistical comparison of abundances of MAGs and functional
traits
Metagenome/metatranscriptome-based MAG mapping results and func-
tional annotations for all the MAGs were summarized individually.
Afterwards, significance tests on the differentiation patterns of MAG (also

MAG taxonomic group) and functional trait abundances across all the
metagenomic/metatranscriptomic samples were calculated by the R
package DESeq2 [53]. Log2 Fold Change value with adjusted p value (by
nbinomWaldTest) < 0.05 was considered as significant. Relative abun-
dances of MAG (also MAG taxonomic group) and functional traits were
visualized by R (using R package ‘pheatmap’) with the relative abundance
being row normalized by removing the mean (centering) and dividing by
the standard deviation (scaling). Sunburst figures were generated to depict
the relative abundance of MAGs based on metagenomic/metatranscrip-
tomic mapping results, with the significant Log2 Fold Change values
labeled to individual MAGs that have differential abundances between
different hydrothermal ecological niches (e.g., plume and background).
To find taxa in microbial communities that are responsible for enriched

functions (functions that are significantly enriched in each environment),
major functions (including functions that are in the categories of carbon
fixation, denitrification, sulfur cycling, hydrogen oxidation, methane
oxidation, aerobic oxidation, iron oxidation, and manganese oxidation),
and specific functions, custom Perl scripts were written to get the
corresponding microbial community contribution information (scripts
deposited in https://github.com/AnantharamanLab/Hydrothermal_plume_
omics_Zhou_et_al._2021). Functional trait results of all MAGs, MAG
coverage within the community (all the MAGs included), and targeted
function list were used as inputs to conduct the calculation. For
environments with metatranscriptomic reads, we also used active MAG
coverage (calculated by metatranscriptomic reads mapping result) as the
input to calculate microbial community contribution information based on
metatranscriptomes.

Bioenergetic and thermodynamic modeling
Equilibrium thermodynamic reaction path modeling was used to predict
chemical concentrations and activity coefficients resulting from the mixing
of seawater with end-member vent fluids (Supplementary Table 1). Our
thermodynamic modeling builds on the specific plume model implemen-
tation described in Breier et al. [54]. The estimated temperature of bottom
seawater was sourced according to previous reports [10]. The original
chemical data is derived from Reeves et al. [55] and Anantharaman et al.
[10]. For each hydrothermal vent system, we choose at least one
representative end-member fluid sample(s), respectively (1 for Guaymas
Basin, 2 for Mid-Cayman Rise, and 3 for Lau Basin) (Supplementary Table 1).
Bioenergetic and thermodynamic modeling procedures were conducted

as described in Anantharaman et al. [7] and Li et al. [18] (For more details
refer to Supplementary Information and Tables). Reaction path modeling
was performed with REACT, which is a part of the Geochemist’s Workbench
package [56]. Conductive cooling was neglected and mixture temperatures
were a strict function of conservative end-member fluid mixing.
Precipitated minerals were allowed to dissolve and their constituents to
re-precipitate based on thermodynamic equilibrium constraints. Thermo-
dynamic data were predicted by SUPCRT95 [57] for the temperature range
of 2 °C to end-member vent fluid temperature and a pressure of 500 bar.
The estimated biomasses and free energies of individual environments
were calculated and their relative abundance changes along the
temperature range (2–121 °C) was visualized by R. Two temperatures (3.0
and 4.9 °C) were picked to conduct the biomass and free energy estimation
for representing typical plume temperatures in nature.

Energy contribution and MAG growth rate calculation
Based on metabolic prediction of each MAG, MAG gene coverage, and
expression level within each environment, energy contribution for each
electron donor was calculated based on gene coverage/expression level
and free energy of each catabolic reaction. The contribution ratio of
electron donor species was calculated for individual samples respectively.
We also included influence of the presence of electron acceptors to energy
contribution calculation. To simplify the hydrothermal condition, we only

Fig. 1 Sampling sites, distribution, and metabolic profile of the core plume microbiome. a Sampling site maps of hydrothermal plume
samples from which the 16S rRNA gene datasets were sourced. Numbers in brackets indicate dataset quantities. Three hydrothermal sites that
have metagenome and metatranscriptome datasets in this study were specifically represented by inset maps. Ocean maps were remodified
from ArcGIS online maps (containing layers of “World Ocean Base” and “World Ocean Reference”; https://www.arcgis.com/). b Membership
and distribution of the core plume microbiome. Heatmap shows the presence/absence of core plume microbial groups (tracing back to
known taxonomic ranks from the genus-level taxa) in 36 hydrothermal plume 16S rRNA gene datasets across the world. c Metabolic profile of
the core plume microbiome. From this study, MAGs that have 16S rRNA genes affiliated to the core plume microbiome were used as
representatives (numbers labeled in brackets). This subpanel shows the presence or absence of metabolic potential associated with sulfur,
carbon, nitrogen, hydrogen, and metal biogeochemical transformations.
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included two major electron acceptors (O2 and NO3
−) and used the ratio of

these two electron acceptors to infer energy contribution of electron
donors at different oxidative conditions.
Microbial genome replication starts directionally from a single origin

[58]. Based on metagenomic mapping, at a single time-point the coverage
ratio between the replicating origin and terminus of a microbial genome
can be used as a proxy to represent the replication rate/growth rate
[59, 60]. The growth rate for each MAG was calculated by iRep v1.10 [59]
with default settings. MAGs that are from the same environments were
pooled together as the input genomes. Sam files that were generated by
metagenomic mapping described above were used as the iRep input. Bar
charts that reflect the growth rate and significant difference test result (by
t-test) of MAG taxonomic groups were generated using R packages
‘ggplot2’ and ‘PairedData’.

