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Abstract
The circadian clock coordinates cellular functions over the diel cycle in many organisms. The molecular mechanisms of the
cyanobacterial clock are well characterized, but its ecological role remains a mystery. We present an agent-based model of
Synechococcus (harboring a self-sustained, bona fide circadian clock) that explicitly represents genes (e.g., kaiABC),
transcripts, proteins, and metabolites. The model is calibrated to data from laboratory experiments with wild type and no-
clock mutant strains, and it successfully reproduces the main observed patterns of glycogen metabolism. Comparison of wild
type and no-clock mutant strains suggests a main benefit of the clock is due to energy management. For example, it inhibits
glycogen synthesis early in the day when it is not needed and energy is better used for making the photosynthesis apparatus.
To explore the ecological role of the clock, we integrate the model into a dynamic, three-dimensional global circulation
model that includes light variability due to seasonal and diel incident radiation and vertical extinction. Model output is
compared with field data, including in situ gene transcript levels. We simulate cyanobaceria with and without a circadian
clock, which allows us to quantify the fitness benefit of the clock. Interestingly, the benefit is weakest in the low latitude
open ocean, where Prochlorococcus (lacking a self-sustained clock) dominates. However, our attempt to experimentally
validate this testable prediction failed. Our study provides insights into the role of the clock and an example for how models
can be used to integrate across multiple levels of biological organization.

Introduction

The circadian clock, a timekeeping mechanism with an ~24
h period, helps organisms coordinate functions over the diel
light cycle. Many of the mechanisms of the cyanobacterial
clock are now characterized at the molecular level [1, 2] and

the fitness benefit has been demonstrated experimentally
[3]. Despite this, the mechanism(s) by which the circadian
clock increases fitness is unknown and fundamental ques-
tions in ecology and evolution, e.g., why some cyano-
bacteria have a circadian clock and some do not, remain
unanswered. Connecting across these scales of biological
organization, from molecular biology to ecology, is a
challenge common to many areas of the biological sciences.

In Synechococcus, the circadian clock controls gene
expression at the genome scale [4–6], so its role in the biology
and fitness is expected to be multifaceted and complex.
Recent evidence suggests the clock plays a role in the meta-
bolism of glycogen (GLG) [7–9]. In general, GLG is syn-
thesized during the day as an energy reserve, and then broken
down at night to support cellular functions. Several of the
genes involved in this mechanism are under the control of the
circadian clock. The (relatively) well-understood intracellular
function of GLG and clock control make the GLG metabo-
lism mechanism a good candidate to begin to investigate the
role of the clock on fitness.

The circadian clock may play a role in the biogeography
of the two most abundant marine cyanobacteria;
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Prochlorococcus, which dominates in the low-latitude open
ocean, and Synechococcus, which dominates in high-
latitude and coastal waters [10, 11]. The geographic dis-
tribution of these cyanobacteria depends on many factors,
including their response to temperature and light [11], but
they also have different timekeeping mechanisms. Syne-
chococcus has a bona fide circadian clock that exhibits free-
running rhythms. Prochlorococcus does not have a circa-
dian clock, rather an hourglass timing mechanism that does
not free-run [2, 12–14].

Here we explore the ecological role of the cyanobacterial
circadian clock using mechanistic modeling. We develop a
model of Synechococcus, which includes a molecular-level

representation of the circadian clock, including genes,
transcripts, proteins (incl. phosphorylation state), and
metabolites, as well as GLG metabolism. We calibrate the
model to laboratory observations, which shows it repro-
duces the main observed pattern for wild type and no-clock
mutant strains. Then we integrate it into a global ocean
model and compare with field observations, including clock
gene (kaiABC) and photosynthesis (psbA) transcript levels.
We simulate wild type and no-clock mutants and compute
the spatial pattern of fitness benefit (selection coefficient)
conferred by the circadian clock, which is generally con-
sistent with the observed biogeography of marine cyano-
bacteria Synechococcus and Prochlorococcus.

