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Abstract
Plant microbiomes are shaped by forces working at different spatial scales. Environmental factors determine a pool of
potential symbionts while host physiochemical factors influence how those microbes associate with distinct plant tissues.
These scales are seldom considered simultaneously, despite their potential to interact. Here, we analyze epiphytic microbes
from nine Hibiscus tiliaceus trees across a steep, but short, environmental gradient within a single Hawaiian watershed. At
each location, we sampled eight microhabitats: leaves, petioles, axils, stems, roots, and litter from the plant, as well as
surrounding air and soil. The composition of bacterial communities is better explained by microhabitat, while location better
predicted compositional variance for fungi. Fungal community compositional dissimilarity increased more rapidly along the
gradient than did bacterial composition. Additionally, the rates of fungal community compositional dissimilarity along the
gradient differed among plant parts, and these differences influenced the distribution patterns and range size of individual
taxa. Within plants, microbes were compositionally nested such that aboveground communities contained a subset of the
diversity found belowground. Our findings indicate that both environmental context and microhabitat contribute to microbial
compositional variance in our study, but that these contributions are influenced by the domain of microbe and the specific
microhabitat in question, suggesting a complicated and potentially interacting dynamic.

Introduction

Plants harbor communities of microorganisms that influence
their biology, including phenology [1], water conductance

[2], niche occupancy and range expansion [3–5], and
competitive ability [6]. Nearly all plant traits are likely
affected by microbial partners in some way. Our under-
standing of symbiotic microbial functions, however, has
outpaced our understanding of how plants and their
microbes form relationships that persist in nature. This
disjuncture stems from the sheer complexity of microbial
communities, compounded by assembly patterns governed
by interacting processes at multiple ecological scales, from
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the landscape level to variation among plant tissues within
an individual plant [7, 8].

At large scales, abiotic environmental factors can influ-
ence plant microbiome composition [9]. Plant-associated
microbial communities can change across elevation gra-
dients [10–14] or in response to soil properties (e.g., organic
carbon, soil pH, nitrogen content [15], and land-use history
[16]). Even in the absence of obvious environmental clines,
geographic distance coupled with presumed dispersal lim-
itation can alter microbiome composition [17–19]. Host
identity [20] and genotype [8, 21, 22] can also covary with
environmental factors, which can influence microbial
composition as well [23].

Within plants, distinct microbial communities associate
with different plant tissues [24–26], and this factor can be
more predictive of plant microbial composition than loca-
tion, even over broad geographic areas. For instance, a root
microbiome can be more similar to another root microbiome
several hundred kilometers away than to a leaf microbiome
on the same individual plant [23]. The assembly processes
governing within-plant microbial assembly is not merely a
recapitulation of dispersal- or environmentally mediated
dissimilarity at a smaller scale. While large environmental
clines can result in compositional turnover (i.e., replacement
of species between communities) [27], microbiomes within
individual plants tend to be compositionally nested such
that apical parts (e.g., leaves, flowers) house a subset of the
microbial species associated with subterranean plant parts,
which themselves are most species-rich [19]. This nested-
ness pattern indicates that, although compositionally dis-
tinct, microbiomes of different plant tissues within a plant
are neither entirely independent of each other nor of the
larger environmental species pool. Therefore, the microbial
composition of a given plant part may be partially attributed
to the local environment [28], as well as to strong selective
forces from the host plant itself [29].

Despite a large and growing body of literature examining
plant microbial assembly at a landscape or within-plant scales
[23, 28, 30–32], few studies have considered how environ-
mental context at the landscape-scale relates to within-plant
microhabitat composition, or how residency within plant
microhabitats relates to microbial distributions at landscape
scales. A more complete understanding of plant microbiome
assembly might simultaneously consider whether environ-
mental factors circumscribe a local pool of microbial sym-
bionts [33–35] and the extent to which that local pool is
secondarily partitioned within plants [24–26, 29, 30]. A true
interaction between scales might work in the opposite direc-
tion as well because factors at small spatial scales can influ-
ence distribution at larger scales. For example, a microbe’s
specificity for different plant tissues might affect the avail-
ability and density of habitat and therefore a microbe’s pre-
valence over space or along an environmental gradient.