Network complexity analysis
For each community, a bipartite network was built based on reaction/
substrate relationships and the percent energy yields for each reaction.
Briefly, the plume chemical reaction table for each reaction was stored;
within the table, the substrate and product for a reaction were recorded [61].
Then, for each community, reactions (represented as one set of nodes in the
bipartite network) with different percent energy yields were connected with
substrates and products in the network (represented as the second set of
nodes) via directed edges between both sets of nodes. The energy yields are
based on the result from “Bioenergetic and thermodynamic modeling” and
are represented on the network as node size proportional to the percent
energy yield. These networks were constructed using the Python package
‘networkx’ [62] (https://networkx.org/).
The network complexity change as a function of reaction energy yield

was calculated by the following steps [63]. For each plume community
network, the complexity of the network’s structure was measured.
A node was taken from the network; as a consequence, the change in

complexity (ΔC) before and after the node was taken was calculated
accordingly. The ΔC was assigned to that node as a property representing
that node’s contribution to the network’s overall complexity. Then this
node was placed back and these steps were repeated for each reaction
node [63].
In this study, complexity (C) was calculated by estimating the

algorithmic complexity. Because algorithmic complexity cannot be directly
computed, we used an estimate known as the Block Decomposition
Method (BDM) [64]. The perturbation analysis to calculate each node’s
complexity contribution (ΔC) is called Minimal Information Loss Selection,
MILS [32]; in this study, successive edge deletion was replaced as node
deletion which also works with good performance [33]. This method has
been used to characterize complex properties of biological networks and is
proven to be a good measure among many other algorithms [63, 64]. For
all reaction nodes in each community plume reaction network, we
conducted this measurement for each reaction node and came up with the
scatterplots.

Community-level metabolic analysis
MAGs and plume metagenomic reads were used to conduct community-
level metabolic analysis using METABOLIC-C v4.0 [65] with default settings.
For Guaymas Basin, Mid-Cayman Rise, and Lau Basin sites, all MAGs and
plume metagenomic reads from each site were used separately. From
METABOLIC-C regular MW-score results, a group of metabolic cycling steps
that are important in reflecting the plume substrate metabolisms were
specifically selected to make functional network diagrams (using R script
‘draw_functional_network.R’ from METABOLIC-C). For each site, MW-score
table and functional network diagram (based on both all and selected
metabolic steps) were generated, respectively.

Evolutionary analyses
Metagenomic reads from mesopelagic Tara Ocean metagenomic datasets
(with >800m depth) [66] were used as the regular ocean environment
representatives to compare microdiversity characteristics with that of
hydrothermal environments from this study. To simplify analyses, Tara
Ocean reads from samples collected by filtration with various filter sizes at
each station were pooled as one to represent all reads from that station.
Both Tara Ocean reads and hydrothermal environment reads (including
both background and plume environments; background and plume reads
were also pooled together individually to simplify analyses and satisfy
coverage requirement of each MAG) from this study were first mapped to

hydrothermal environment MAGs recovered from individual sites by
Bowtie 2 [34] with default settings. After mapping, reads within resulting
bam files were filtered according to the following rules to calculate
downstream microdiversity parameters: (1) minimum percent identity of
read pairs to reference >95%; (2) maximum insert size between two reads
<3× median insert size and minimum insert size >50 bp (so only paired
reads are retained). Filtering steps were either conducted by inStrain v1.4.1
[67] or inStrain_lite v0.4.0 [68] (for generating bam files) with the same
rules. The software inStrain was further employed to calculate micro-
diversity parameters for each MAG in individual sites from this study.
Subsequently, interesting parameters [67] were picked and parsed
accordingly from resulting folders, including ‘coverage’ (average coverage
depth of all scaffolds of one genome), ‘breadth minCov’ (percentage of
bases in the scaffold that have at least ‘min_cov’ coverage), ‘SNV count/
(breadth minCov × length)’ (total number of SNVs called on one genome
normalized by genome length and breadth minCov), ‘N/S SNV ratio’
(nonsynonymous to synonymous SNV ratio of one genome), ‘r2_mean’ (R2

mean between linked SNVs), ‘con freq mean’ (mean value of fraction of
reads supporting the consensus base within one genome), ‘con freq mean
for N SNV’ (mean value of con freq on all nonsynonymous SNV sites), and
‘con freq mean for S SNV’ (mean value of con freq on all synonymous SNV
sites). MAGs that have breadth_minCov value < 50% or do not pass the
‘min_cov’ requirement by inStrain were removed from microdiversity
analysis in each site.
In order to identify gene-specific selective sweeps in hydrothermal