Fig. 1 Model schematic. From genes to ecosystems. a Cell with basic
intracellular mechanisms including (A1) photosynthesis system, (A2)
glycogen metabolism, and (A3) Posttranslational oscillator (PTO). I
irradiance, PSU photosynthetic unit (a= open, b= closed, c=
damaged), D1′ free photosystem II reaction center protein, G3P internal
stored energy, m= cell size/mass, and GLG glycogen. Gene/protein:
rpoMH/RNAP RNA polymerase, rptMH/RPT ribosome, psuMH/PSU
photosynthetic unit, psbAI/D1 PSII reaction center, luxAB/Lux luciferase,
polMH/Pol DNA polymerase, ftsMH/Fts cell division, dumMH/−,
dummy (accounts for genes not explicitly considered), kaiA/KaiA, kaiB/
KaiB, kaiC/KaiC (UKaiC unphosphorylated, SKaiC phosphorylated
only on serine 431, TKaiC phosphorylated only on threonine 432,

DKaiC phosphorylated on both sites), circadian clock, and glgC/GlgC
glycogen synthesis. glgP/GlgP glycogen degradation. Schematic is
simplified and not all processes are shown for clarity (see Section S1,
Figs. S1–S14, Tables S1–24 for model details). b Population. An agent-
based approach is used to scale up from individual cells to the
population. c Light regime. Diel light pattern based on sunset/sunrise
calculations, seasonal, and horizontal based on monthly MODIS pho-
tosynthetically available radiation (PAR) and vertical attenuation based
on MODIS Chlorophyll a. d Circulation model grid. 2° × 2° resolution in
the horizontal, 22 layers in the vertical, transport based on OFES model
[20]. Green points marked O13 is Lagrangian track of transcriptomics
survey off Californian coast from ref. [32], see Fig. 3c. e Global scale
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Model overview

The dynamic gene-level model of Synechococcous is based
on a previous version [15] that was expanded to include
glycogen metabolism and integrated into a global ocean
circulation model. A complete model description, following
the ODD (Overview, Design concepts, and Details) model
documentation standard [16] is provided in Section S1
(Figs. S1–14, Tables S1–24). The remainder of this section
presents an overview of the model (following the Overview
part of the ODD protocol).

The purpose of the model is to explore how the cir-
cadian clock acts and interacts with other intracellular
mechanisms (i.e., glycogen metabolism) to produce cel-
lular behavior, and how it ultimately affects the ecological
fitness of cyanobacteria. The basic entities in the model
are individual cells, which are simulated using an agent-
based modeling approach to resolve population hetero-
geneity (i.e., cell cycle phasing [17]) and allow for
comparison to single-cell observations [15]. Each cell has
a number of state variables, including genes, transcripts,
proteins (incl. phosphorylation level), and metabolites.
The model simulates a select number of representative
genes using a coarse-grained modeling approach [18].
For example, glgP is representative of all genes involved
in the degradation of GLG to G3P. The model resolves
the diel light cycle and is applied at a number of temporal
and spatial scales, ranging from a few days in a

zero-dimensional laboratory beaker to a year in the three-
dimensional global ocean.

The model includes a number of intracellular processes that
are resolved at the gene or molecular level (Fig. 1a). Genes are
transcribed by the RNA polymerase (RNAP) to produce tran-
scripts (mRNA), which are translated by the ribosome (RPT) to
yield proteins that perform various functions. For example, the
photosynthetic unit (PSU, Fig. 1A1) produces energy (G3P),
which is then converted to biomass (m).

The model incorporates a GLG pool, genes responsible
for synthesis (glgC) and degradation (glgP), and the asso-
ciated metabolic cost, based on recent evidence demon-
strating the role of the circadian clock in GLG metabolism
[7, 8, 19] (Fig. 1A2). The energy pool (G3P) serves as
substrate and breakdown product for GLG. In the dark, G3P
is removed by respiration and supplied by GLG breakdown,
and when the cell runs out of G3P it dies (referred to here as
“dark death”).