Our field site in Hawai’i is uniquely provisioned to
address questions about plant microbial assembly processes
at multiple scales. In fewer than 6 km, the main rivers of
Waimea Valley plunge from a mid-elevation rainforest,
over cascading waterfalls, into a protected estuary and
finally the ocean. This short distance spans steep gradients
in elevation and precipitation, with an annual rainfall dif-
ferential of nearly one meter from our highest to lowest
sites. Along this gradient exists a diversity of connected
terrestrial habitats located in close proximity, where an
entire watershed is contained within a small, relatively
isolated, area. Although plant communities change rapidly
along this gradient, Hibiscus tiliaceus trees are found
throughout, enabling us to focus on a single plant species
and thus disentangle host identity from large variations in
abiotic conditions within a distance plausibly connected by
microbial dispersal.

In this study, we asked how plant microbial composi-
tional variance is partitioned between factors at large and
small scales. We expected a strong environmental gradient
to correlate with microbial community differentiation across
sampling locations, especially among those communities
not directly associated with plant tissues. Among plant-
associated communities, we expected that strong tissue-
level association would reduce community turnover along
the abiotic gradient. We hypothesized that microbes occu-
pying a greater number of habitats would occupy greater
spans of the gradient due to greater environmental tolerance
and higher density of available habitat. Finally, we assessed
the nature of the linkages among plant parts by investigating
patterns of nestedness between belowground communities
and apical plant parts, and how these linkages differ among
environmental contexts. This system serves as a unique
example of how biotic and abiotic determinants can overlap
to contribute to variation in microbial community compo-
sition within a watershed system encompassing a steep
natural gradient.

Materials and methods

Site description and sampling

Within 5 h on the morning of January 31, 2019, we col-
lected microbial samples from, and adjacent to, nine mature
healthy Hibiscus tiliaceus L. (Malvaceae; Hawaiian: hau)
individuals within Waimea Valley on the north shore of the
island of Oʻahu, Hawai’i (Fig. 1). This broad-leafed med-
ium-sized tree is indigenous to tropical Indo-Pacific, but has
attained a pantropical distribution via human transport [36]
and was possibly introduced to the Hawaiian Islands by
Polynesian settlers [37]. Sample trees were located along a
transect that paralleled a perennial stream. Locations of
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H. tiliaceus ranged from 0 to 700 m elevation, spanning
1174–2026 mm annual rainfall over a distance of ~5.5 km
(Fig. 1). Rainfall, elevation, and distance from the shore are
highly collinear, so we refer to this continuous variable
cline as the “environmental gradient”. For each plant, we
sampled epiphytic microbes from standardized surface areas
(200 cm2) of leaves, petioles, axils, stems, roots and
adhering soil, and litter with a sterile cotton swab (one per
microhabitat). We sampled surface microbes because (1)
doing so let us standardize sampling area across these
microhabitat types; (2) it mitigates known issues of co-
amplification of chloroplasts (16S) and plant host (ITS)
DNA when microbial:plant biomass ratios are low; and (3)
plant surfaces represent important interfaces between plants
and their environments where gas, water, and nutrient
exchange occurs. To additionally sample the soil micro-
biome, we dug a 5-cm hole with a sterilized corer ~1 m
from the canopy edge to avoid sampling the rhizosphere,
and swabbed the sides and bottom of the hole. For 2 weeks
prior to collecting the above samples, we also deployed an
air sampler modified from Quesada et al. [38] at each of our
H. tiliaceus sites, which collected aerial microbes on
rotating sterilized glass slides lined with microtiter plate
sealing film (Thermo Fisher Scientific, Waltham, MA).
After collection, we immediately transferred all swabs and
film to a microcentrifuge tube with 1 mL lysis buffer and
garnet homogenization beads (Qiagen NV, Venlo, Nether-
lands; see Supplementary Methods for details). In total, we
collected 72 biological samples (9 sites by 8 microhabitats).
For negative controls, we exposed sterile swabs dipped in
lysis buffer to the air for ~20 s. and processed them using
the same protocols as the biological samples. A single air
sampling film that we did not expose to the environment
served as an air sampler negative control. Hereafter, we
refer to the five plant tissue types (leaves, petioles, axils,
stems, and roots) as well as the air, litter, and soil