environments, we further pooled reads together into two categories, one
contains hydrothermal environment datasets (including both background
and plume environment datasets) and the other contains Tara Ocean
samples (all Tara Ocean sample datasets were pooled together). After read
mapping and filtering as described above, FST (fixation index) between
hydrothermal and Tara Ocean environments was calculated using scikit-
allel package [69] (Hudson method [70]) within inStrain_lite to identify
genes with skewed allele frequencies across the whole genome.
Subsequently, high FST genes from each MAG within each hydrothermal
vent site were identified if they have FST value > FST mean (genome-wide
FST average)+ 2.5 × FST std (genome-wide FST standard deviation) and the
lowest gene coverage in either hydrothermal and Tara Ocean environment
samples was higher than 5×. Meanwhile, for each genome the threshold
for number of genes with empty FST value was specified to not be more
than half of all genes, else high FST genes were not taken into account for
this genome. We set gene coverage in both environments to be at least 5×
due to the fact that reduction of gene coverage (or loss of coverage in
some genome regions) can also lead to low nucleotide diversity.
Furthermore, to confirm that these genes are specifically selected in
hydrothermal environment, additional requirements were added: (1) gene
nucleotide diversity in hydrothermal environment < nucleotide diversity
genome average in hydrothermal environment; (2) gene N/S SNV ratio in
hydrothermal environment > N/S SNV ratio genome average in hydro-
thermal environment; (3) gene nucleotide diversity in hydrothermal
environment < gene nucleotide diversity in Tara Ocean samples; (4) gene
N/S SNV ratio in hydrothermal environment > gene N/S SNV ratio in Tara
Ocean samples.
To find sulfur metabolizing genes that have signals of being fixed after

migration, a relatively less stringent set of criteria were used to screen
gene FST values compared to the high FST gene identification method in
the above paragraph. For each sulfur metabolizing gene (including genes
of sat, aprA, sdo, oxidative dsrAB, and soxBCY) containing MAGs, the
identified genes needed to meet the following criteria: (1) FST value > FST
mean (genome-wide FST average) and both FST and FST mean should be
positive values; (2) gene nucleotide diversity in hydrothermal environ-
ment < gene nucleotide diversity in Tara Ocean samples; (3) gene N/S SNV
ratio in hydrothermal environment > gene N/S SNV ratio in Tara Ocean
samples; (4) gene coverages in hydrothermal environments and Tara
Ocean samples both > 5×. Sulfur metabolizing genes that meet all the four
criteria were indicated to have positive gene fixation signals though the
selective power across the genome did not reach the level of gene-specific
selective sweeps as indicated by the above method.

RESULTS
We used publicly available microbiome data from hydrothermal
vent plumes across the globe to (1) define the core plume
microbiome, (2) investigate plume microbiome structure, function,
and activity, and (3) identify links between plume microbiomes
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and geochemistry. To investigate the core microbiome, we
studied publicly available 16 S rRNA gene datasets of hydro-
thermal plumes (n= 36) and background deep-sea samples
(n= 11) from seven ocean basins across the globe. To study the
microbiome structure, function, and activity, we reconstructed
metagenome-assembled genomes (MAGs, n= 206) from three
hydrothermal vent sites (containing both plume and background
samples from Guaymas Basin, Mid-Cayman Rise, and Lau Basin).
We also mapped paired metatranscriptomes from the same sites
for some samples (Fig. 1, Supplementary Fig. S1, and Supplemen-
tary Data 1). To study links between biogeochemistry and the
microbiome, we analyzed paired geochemical data from
the above three hydrothermal vent sites. To provide clarity on
the plume and background samples and DNA/cDNA libraries used
in this study, we have provided a schematic diagram describing
the locations of all samples in the context of a hydrothermal vent
system (Supplementary Fig. S1).

Defining the core hydrothermal plume microbiome
To identify and study the core hydrothermal plume microbiome,
we used 16S rRNA gene datasets from 47 hydrothermal plume
and background deep-sea samples spread across seven ocean
basins (Supplementary Data 2). Biogeographic patterns were
delineated by UniFrac metrics of distance and PCoA-based
ordination. Sample location influenced biogeographic patterns
more than sample characteristics (plume/background) (Supple-
mentary Figs. S2 and S3). Unweighted UniFrac PCoA plots
indicated that paired plume/background deep-sea samples within
the same site were closely correlated (Supplementary Fig. S3). As
revealed previously [2, 26, 29], this supports the understanding
that microorganisms in hydrothermal plumes are primarily derived
from surrounding seawater with dispersal limitation having little
effects locally.
We then identified genus-level taxa distributed in plumes with

high prevalence and relative abundance. The core plume
microbiome consists of 14 microbial groups (Fig. 1a, b) (see
Materials and methods). Next, we characterized metabolic profiles
for the core plume microbiome by selecting MAGs from this study
that were affiliated with the same taxa (Fig. 1c). These organisms
demonstrated highly versatile metabolic potential for utilizing
various plume substrates [2], including HS-, S0, H2, CH4, methyl-/C1
compounds, arsenite, and iron (Fig. 1c). We discovered that the
majority of the members of the core plume microbiome likely
originated from seawater, which is consistent with previous
reports [26] (Supplementary Table 3). We also observed a small
number of vent chimney/seafloor/subsurface dwelling and
endosymbiotic microorganisms that might be entrained in plumes
[2, 71] (Supplementary Table 3). Collectively, our data suggest that
sulfur and other reduced organic/inorganic compounds shape the
global core plume microbiome.