The circadian clock is encoded by the kaiABC genes and
consists of two parts, including posttranslational oscillator
(PTO, Fig. 1A3) and transcriptional/translational feedback
loop. The model can reproduce the major observed features
of the clock in laboratory experiments, including entrain-
ment to light/dark (LD) cycles, free-running rhythms, phase
shifts by dark pulses, and KaiC protein dynamics. The
model proceeds in discrete time steps using an explicit finite
difference solution to the intracellular differential equations
(e.g., protein mass balances).
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Fig. 2 Model-data comparison for glycogen metabolism in Synecho-
coccus elongatus strain PCC 7942. Blue: Wildtype (wt1), Red and
green: No-clock mutants (nc1, nc2). a GLG level in cells grown in L:D
12:12 and transferred to LL at 0 day. Data from a ref. [7] and b ref. [8].

b Probability of death by an 18 h dark pulse applied at different points
in the circadian cycle and GLG level. Data from ref. [19]. See ref. [15].
and Section S2 for additional model-data comparisons and discussion
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The Synechococcus model is integrated into a global
ocean circulation model [20], which was aggregated in the
horizontal onto a 2° × 2° grid [21]. Incident light intensity
(photosynthetically available radiation, PAR) is based on
MODIS satellite observations, which was spread out over
the diel cycle and attenuated vertically based on MODIS
Chlorophyll a [22]. Individual cells are transported based on
output from the circulation model (e.g., velocities). The
population grows as a result of individual cells dividing
(cell growth is based on the net effect of photosynthesis and
respiration) and dying (intrinsic death when the cell runs out
of G3P, i.e., dark death). Nutrients are not included and to
constrain the population, an extrinsic death process that
accounts for grazing and viral lysis is additionally included.
Specifically, the extrinsic death rate is adjusted spatially and
dynamically to produce total population patterns consistent
with observed horizontal Chlorophyll a concentrations from
MODIS, which is based on formulations used in previous
ocean models [23, 24]. The total population size is therefore
imposed and not an emergent output from the model, which
is acceptable in this case because the focus is on the relative
fitness of various Synechococcus strains. Additional dis-
cussion of imposed vs. emergent patterns, including a
classification of all model output, is presented in Section S1
and Table S1.

Glycogen metabolism of the wild type in the lab

In the wild type, the GLG synthesis rate is light- and clock-
controlled and the GLG level fluctuates in L:D and this
fluctuation continues when transferred to LL (Fig. 2a, the
mutants are discussed in the next section). The sustained
rhythm in continuous light is clear evidence for the control of
the circadian clock on GLG synthesis, but this is of little
ecological relevance since cells do not live in this light regime
in the wild. In L:D cycles, the circadian clock functions to
suppress GLG synthesis early in the light period, which is
evident in the time course of GLG level, especially when
compared with the no-clock mutant. This feature has an
important effect on the fitness difference between the wild
type and mutant strains, as discussed in detail later.

The model was designed and calibrated to reproduce
these data, i.e., by making the GLG synthesis rate light- and
clock-controlled and calibrating various parameters (e.g.,
the GlgC rate constant, see Section S1), and this is therefore
not an emergent pattern or independent prediction. None-
theless, the model-data comparison serves as a check and
supports the mechanistic realism of the model.

Glycogen serves as a substrate for nighttime respiration
[25] and mutants of Synechocystis defective in GLG
synthesis are not viable in L:D light regimes [26]. We
included this effect by killing cells that run out of G3P,
which happens in cells without a GLG reserve in the dark.

This is consistent with recent observations that show cells
are more susceptible to killing by a dark pulse (referred to
here as “dark death”) at dawn, because they haven’t syn-
thesized enough GLG to survive the dark period [19]
(Fig. 2b, dawn corresponds to times 0 and 1 days). The
probability of dark death is generally lower at dusk when
the GLG level is highest (Fig. 2b, dusk corresponds to time
0.5 days). Experiments [8] also show that energy (ATP/
(ATP+ADP)) is maintained at a higher level when a dark
pulse is administered at dusk (time of higher GLG). This
general pattern is consistent with the model, although the
model uses G3P as an energy currency.

In addition to the primary pattern, which shows lower
probability of death at dusk, there is a secondary minimum
at ~0.3 days. The model reproduces this pattern, despite the
lower GLG level at that time, because the clock-controlled
respiration (which consumes G3P) rate is also lower at this
time (illustrated in Fig. S15). The susceptibility to dark
death is not only a function of the GLG level, but also how
fast it is used up.