collectively as “microhabitats”, which we treat as a cate-
gorical variable.

DNA extraction and library preparation

We extracted and purified DNA using the KingFisher™
Flex™ System (Thermo Fisher Scientific, Waltham, MA,
USA) with a MagAttract PowerSoil KF Kit (Qiagen NV,
Venlo, Netherlands) following the manufacturer’s protocol,
but increased the volume of elution buffer to 125 µL. To
survey bacteria, we amplified the V4 region of the 16S
ribosomal RNA gene with the primers 515F and 806R, and
for fungi, we amplified the ribosomal internal transcribed
spacer 1 (ITS1) using the forward ITS1F and reverse ITS2
primer schemes [39, 40]. This primer pair has the advantage
of high fungal fidelity, which is useful when assessing host-
associated organisms, although this comes at the cost of
known mismatches in the priming region of some fungal
lineages [41]. Both library preparations involved an 8-base-
pair index, a gene-specific primer, and an adaptor construct
concatenated on the same oligomer. PCR protocols entailed
an initial phase of 95° C for 3 min using Hot Start Taq
polymerase (New England BioLabs Inc., Ipswich, MA,
USA), followed by 35 cycles at 50 °C and 52 °C annealing
temperatures for 16S and ITS amplicons, respectively. We
then cleaned and normalized PCR products using the Just-a-
Plate™ 96 PCR Purification and Normalization Kit (Charm
Biotech, San Diego, CA, USA). We separately pooled
bacteria and fungi amplicons and checked the quality of
libraries with a Bioanalyzer 2100 (Agilent Technologies,
Santa Clara, CA, USA). The Advanced Studies in Geno-
mics, Proteomics, and Bioinformatics Laboratory at the
University of Hawai’i–Mānoa sequenced the libraries in
two runs using separate 300-bp paired-end Illumina MiSeq
v3 reagent kits (Illumina Inc., San Diego, CA, USA).
Sequence data are available at the Sequence Read Archive
as PRJNA543421.

Data processing and analyses

Because of fundamental differences between ITS and 16S
loci, we used different processing pipelines. We processed
fungal FASTQ files using ITSxpress [42] to extract ITS1
regions of variable lengths from adjacent conserved ribo-
somal subunit genes. We used the FASTX-Toolkit [43] to
filter sequences by quality scores, and to discard reads that
met at least one of the following conditions: (1) 10% or
more of their bases contained a q-score lower than 25; (2)
they contained an “N” nucleotide; or (3) their length was
less than 20 bp. We used VSEARCH [44] to identify and
remove chimeras. The DADA2 package [45] corrected
sequencing errors and binned amplicon sequence variants
(ASVs; see Callahan et al. [46] for discussion on ASVs).

Fig. 1 Locations of sampled Hibiscus tiliaceus in Waimea Valley,
Oʻahu (inset), denoted by white circles. Circle radius indicates the
amount of annual precipitation, with shaded gradient indicating
elevation.
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We used CONSTAX [47] with the UNITE 8.0 database to
assign fungal taxonomy via consensus of three separate
classification algorithms. Finally, we used the LULU
algorithm [48] to collapse putative within-genome ribotype
variants into a single ASV.