Sulfur-dominated geochemistry influences energy landscapes
and promotes microbial growth
Previous thermodynamic modeling analyses have reflected energy
landscapes for various hydrothermal ecosystems [4, 7, 10, 16] by
representing free energy yields for reactions of various energy
sources for microbial metabolism in hydrothermal fluids. These
studies have shown that thermodynamic modeling and omics-
based biogeochemical estimations are consistent in individual
ecosystems [7, 10, 16]. Here based on geochemical parameters
and functional profiles of MAGs (Supplementary Figs. S4, S5, S6,
and Supplementary Data 3, 4), we conducted an across-site
comparison of thermodynamic modeling and omics-based
biogeochemical estimations to observe and reflect the influences
of distinctive plume geochemical characteristics on plume
microorganisms. We also performed growth rate analyses to
identify and characterize microbial energy contributors which are
favored with faster growth rates in response to distinct plume

geochemistries. We first used thermodynamic modeling to
reconstruct plume energy landscapes. (Fig. 2a). Guaymas Basin
plume energy sources were mainly attributed to sulfur, methane,
and hydrogen. Sulfur dominated as the major energy source
among Lau Basin plumes, while methane, Mn/Fe, and other
energy sources likely play minor roles in microbial metabolism.
Finally at Mid-Cayman Rise, two distinct patterns were observed.
Plume energy sources at the Von Damm site were hydrogen,
methane, and sulfur, while at the Piccard site, plume energy
sources were primarily hydrogen and sulfur.
When comparing among sites, distinct geochemical character-

istics support the predicted energy landscapes. Specifically,
energy sources that are prevalent at high concentrations
frequently show high contributions to the energy landscape.
Methane was the highest in end-member fluids from Guaymas
Basin (63.4 mmol/kg) [7], which supported the dominance of
methane oxidation in the Guaymas Basin plume in the thermo-
dynamic model (Fig. 2a); additionally, significant contributions of
methane oxidation in metagenomics datasets of Guaymas Basin
were also found (~40.5%) (Fig. 2b). Meanwhile, Lau Basin
hydrothermal fluids had high Mn and Fe concentrations (Mn:
3.9–6.3 mmol/kg, Fe: 3.8–13.1 mmol/kg) [72, 73] in the Mariner
hydrothermal field compared to other samples. This manifested in
Fe and Mn oxidation contributing the highest fractions (Mn:
~4–5%, Fe: 13%) in thermodynamic modeling (Fig. 2a) and the
highest fractions (Mn: 0.3-6.4%, Fe: 6.7-66.6%) in omics-based
energy estimations of Mariner across all sites at Lau Basin (Fig. 2b).
Similarly in Mid-Cayman Rise, high hydrogen concentrations in the
vent fluids were associated with high contribution of hydrogen
oxidation in the thermodynamic model and omics-based estima-
tions (Fig. 2a, b, Supplementary Table 1). Overall, reduced sulfur
was the primary energy source in all three sites, as evidenced by
thermodynamic modeling and omics-based biogeochemical
estimations. However, individual plume geochemical conditions,
on the other hand, vary with several diverse minor energy sources
such as iron, manganese, methane, and hydrogen, resulting in
different energy landscapes mediated by microorganisms.
To study whether microorganisms conducting biogeochemical

transformations in each site were also growing actively, we
predicted microbial growth rates from metagenomic data using
iRep [59]. iRep can calculate the difference in read abundance
between the origin and terminus of a genome, which is a proxy
for the organism’s replication or growth rate [58–60]. Certain sites
showed a consistent pattern that microorganisms depending on
main energy sources in plumes such as sulfur have higher
predicted growth rates. For instance, members of LS-SOB and
Thiomicrospirales (previously SUP05 cluster as listed in Fig. 1;
Thiomicrospirales in GTDB R83 or PS1 in GTDB R202) both had the
capacities for sulfur and iron oxidation, and were predicted to
have a higher growth rate than other microorganisms in the
Guaymas Basin plume (Fig. 2c). Similarly, members of Methylo-
coccales and Chromatiales had capacities for iron, methane, and
sulfur oxidation in Lau Basin (Abe plume) and their growth rates
were higher than other organisms (Fig. 2c). Manganese-oxidizing
members of Marinimicrobia had a higher growth rate than other
organisms in the Lau Basin Mariner plume, consistent with
thermodynamic modeling-based and omics-based results that
Mariner had the highest energy contributions from Mn oxidation
among all ecosystems (Fig. 2). Collectively, we discovered a
consistent pattern indicating that microorganisms depending on
the primary energy sources in plumes have higher predicted
growth rates, possibly as a result of their ability to respond to
varying geochemistry in hydrothermal plumes.

Consistency of links among geochemistry, function, and
taxonomy
MAGs reconstructed from hydrothermal vents in the Guaymas
Basin, Mid-Cayman Rise, and Lau Basin, as well as corresponding
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omics-based profiling, allowed for taxonomic and functional
comparisons across the three sites (Supplementary Figs. S4, S5,
S6, and Supplementary Data 3, 4). Across-site analyses of functional
traits in MAGs showed that different functions were significantly
enriched in different plumes in accordance with the underlying
geochemistry, e.g., arsenate reduction and long-chain alkane (C6+)
degradation in the Lau Basin; CO and methanol oxidation in the
Mid-Cayman Rise; and toluene and benzene degradation in the
Guaymas Basin (Fig. 1c, Supplementary Fig. S7b). Consistent with
the differentially enriched functions, the distribution and abun-
dance of some microbial groups were also significantly enriched in
the corresponding samples suggesting linkages between function,
distribution, and abundance of microbial groups in plumes
(Supplementary Fig. S7a) Examples include arsenate reduction in

background deep-sea samples from Lau Basin which was attributed
to members of Bacteroidetes and Thiomicrospirales while the same
function in Lau Basin plumes was attributed to only members of
Thiomicrospirales. CO oxidation in Mid-Cayman plumes was
attributed to members of Chloroflexi, and toluene and benzene
degradation in Guaymas Basin plume were attributed to members
of Methylococcales and Pseudomonadales (Supplementary Data 5).
These observations are consistent with hydrothermal vent fluid
geochemistry, e.g. Lau Basin hydrothermal vents have high arsenic
end-member concentrations [74] (ranging from 2.1 to 11 μmol/kg)
and Guaymas Basin fluids contain aromatic hydrocarbons (primarily
benzene and toluene) [75].
As for within-site comparisons, the data indicated that the top