The circadian clock controls the timing of respiration and
that affects the G3P level and susceptibility to dark death.
Model predictions suggest that this constitutes an important
fitness benefit of the circadian clock in the wild type over
the no-clock mutant at the global scale, as discussed in more
detail later.

The model was designed and calibrated to reproduce the
observed pattern of dark death probability. First, cells that
run out of G3P are killed, which results in a probability
inverse to GLG (which supports G3P in the dark), i.e., the
primary pattern in Fig. 2b. Second, the respiration rate was
made clock-controlled, which produces the secondary
minimum, as discussed above. As for the diel pattern in
GLG level, this model-data comparison serves as a check
and shows the model accurately represents the effect of
GLG on the susceptibility to dark death.

Additional model-data comparisons are presented in
the SI (see Section S2, Figs. S15–26 for additional model
results and discussion). This includes GlgC and GlgP
protein levels, which are relatively constant in L:D cycles
[27]. Observations for the corresponding transcript levels
are inconsistent [4, 28]. The clock control of GLG
synthesis (Fig. 2a) is included in the model by making the
GlgC enzyme activity clock-controlled. Allosteric acti-
vation of GlgC has been demonstrated [7]. The model is
also compared with growth and photosynthesis rates of
wild type and glgA and glgC mutants [25], which shows
that photosynthesis is enhanced in the presence of GLG.
This effect was suggested to be related to electron transfer
efficiency [25] and is included in the photosynthesis
component of the model. Overall, the model reproduces
the main observed patterns of GLG metabolism in
Synechococcus.
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Glycogen metabolism and fitness of the no-clock
mutant in the lab

To investigate the fitness advantage of clock-controlled
GLG synthesis we construct a model strain that has clock
output functions fixed at a constant value (no clock, nc1).
Driven only by light, this strain produces GLG accumula-
tion that is rhythmic in LD and relatively constant in con-
tinuous light (LL), a pattern consistent with observations
[7, 8] (Fig. 2a). The GLG level is unnecessarily high and the
growth rate in L:D 12:12 is substantially lower than the wild
type. The selection coefficient (s= growth rate of wild type
(wt1)/growth rate of no-clock mutant (nc1)− 1) is 30%,
which is of similar magnitude as the 20% difference
quantified for the long period mutant (P28 [15],). The larger
difference here suggests that having no clock is worse than
having a slow clock.

The observations for the no-clock strains in Fig. 2a are
from lab-generated mutants and the high GLG synthesis rate
is unlikely representative of wild-type no-clock strains. In
other words, we would expect that such a mutant (Fig. 2a,
nc1) would probably acquire some secondary/compensatory
mutation(s) to reduce the GLG synthesis rate if it is to
survive in the wild. The laboratory knockout mutant strain

may not have acquired such mutations. To allow for a fairer
comparison of the clock-controlled and light-controlled
GLG synthesis strategies, we construct a no-clock strain
with lower GlgC rate, which produces GLG levels com-
parable to the wild type (nc2) (Fig. 2a). Despite the similar
GLG levels, the mutant synthesizes more GLG early in the
light phase compared with the wild type. In the wild type,
the clock suppresses GLG synthesis early in the light phase.
In the mutant, GLG synthesis is controlled only by light and
there is no mechanism to slow it down early in the light
phase. This timing difference in GLG synthesis affects the
relative fitness of the strains. Specifically, rapid GLG
synthesis early in the light phase lowers energy, which
reduces synthesis of the photosynthesis apparatus and that
lowers photosynthesis overall (illustrated in Fig. S18). The
net effect is that the no-clock mutant strain grows a little
slower than the wild type (s= 4.0%).

As for the wild type, the temporal pattern of GLG level
in the mutant, i.e., synthesis in light and degradation in
dark, and no rhythm in continuous light, is a direct and
obvious consequence of the model design and calibration,
and therefore not an emergent pattern. However, the abso-
lute and relative growth rates (selection coefficient) are
independent predictions and emergent model output.
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Marine wild type and no-clock mutants

The model was developed based on observations from a
freshwater strain and for the ocean application several
photosynthesis parameters were recalibrated. Additional
model-data comparisons for the marine strain in the
laboratory, including growth rate at various light intensities
[29] and GLG content vs. time in LD cycle [30] are pre-
sented in the SI (Figs. S19, S20). In addition, parameters
were calibrated against observed Synechococcus levels at
Hawaii (see next section). To allow for a fair comparison
between the clock and no-clock strategies, the GlgC rate for
the ocean wild type (wt3) and no-clock mutant (nc3) were
optimized to yield maximum growth at Hawaii (Fig. S4
presents results of optimization).