We used DADA2 to process 16S reads. First, we trun-
cated reads at position 210 (190 for the reverse read) and
discarded these if they contained at least one base below
quality 2 or a number of expected errors above 3. We used
DADA2’s default parameters to denoise the data, and
merged reads if they overlapped by at least 20 bases,
allowing for one mismatch at most. We used MOTHUR
[49] along with the Silva database v132 to filter and
annotate sequences. We removed potential chimeras with
VSEARCH as implemented in MOTHUR, and assigned
bacteria taxonomy via the MOTHUR functions classify.
seqs() and classify.otus(). As with the ITS pipeline, we
corrected bacteria ASVs with LULU. Finally, we used the R
package decontam [50] to identify and remove putative
contaminants (33 bacteria and 4 fungi) based on their pre-
valence in the extraction and PCR negative controls.

The processed dataset contained 15,649 bacterial and
12,558 fungal ASVs, belonging to 96 and 35 classes,
respectively. We amalgamated ASV read abundance data,
taxonomic assignments, and sample metadata using the R
package phyloseq [51], and appended tree location climate
information from the University of Hawai’i–Mānoa’s Climate
of Hawai’i data portal [52] using the R package raster [53].

To test the extent to which either location along the gra-
dient or microhabitat explained the composition of bacteria
or fungi, we used permutational multivariate analysis of
variance (PERMANOVA) [54] on a Bray–Curtis dissim-
ilarity matrix of Hellinger transformed data with 10,000
permutations in the R package vegan [55]. We performed an
additional PERMANOVA to test the influence of ground
type (i.e., above- or belowground) habitats on bacteria and
fungi community composition. We used the same distance
matrices in a series of Mantel tests examining the correlation
between community dissimilarity and geographic distance
(i.e., the pairwise distance between tree locations) for each
microhabitat separately and combined, using
Benjamin–Hochberg corrected P values to account for Type
1 errors due to multiple hypothesis testing [56]. Because
geographic distance is inextricably correlated with gradient
variables (such as elevation, precipitation, and solar irra-
diance), this measure is a proxy for the combined effects of
dispersal limitation and environmental dissimilarity. To
examine the extent to which deviations among compositions
of communities of bacteria and fungi were coordinated, we
tested the correlation between Bray–Curtis distance matrices
for fungi and bacteria ASVs using Mantel.

For each site and all sites combined, we used the R
packages vegan and bipartite [57, 58] to evaluate nestedness

in two ways: (1) a temperature statistic (T) in which 0° is
perfectly nested and 100° is perfectly random based on
pairwise compositional differences [59]; and (2) the Nest-
edness metric based on Overlap and Decreasing Fill
(NODF) [60]. Significance values were calculated by
comparing empirical nestedness temperature against the
distribution of 1000 randomized null communities, in which
marginal values were maintained. Furthermore, we assessed
relationships between nestedness metrics and gradient
location (distance from shore) using Spearman correlations.
To account for differences in sampling depth, these analyses
used sample counts randomly down-sampled (rarefied) to
the same depth per sample (bacteria: 26,406; fungi: 20,000).
To assess the extent to which within-sample microbial
richness was captured given our sequencing depth, we
calculated rarefaction curves on each sample (Supplemen-
tary Fig. S1).

To examine the relationships between local ASV abun-
dances, geographic ranges, and number of occupied
microhabitats, we used regression analyses. We calculated
local abundance as the mean sequence abundance per
sample of an ASV was present, omitting nulls. The max-
imum distance between locations where we detected an
ASV along the transect gave us its range; ASVs detected at
a single location had a range of zero. We determined an
ASV’s habitat occupancy as the sum of microhabitats where
we detected an ASV. Although these calculations may
include dead cells and thus overestimate empirical ranges or
habitat breadths of viable cells, we believe these errors will
be propagated randomly throughout the dataset and are
nevertheless preferable to arbitrary sequence abundance
cutoffs. A two-tailed t test assessed the difference of mean
range sizes between distributions of fungi and bacteria.