three contributing taxa for major functions (including eight
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Fig. 2 Thermodynamic estimation of available free energies and biomass yields from electron donors, metagenomics-based contribution
of electron donors to energy, and growth rates of microorganisms depending on primary energy sources. a Thermodynamic estimation
diagram of available free energy and biomass. For each hydrothermal environment, the contribution fraction of each electron donor species
was labeled accordingly in the rings. The total available free energies and biomass were labeled accordingly to individual plumes. Two
temperatures (3.0 °C and 4.9 °C) were picked to represent in situ temperatures in the upper and lower plume. Light yellow represents
anaerobic sulfur oxidation, dark yellow represents aerobic sulfur oxidation. Detailed data and estimation diagrams are provided in Fig. S9 and
Supplementary Data 8. bMetagenomics-based estimation of energy contribution. Energy contribution for each electron donor was calculated
based on metagenomic abundance of each reaction of electron donors and free energy yield of each reaction. The contribution ratio of
electron donor species was calculated for individual environments respectively. For detailed results refer to Supplementary Data 9. c Growth
rate of microorganisms depending on main energy sources in each hydrothermal environment. The y-axis for each barplot indicates the
replication rate. The microbial groups starting with “α-”, “γ-”, and “δ-” represent Alphaproteobacteria, Gammaproteobacteria, and
Deltaproteobacteria, respectively. Plume microbial groups were colored by dark yellow, background microbial groups were colored by
light yellow and they were also all labeled with “(P)” or “(B)”, respectively. Numbers in brackets indicate MAG numbers in each microbial group.
Star-labeled plume microbial groups had higher growth rates than the “Rest” plume microbial groups.
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categories of carbon fixation, denitrification, sulfur cycling,
hydrogen oxidation, methane oxidation, aerobic oxidation, iron
oxidation, and manganese oxidation) are largely shared between
plume and background deep seawater in Mid-Cayman Rise and
Lau Basin, indicating functional consistency which was linked to
taxonomy (Supplementary Data 5). Nonetheless, the abundance of
taxa varied between plumes and the background deep sea
(Supplementary Data 5, 6). It is possible that the differences in taxa
underlie functional differentiation and they are both triggered by
plume geochemical stimulus. For example, members of Thiomi-
crospirales are the major contributors to Rubisco form I-based
carbon fixation, oxygen metabolism, nitrate/nitrite reduction,
sulfur oxidation, and thiosulfate oxidation based on metatran-
scriptomic profiling, and these functional traits had higher
expression in the Mid-Cayman Rise Von Damm plume compared
to the background deep sea. Consistently, members of Thiomi-
crospirales have higher expression levels in Von Damm plume
compared to the background (Supplementary Fig. S8b, c,
Supplementary Data 6, 7, and more evidence can be found within
it). Our results suggest the adaptation of the plume microbiome to
its local geochemical environment, and demonstrate the consis-
tency of links between taxonomy, function, and geochemistry.

Sulfur cycling drives microbial metabolism and metabolic
interactions in hydrothermal plumes
Building on our findings from both thermodynamic modeling and
omics-based biogeochemical estimations which indicated the
importance of sulfur-based metabolisms, we studied microbial
metabolic interactions associated with sulfur cycling in all plumes.
We recently developed a metric, metabolic weight score (MW-
score) [65] to measure the contribution of metabolic/biogeo-
chemical steps, and their metabolic connectivity in a microbial
community. More frequently shared functions and their higher
abundances in a microbial community lead to higher MW-scores
[65]. Both metagenomics and metatranscriptomic data for
microbial communities in individual hydrothermal vent sites
showed elemental sulfur oxidation to be the key reaction in the
sulfur cycle (Fig. 3a). In each community, sulfur oxidation had the
highest MW-score (Fig. 4b, Supplementary Fig. S10). Major
contributors (dsrAB and sdo containing MAGs) to sulfur oxidation
varied across hydrothermal vent sites (Fig. 3b), indicating that core
sulfur oxidizers can have distinct local distributions. Metabolic
plasticity was observed in that some sulfur oxidizers had
additional metabolic potential associated with utilizing various
small carbon substrates and hydrogen, reducing nitrate/nitrite,
and oxidizing iron/manganese/arsenite [76] (Fig. 3c). Additionally,
numerous connections of sulfur oxidation with other electron-
transferring reactions were observed in the functional network
(Fig. 4c–e and Supplementary Fig. S10). Previously, sulfur-oxidizing
bacteria belonging to Thiomicrospirales and SAR324 lineages were
identified to have metabolic plasticity involving the ability to
conduct hydrogen oxidation and nitrate reduction [7, 77] (in the
case of Thiomicrospirales) and alkane/methane/carbon monoxide
oxidation [17, 78] (in the case of SAR324), implying that plume
microorganisms are optimized to mediate energy transformations
depending on available electron donors and acceptors. Based on
these findings, we posit that sulfur oxidizers are the primary group
involved in energy scavenging using plume substrates. Sulfur
oxidizers have metabolic plasticity that allows them to connect
sulfur metabolism with other elemental transformations, and they
contribute significantly to biogeochemical cycles in the deep sea.
While sulfur oxidation connects other metabolic reactions in the

overall functional network and has significant energy yields, its
role in the overall network complexity, i.e., the impact of sulfur
metabolism on overall plume microbial metabolism, remains
elusive. To address this, we built networks based on reactions and
the percent energy yields, and investigated reaction influence on
network complexity [61, 63, 64] (Fig. 4a, Supplementary Fig. S11).

The network of reactions works as a whole mechanism [63]. In the
network, each reaction is one constitutional part. The high ΔC
(complexity change) reactions are key features of the networks.
Most of these ΔC values are positive except for two points (Fig. 4a,
Supplementary Fig. S11). This indicates that all but two of these
reaction nodes drive the system away from randomness and
significantly contribute to the complexity of the network as a
whole [63]. Meanwhile, in general, it seems that most reactions
that are closer to smaller ΔC have higher percent energy yields
associated with their reactions (Fig. 4a, Supplementary Fig. S11).
This phenomenon suggests that reaction nodes that result in
higher changes of percent energy yields are not necessarily
contributing to the reaction network’s complexity the most.
Overall, our results indicate that, while sulfur oxidation has higher
energy yields, other reactions in plumes are also important
components that cohesively contribute to the energy landscape.

Low diversity, short migration history, and gene-specific
sweeps in plume populations
Metagenomes provide full repertoires of genomic variation and
facilitate interpreting fine-scale evolutionary mechanisms
[67, 79, 80]. Here, we used Tara Ocean metagenomic datasets
[66] from the mesopelagic oceans to compare metagenomes from
hydrothermal plume environments to the wider pelagic oceans
and study the population genetic diversity of each MAG
(Supplementary Data 10). We discovered that a large proportion
of MAGs had a similar tendency in terms of normalized single
nucleotide variation (SNV) counts, nonsynonymous/synonymous
SNV substitution ratio (N/S SNV), and genome-wide mean R2

(Fig. 5a and Supplementary Data 11). Hydrothermal plumes have a
lower SNV count than Tara Ocean samples, a higher N/S SNV ratio,
and a higher mean R2 than Tara Ocean samples. This suggests that
in the plume: (1) Fewer SNVs are present, and population diversity
is lower; (2) The population is younger with a short migration
history. The higher N/S SNV ratio indicates that younger
populations are less subjected to purifying (negative) selection
to remove deleterious mutations; (3) The population is less
subjected to recombination. The higher mean R2 reflects higher
SNV linkage frequency at the genome-wide scale, indicating a
lower recombination rate among population members.
We also looked into the fine-scale evolutionary parameters to

investigate potential signals of genome/gene sweeps. Consensus
base frequency (abbreviated as con freq, frequency of reads
supporting the consensus base), con freq for nonsynonymous
SNV, and con freq for synonymous SNV at the genome-scale level
all showed no significant differences (Supplementary Data 11).
This indicates that these populations are unlikely to have
undergone selective genome sweeps and clonal expansion during
migration. We calculated the fixation index FST [81] based on gene
allele frequencies between these two environments (Fig. 5b and
Supplementary Data 12) to investigate environmental selection.
High FST genes are potential loci where selective pressures act on
and they indicate adaptation for microbes after migrating to new
niches [68]. Further stringent criteria require lower gene nucleo-
tide diversity and higher N/S SNV ratio (Fig. 5b and Supplementary
Data 12). Decreases of nucleotide diversity indicate gene-specific
selective sweep in the hydrothermal environment and higher N/S
SNV ratios suggest that these genes underwent a recent selection
compared to the genome average and their counterpart genes in
Tara Ocean samples. Amongst 260 identified high FST genes using
our stringent criteria, many of them involved transporters, aerobic
oxidation, and stress responses (Fig. 5b and Supplementary
Data 12). Transporters were associated with diverse substrates,
e.g., metals (Co, Fe, and Mg), amino acids, Na+/H+, anions (nitrate/
sulfonate/bicarbonate), carbohydrates (ribose/xylose/arabinose/
galactoside), and aliphatic polyamines (spermidine/putrescine);
meanwhile, these transporters were associated with many
transporter families (Supplementary Data 12), including ABC
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superfamily, tripartite ATP-independent periplasmic (TRAP) family,
tripartite tricarboxylate transporter (TTT) family, and others. This
suggests that gene-specific selection sweeps have important
impacts on nutrient uptake, aerobic oxidation on substrates for
higher energy yields, and stress responses.
Given the observed importance of sulfur metabolism in plumes,

we focused on the 238 identified sulfur metabolism genes. With FST
values higher than the genome average, 23 of these genes showed
signs of being fixed after migration (Fig. 5c and Supplementary
Data 13). These genes were associated with sulfur oxidation,
thiosulfate oxidation, and sulfite oxidation/sulfate reduction (sat,
aprA, sdo, oxidative dsrAB, and soxBC) (Supplementary Data 13). This
demonstrates that, despite not reaching the level of gene-specific
selection sweeps, these sulfur metabolizing genes were still being
selected across the genome. Overall, this suggests a genetic
adaptation to a sulfur-dominated environment after migration. An
underlying evolutionary paradigm can be outlined from our
population-level microdiversity analyses (Fig. 5d). As microbes
enter the hydrothermal plume, some groups are selected for, and
thrive due to substrates provided locally. This promotes the growth
of specific populations; meanwhile, constraints in the plume

environment cause selection effects and reduce the diversity of
the population majority. Higher N/S SNV indicates that these are
young populations growing in the plume, with the higher growth
rates arising from them consuming primary energy sources such as
reduced sulfur compounds. Gene-specific sweeps (and selected
genes involving sulfur metabolism) indicate local adaptation to the
plume environment and change the genetic structures of popula-
tions after migration. Plume microbial populations are still in the
early stage of evolution; as time goes on, we predict that mutations
will progressively accumulate and deleterious SNVs will be
gradually purged.