To provide an assessment of bacterial and fungal taxa
circumscribed at more comparable taxonomic levels, we
repeated the range distribution, PERMANOVA and Mantel
analysis using a dataset, in which ASVs were binned by
genus (presented in the Supplementary Information).
Although this provides additional data to evaluate differ-
ences and similarities between these domains, we caution
that intrinsic differences between reproductive strategies
and taxonomic conventions (among other issues) make
direct comparisons between fungi and bacteria problematic.
Scripts, data, and markdown documents necessary to
reproduce all analyses are accessible on GitHub (github.
com/cbwall/Waimea-plant-microbiomes).

Results

PERMANOVA tests indicated that communities were sig-
nificantly differentiated by microhabitat type and that this
factor best predicted bacterial community variance (Table 1,
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R2= 0.336, P < 0.001; Supplementary Table S1). In con-
trast, site location was the most predictive factor in the
analysis of fungal composition (R2= 0.255, P < 0.001). At
the class level, communities of bacteria from above- and
belowground samples were compositionally distinct (Sup-
plementary Fig. S2), whereas fungal classes were uniformly
distributed among microhabitats (Supplementary Fig. S3).
At the ASV scale, however, compositional differences were
more readily apparent among bacteria samples from dif-
ferent microhabitats and between fungal samples from
below- and aboveground (Fig. 2 and Supplementary
Table S2).

There was no evidence for a distance decay relationship
(i.e., compositional dissimilarity over distance) among
bacteria communities, except for those associated with roots
or when the entire microbiome of the site was considered
together (Table 2). Conversely, communities of fungi, when
aggregated by either site or microhabitat, demonstrated
significant distance decay patterns over the environmental
gradient. Fungal communities from different microhabitats

showed dissimilar levels of variation across the environ-
mental gradient. This suggests that some plant parts host a
more conserved microbial community than others. Mantel
correlations of subterranean fungal samples (roots and soil)
were highest, while there were no significant distance decay
patterns among fungal communities on axils and leaves
(Table 2). Fungal communities that were not directly
associated with a plant (soil and air) showed strong distance
decay of similarity patterns. Patterns were similar when we
examined taxa at the genus-scale, although correlation
values were generally lower than those measured at the
scale of ASVs (Supplementary Table S3).

Although fungal and bacterial compositional dissim-
ilarities were best explained by different factors, their
between-sample dissimilarities were correlated. In other
words, pairwise fungal and bacterial community composi-
tion of the same biological samples, as assessed by
Bray–Curtis dissimilarity, was significantly more correlated
than would be expected by chance (Mantel r= 0.417, P <
0.001; Supplementary Fig. S4).

Communities of both bacteria and fungi were sig-
nificantly nested by microhabitat (Fig. 3), with below-
ground samples containing much of the species diversity

Table 1 PERMANOVA results showing the ability of variables to
explain compositional variance.

Group Variable df R2 P

Bacteria Site 8 0.149 <0.001

Microhabitat 7 0.336 <0.001

Residual 56

Fungi Site 8 0.255 <0.001

Microhabitat 7 0.192 <0.001

Residual 56

Significant P values (P < 0.05) are in bold.

Fig. 2 Non-metric multidimensional scaling plots of microbial
community dissimilarity with shapes by microhabitat type.
a Bacterial communities cluster by above- and belowground habitats.
b Fungal communities also cluster somewhat by aboveground and
belowground parts, albeit with higher dispersion in the belowground
communities and more overlap with the aboveground parts compared
to communities of bacteria.

Table 2 Mantel test of relationships between pairwise community
composition dissimilarity and geographic distance between
communities, both overall and per microhabitat.