DISCUSSION
Sulfur oxidation is the major energy-yielding reaction in hydro-
thermal plumes. On one hand, it significantly shapes taxonomy,
function, and energy landscapes across the three hydrothermal
vent sites studied. On the other hand, we observed that distinctive
plume geochemistry also influences the energy landscape across
the three sites [4, 73]. For instance, other important energy
sources, such as methane and hydrogen, also have important roles

Organic carbon oxidation

Acetate oxidation

Methanotrophy

Organic carbon oxidation 

Nitrite ammonification - nirBD

Arsenate reduction

Organic carbon oxidation - CO oxidation

Organic carbon oxidation - formate oxidation

Nitrate reduction - narGH

Nitric oxide reduction

Sulfite oxidation
Sulfate reduction

Sulfur oxidation - sdo

Hydrogen oxidation

Sulfur oxidation - dsrAB

Thiosulfate oxidation

Nitrite ammonification - nrfADH

Organic carbon oxidation 

Nitrite reduction - nirKS

Thiosulfate disproportionation 
Sulfide oxidation - sqr

Sulfur oxidation dsrAB

Sulfur oxidation dsrAB and sdo

Sulfur oxidation sdo

Edge colors

Lau Basin

4.2

3.3

4.4

3.3

1.3
1.7

0.2

1.3

0

Sulfur oxidation Methanotrophy Hydrogen oxidation

MW-score

Guaymas Basin Mid-Cayman Basin Lau Basin

a
Organic carbon oxidation - CO oxidation

Organic carbon oxidation - formaldehyde oxidation

Acetate oxidation

Nitrite reduction - nirKS

Arsenate reduction

Nitrite ammonification - nirBD

Sulfur oxidation - sdo

Sulfite oxidation

Organic carbon oxidation - formate oxidation

Organic carbon oxidation - methanol oxidation
Hydrogen oxidation

Sulfide oxidation - sqr
Sulfur oxidation - dsrAB
Sulfate reduction

Methanotrophy

Thiosulfate oxidation

Organic carbon oxidation - 

Nitrate reduction - narGH

Arsenite oxidation

Nitrate reduction - napAB

Nitrite ammonification - nrfADH

Nitric oxide reduction

methylamine oxidation
dsrAB

dsrAB and sdo

sdo

Edge colors

Guaymas Basinc

Organic carbon oxidation - CO oxidation
Organic carbon oxidation - formaldehyde oxidation

Acetate oxidation

Organic carbon oxidation

Organic carbon oxidation 

Sulfite oxidation

Nitrite ammonification - nrfADH

Arsenate reduction
Sulfate reduction

Thiosulfate oxidationMethanotrophy
Hydrogen oxidation

Sulfide oxidation - sqr

Thiosulfate disproportionation (to sulfate + sulfur)

Nitric oxide reduction

Sulfur oxidation - sdo

Nitrite ammonification - nirBD

Sulfur oxidation - dsrAB

Nitrate reduction - napAB

Nitrate reduction - narGH

Thiosulfate disproportionation 

Sulfur oxidation dsrAB

Sulfur oxidation dsrAB and sdo

Sulfur oxidation sdo

Edge colors

Mid-Cayman Rised e

Guaymas Basin
Mid-Cayman Rise
Von Damm
Mid-Cayman Rise
Piccard
Lau Basin Abe
Lau Basin Kilo Moana
Lau Basin Mariner

R-H-1 (H :O )2 2

R-M-1 (CH :O )4 2

R-S-1 (S:O )2
2-R-S-2 (S:NO )3

2-R-I-2 (Fe:NO )3

+R-A-1 (NH :O )4 2

R-I-1 (Fe:O )2

R-Mn-1 (Mn:O )2

b
0 25 50 75 100 125 150

0

20

40

60

80

%
 e

ne
rg

y 
yi

el
d

C (Complexity change)

Thiosulfate disproportionation 
(to sulfate + sulfur)

(to sulfite + hydrogen sulfide)

- methanol oxidation

Organic carbon oxidation 
- methylamine oxidation

 - methanol oxidation

(to sulfate + sulfur)

- methylamine oxidation - formaldehyde oxidation - formate oxidation

Fig. 4 Network complexity, MW-scores (metabolic weight scores), and functional network diagrams of the three hydrothermal vent sites.
a Network complexity diagram representing each reaction’s influence on the complexity of the network. In the figure, different colors
represent different hydrothermal environments, different symbol shapes represent different reactions. The substrates (including electron
donors and acceptors) were listed for each reaction in the legend. The x-axis is the change in complexity (ΔC) of the whole network for a node
(a reaction here) and the y-axis is the percent energy yield of that reaction in the whole community. This network complexity diagram was
based on thermodynamic estimation results at 3.0 °C. b MW-scores of three major energy contributing reactions. c Functional network
diagram of Guaymas Basin. d Functional network diagram of Mid-Cayman Rise. e Functional network diagram of Lau Basin. A group of
metabolic cycling steps that are important in reflecting the plume substrate metabolisms were selected from METABOLIC-C regular MW-score
results to make these functional network diagrams (c–e), respectively. In each functional network diagram, the size of a node is proportional to
gene coverage associated with the metabolic/biogeochemical cycling step. The thickness of the edge represents the average gene coverage
values of the two connected metabolic/biogeochemical cycling steps. Edges related to two reactions of sulfur oxidation were colored
accordingly in each diagram.

Z. Zhou et al.

1203

The ISME Journal (2023) 17:1194 – 1207



in the energy landscape of hydrothermal plumes. This highlights
the notion of the decisive role of geochemistry on the local energy
landscape, especially for plume environments, in which the
primary production sources solely come from the substrates
entrained in hydrothermal fluids. The existence of a core plume
microbiome that was defined in this study indicates that a general
biogeochemical feature – energy and substrate supply – within

hydrothermal plumes supports the growth of these globally
dispersed cosmopolitan microorganisms. As a result, the core
plume microbiome is most likely the result of a sulfur oxidation-
based energy landscape shared by hydrothermal plumes world-
wide. We observed increased taxa abundance and higher growth
rates of major energy contributing taxa in plume environments.
This supports the interpretation that microbiomes respond to
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Fig. 5 Evolutionary mechanism of plume microbial populations during migration. a Schematic diagram showing the changing trend of
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geochemically influenced energy landscapes, with some taxa
being fueled by plume substrates.
The above analyses support the theory of an ocean seed bank

origin of the hydrothermal plume microbiome [82]. In plume
environmental settings, geochemistry defines the substrate and
energy availability, serving as a key control on microbiome
distribution and abundance [2, 9]. In this scenario, certain
microorganisms will be promoted by the environment as a result
of the mechanisms of adaptation, and in return, the structure and
function of microbial communities are reflections of local
environmental conditions. Further, the consistent taxonomy-
function-geochemistry links demonstrated by us suggest that
omics-based profiling that reflects the entire genetic and
functional repertoire of plume microorganisms can be a powerful
tool for unraveling the relationship between environment and
microbiome.
Characterization of sulfur metabolism in plumes reveals that,

while sulfur oxidation is the reaction with the highest MW-score
in all plumes, and sulfur-oxidizing genes are highly expressed,
the major populations contributing to these processes (dsrAB
and sdo containing MAGs) differ between hydrothermal vent
sites. These findings are analogous and similar to observations
made by us in another recent study investigating hydrothermal
vent chimneys from sites across the world [83]. In these systems,
sulfur oxidizing members of Gammaproteobacteria and Campy-
lobacterota were associated with similar ecological guilds and
seldom cooccurred, rather their prevalence in a particular site
was driven by shifts in geochemistry. Broadly, this demonstrates
the variable composition of core sulfur oxidizers in different
environments, implying the endemicity of microbial community
structure. Core sulfur oxidizers can be derived from the pelagic
ocean through stochastic processes that can be influenced by
dormancy capacity to provide resilient seed microbes, ocean
currents to overcome dispersal limitations, and adaptive
strategies to nutrient and temperature fluctuations [2]. Core
members of the plume microbiome derived in this manner likely
thrive under favorable geochemical conditions [84]. For exam-
ple, Pseudomonadales, Thiomicrospirales, and SAR324 are mem-
bers of the core plume microbiome, but are also known to be
abundant cosmopolitan bacteria in the pelagic oceans. These
microorganisms can be distributed as seed banks in the global
oceans, triggered by plume sulfur substrates, and subsequently
become active sulfur oxidizers and thrive in hydrothermal
plumes [9, 84].
Sulfur oxidizing microorganisms in the community have

metabolic plasticity that allows them to connect with other
energy transformation activities, e.g., small carbon substrate
utilization, nitrate/nitrite reduction, iron/manganese/arsenite oxi-
dation, and others. This indicates that sulfur and other energy
sources can be simultaneously utilized for energy conservation by
sulfur oxidizers in various plume environments with different
energy landscapes. At the same time, as described in our network
complexity analysis, though sulfur oxidation dominates in energy
generation, other reactions are also important components in the
metabolic network connected to sulfur oxidation, and cohesively
contribute to the energy landscape. Sulfur oxidizers mediate the
most important energy scavenging reaction of elemental sulfur
oxidation as well as other reactions playing a role in energy
conservation depending on the local environment; this reflects
strategies employed by the plume microbiome for comprehensive
utilization of energy sources and adaptation to plume geochem-
ical conditions.
The microdiversity patterns observed in plume microorganisms

represent a population selection scheme based on environmental
constraints. Low population diversity and high N/S SNV ratio
indicate that microbes are selected by plume conditions and
actively grow after a short migration history. Evidence shows that
gene-specific sweeps within certain plume populations are

involved with nutrient uptake, aerobic oxidation, and stress
responses, and some sulfur metabolizing genes are also selected
during the environmental change. These traits help microbial cells
to be more adaptable and resilient in sulfur oxidation-dominated
hydrothermal plume conditions. Population alteration in plumes
compared to the background deep sea involves both the
reshaping of community-level structure and fine-scale strain-level
genetic adjustments that include advantageous metabolisms
being fixed. These nuanced microdiversity changes can lead to
fundamental shifts in population fitness toward niche adaptation.
Collectively, the plume microbiome has a distinctive composition,
function, and population genetic structure compared to back-
ground seawater allowing microorganisms to better adapt to
hydrothermal plume conditions. We also demonstrated that
plumes exhibit both universal characteristics shared by diverse
plumes and specific characteristics unique to each plume. As the
environment and associated geochemistry change, the micro-
biome community and function shift accordingly. The linked
relationship between microbiome and biogeochemistry that we
demonstrated in this study reflects the overall ecological and
evolutionary basis of microbial strategies for thriving in geo-
chemically rich energy landscapes.
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