Group Variable Mantel r Corrected P

Bacteria Overall 0.116 0.039

Aboveground 0.174 0.400

Belowground 0.044 0.414

Air 0.174 0.400

Axil 0.075 0.414

Leaf 0.213 0.347

Litter 0.280 0.347

Petiole 0.187 0.347

Root 0.444 0.033

Soil 0.044 0.417

Stem 0.245 0.347

Fungi Overall 0.364 0.002

Aboveground 0.613 0.004

Belowground 0.674 0.006

Air 0.613 0.005

Axil 0.225 0.190

Leaf 0.114 0.193

Litter 0.598 0.002

Petiole 0.670 0.002

Root 0.700 0.002

Soil 0.674 0.010

Stem 0.555 0.002

Significant P values (P < 0.05) are in bold.
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found within the other microhabitat communities. Each had
a moderate nestedness temperature (bacteria: T= 38.8°,
P= 0.001, NODF= 39.04%; fungi: T= 43.1°, P= 0.001,
NODF= 34.76%). We detected no nestedness with regard
to location along the gradient (e.g., microbial communities
in drier locations were not subsets of those in wetter
locations).

The range size of bacterial and fungal ASVs differed
significantly (t= 32.062, df= 13235.00, P < 0.001), with
the mean range of bacteria (x ̄= 2078.0 m, SD= 2044.9 m)
being nearly twice the range of fungi (x ̄= 1170.2 m, SD=
1845.1 m; Fig. 4). As expected, the range sizes of microbial
genera were larger than those of ASVs, but bacteria (x ̄=
3757.5 m, SD= 2096.5 m) remained significantly more
widespread than fungi (x ̄= 3046.9 m, SD= 2270.3 m; t=
5.729, df= 869.79, P < 0.001). For both bacteria and fungi,
an ASV’s range size correlated positively with the number
of microhabitats in which an ASV occurred, although this
relationship was stronger for fungi (R2= 0.451, P < 0.001)
than bacteria (R2= 0.262, P < 0.001). Fungal ASV local
abundance scarcely correlated with range size (R2= 0.012,
P < 0.001), and not at all for bacteria (P= 0.554).

Discussion

Here, we demonstrate that environmental context and
microhabitat shape the plant microbiome in domain-specific
and potentially synergistic ways. In our study, fungal

communities are determined more by location along the
environmental gradient than by microhabitat type. None-
theless, fungal communities had a high variation of distance
decay patterns among microhabitat types, suggesting links
between a fungal community’s distribution at large and
small scales. This correlation is mirrored in the distribution
of individual microbes: microhabitat breadth was a sig-
nificant predictor of gradient range sizes of microbes.
Bacteria community compositional variance, in contrast,
was better explained by microhabitat than by location, and
there was little indication that communities associated with
different microhabitats demonstrated different rates of
compositional dissimilarity along the gradient. The pairwise
dissimilarity between communities of fungi and commu-
nities of bacteria was significantly correlated among biolo-
gical samples, and both were compositionally nested within
plants, suggesting that at least some compositional patterns
apply universally to members of both domains.

Effect of microhabitat on microbial distribution

Similar to previous studies [19, 28, 61], we show that
microhabitat type significantly predicts microbial commu-
nity composition. This was the most discriminant factor for
bacteria communities (Table 1). At the ASV level, both
bacterial and fungal communities are distinguishable pri-
marily by whether they are located above- or belowground
(Fig. 2 and Supplementary Table S2). This distinction is
influenced by the taxonomic scale considered. While this
division between above and belowground composition was
apparent at the class level for bacteria (Supplementary
Fig. S2), nearly all fungal classes were uniformly dis-
tributed across the eight microhabitats Supplementary
(Supplementary Fig. S3).

Surface microbes may have patterns of microhabitat
niche breadth that are distinct from those residing within
plants. Previous studies showed that different variables
drive epiphytic versus endophytic microbes [23]. Because
surface communities contain a portion of microbes only
transiently associated with hosts, more persistent endo-
phytic microbes might demonstrate higher fidelity than
would epiphytes. In a survey of endophytic fungi asso-
ciated with grassland plants, Wearn et al. [29] found most
taxa were associated with single plant tissue, and that
those associated with more than one were rare, implying a
link between specialization and endophytic habitat [30].
Nevertheless, we found that microhabitat predicted a
significant and canonically large proportion of composi-
tional variance (bacteria R2= 0.336; fungi R2= 0.192),
suggesting that specialization is not just restricted to
endophytes.

The wide niche breadth of some microbes is reflected
in patterns of compositional nesting, with aboveground

Fig. 3 Nestedness plots of overall microbial composition aggre-
gated by microhabitat type. Each vertical line represents an ASV’s
presence among microhabitats. Both (a) bacterial and (b) fungal dis-
play moderate nestedness with most of the microbial diversity con-
tained in the subterranean microhabitats. In a perfectly nested model
(T= 0°) ASVs would be constrained to the left of the black line.
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communities comprising a subset of the ASVs present
belowground (Fig. 3). This pattern is replicated at all
locations throughout our environmental gradient and is
consistent with previous studies on other plant species
[19, 28, 61]. Although the causes of these vertically strati-
fied patterns are undetermined, soils may inoculate plants
with generalist microbes during germination, followed by
additional non-random factors (e.g., desiccation, dispersal
limitation) that prune the original microbial community
over time and distance from the ground [19, 61]. An
alternative explanation might be simply that rainfall and
gravity disperse microbes downwards where they persist in
high proportions. Intriguingly, rhizosphere communities,
not soil, are basal in the nestedness hierarchy, congruent
with previous studies [19, 27]. This might reflect this
habitat’s unique mix of diverse soil- and plant-associated
microbial communities in a resource-rich and hetero-
geneous environment.

Links between microhabitat and environmental
gradient

In contrast to communities of bacteria, fungi demonstrated
strong differences among communities assorted with
microhabitat type with regards to compositional dissim-
ilarity along the environmental gradient (Table 2 and Sup-
plementary Table S3). Our results show that subterranean
fungal communities demonstrated the steepest dissimilarity
slopes, which could result from greater heterogeneity
among subsurface microhabitats [61–63] or more limited
dispersal among soil-bound microbes [64] as compared to
aboveground counterparts. The absence of distance decay
patterns among foliar microbiomes is not surprising given
the high compositional variance of these consortia com-
pared with those on other plant surfaces [19, 65] even
within plant individuals [26]. We originally suspected that
communities on plant tissues might demonstrate less

Fig. 4 Geographic range, microhabitat niche breadth, and abun-
dance of microbes across Waimea Valley, Oʻahu. Boxplots show
range spans of (a) bacterial and (b) fungal genera and ASVs, depicting
the interquartile range, including median, and whiskers showing
95th percentiles. Scatterplots show the relationship between each (c)

bacterial and (d) fungal ASV's range and the number of microhabitat
types in which it occurs, with lines depicting the least-squares fit of the
data. The relationship between range span and log-transformed ASV
abundance for (e) bacteria and (f) fungi per occupied microhabitat,
revealing no significance for bacteria but a weak trend for fungi.
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compositional turnover than free-living samples [27], and
that leaf litter communities might be intermediate, and our
data partially supported this hypothesis. Leaf and axil-
associated fungal communities were not correlated with the
gradient, whereas litter fungal communities were. However,
petiole and stem tissue fungal communities were also cor-
related, indicating that merely being associated with a plant
does not, in and of itself, buffer a microbial community
from additional environmental determinants. However, both
free-living fungal communities were strongly influenced by
the gradient. Fungal communities in air, for example, which
should be the least constrained by dispersal limitation but,
maximally influenced by the abiotic environment, showed a
strong distance decay pattern (Table 2 and Supplementary
Table S3).

Furthermore, the correlation between an ASV’s range
size and the number of microhabitats it occupies (Fig. 4)
implies a relationship between habitat specialization and
environmental (in)tolerance, such that niche breadth within
a plant is predictive of ecological breadth across the entire
gradient. Some environmental gradients across Waimea
Valley might be replicated at a small scale within a plant
(moisture being the most obvious), so this relationship
might reflect environmental filtering for certain traits (e.g.,
desiccation tolerance). Phylogenetics and physiology can
dictate microbial biogeography on a global scale [66].
Alternatively, taxa with broad niches have a higher prob-
ability of establishing after dispersal as they are more likely
to find a suitable microhabitat. In our study, the most
widespread bacterium (an ASV identified as a member of
the Rokubacteria) and the most widespread fungus (an ASV
identified as a member of the Geminibasidiomycetes) are
known as habitat generalists, with the latter being both
heat and desiccation-tolerant (Supplementary Figs. S5 and
S6 [67, 68]).

The weak (fungi) or non-significant (bacteria) relation-
ship between ASV abundance and microhabitat occupancy
suggests that the correlation between niche breadth at small
and large scales are not solely attributable to numerically
dominant taxa. Despite having wider ranges, generalists are
not, on average, more abundant than less generalist taxa,
suggesting that neither generalists nor more specialized taxa
dominate the communities in our study system (Fig. 4).

Differences and similarities between bacteria and
fungi

Several factors might explain why the environmental gra-
dient was the best determinant of fungal communities, but
secondary among bacteria. Dispersal limitation [9, 69],
environmental dissimilarity [70], host genetic clines [8, 21]
or some combination of these or other factors may affect
bacteria and fungi differently. Of the relatively few studies

that concurrently examine bacteria and fungi, fungal com-
munities tend to be more influenced by geographic distance.
Coleman-Derr et al. [23] found that agave hosts in southern
California and Mexico shared a smaller percentage of fungi
than bacteria (18.2% and 72.2%, respectively). A study on
Populus deltoides roots in Tennessee and North Carolina
revealed that geography explained more variance for epi-
phytic fungal communities than for bacterial ones, although
this trend was not the same for endophytes [71].

Notably, differing rates of evolution between marker
genes might partially explain the contrasting patterns we
found between fungi and bacteria. Because the ITS gene is
less phylogenetically conserved than the adjacent small
subunit rRNA gene, the ITS circumscribes taxa at a finer
scale than does 16S. ASVs derived from 16S and ITS
sequences, therefore, may not be equivalent in terms of
evolutionary divergence. We partially account for these
differences by corroborating our results with taxa circum-
scribed at the genus level, as opposed to sequence simi-
larity. However, taxonomic concepts are not directly
comparable between domains with different reproductive
strategies, so attributing the different patterns we detected to
biology versus taxonomic scale is challenging.

Notwithstanding differences in spatial patterns and plant
part specialization, however, the community compositional
turnover of fungi was correlated with that of bacteria
(Supplementary Fig. S2). Regardless of whether this rela-
tionship reflects interdomain microbial biotic interactions or
merely coordinated response to environmental cues, we find
it remarkable that despite billions of years of evolutionary
divergence, organisms’ distributions are similarly con-
strained by being small and plant-associated.

Conclusion

Our results contribute important baseline observational data
within the constrained natural setting of Waimea Valley to
determine which factors and scales predict the distribution
of tree-associated bacteria and fungi along a steep, but short,
environmental gradient. We show that microhabitat type
(i.e., soil, litter, plant parts, air) was better at describing
bacterial communities, whereas fungal community variance
was more correlated with location along the environmental
gradient, which differed based on microhabitat considered.
A microbe’s habitat breadth within sites generally correlated
with range breadth among sites along the gradient. Com-
munities from both microbial domains were strongly nested
such that aboveground microbes represented a subset of
subterranean ones. While we are limited in our ability to
apply causal interpretations to these patterns, given that our
data were observational, our results are consistent with
interacting assembly processes working at the landscape
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and within-plant scales. With these data in hand, we can
devise manipulative experimental systems to directly model
and parameterize hierarchical models of plant symbiont
assembly processes, and address their underlying mechan-
isms such as dispersal abilities, and environmental or
microhabitat specificity.
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