Growth and gene expression of the wild type in the
ocean

Comparison to field data shows the model reproduces many
of the observed features (Fig. 3). The observed Synecho-
coccus concentration at Hawaii is higher near the surface
and shows a weak subsurface maximum at 75 m (Fig. 3A1).
The model reproduces this feature as a result of calibration.
Therefore, although the model accurately reproduces the
vertical distribution of cells, this is not an emergent output.
Observations show a relatively weak seasonal pattern of
Synechococcus concentration, which is related to increased
vertical mixing and nitrate availability in the winter [31].
The model population follows the satellite Chlorophyll a,
which shows a weaker seasonal signal (Fig. S6).

Comparison to in situ observations of gene expression
illustrate that the model captures the main observed pattern
in Synechococcus clock and photosynthesis genes [32]
(Fig. 3c). The observed transcript levels for the clock genes
(kaiABC) peak around 18:00. The model predicts a slightly
earlier peak and a faster decline following the peak.
Observed photosynthesis gene (psbA) transcripts peak ear-
lier, around 16:00. The model also predicts an earlier peak,
but predicts no expression at night. Overall, the observed
gene expression appears more damped than the model,
which may be a consequence of the higher genetic diversity
in the field compared with the laboratory experiments used
to support the model development. Further, the circadian
clock model was developed based on observations from
experiments with freshwater Synechococcus and exclu-
sively for continuous light conditions.

For the global simulation there was some recalibration of
photosynthesis and glycogen metabolism components in the
model (see previous section), but the circadian clock part
was not changed. Although the pattern can be considered
imposed, because the model was designed and calibrated to
reproduce the general observed diel patterns of psbA and
kaiABC gene expression, the application to a different
environment and comparison to new data can be considered
a validation. Overall, the model captures the main observed
patterns and can reproduce the functioning of the circadian
clock in the ocean.

The model also computes other parameters that were not
measured in the field study [32], such as total and phos-
phorylated KaiC protein and GLG levels (Fig. 3C5 and 3C6),
and it generates output at different locations, depths, and

Fig. 4 Fitness benefit of circadian clock in the global ocean. a Global
pattern of selection coefficient (s= net growth rate of wildtype [wt3]/
no-clock mutant [nc3]− 1). Blue lines are mean annual latitudinal
extent of Synechococcus (circadian clock) and Prochlorococcus (only
a reduced clock) from ref. [11]. b Comparison of select variables at

HOT, south Indian (SOIN), north Atlantic (NOAT), and Amazon
River (AMAZ) locations (see Fig. S24 for time series). Filled boxes
are for the wild-type, while white boxes are for the no-clock mutant.
All values are averaged over model water column and 1 year (2010)
simulation period
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times (see Fig. S22), illustrating the capability of the model to
provide information and fill data gaps in various dimensions.

Spatial patterns of clock fitness benefit in the ocean

To understand the fitness benefit conferred by the circadian
clock, we simulate wild type and “no-clock” strains in the
global ocean model. Both strains grow well with higher
growth rates at the sunnier low latitude and less turbid open
ocean (Fig. S23). The wild type grows faster everywhere,
which is mostly due to the diel rhythm in respiration and
effect on G3P and dark death (the same mechanism
responsible for the secondary minimum in Fig. 2b), as
follows. In the model, respiration constitutes a loss of
energy and the beneficial function of respiration is not
explicitly considered (a common approach in phytoplankton
ecosystem models). This means respiration is a fitness cost.
The overall respiration rates are similar, but slightly lower
for the mutant (Fig. 4B2). Therefore, the fitness benefit for
the wild type does not arise from simply respiring less
across the board. Rather, it is due to the timing of respira-
tion, which is repressed early in the dark period by the clock
in the wild type. This shifts respiration to later in the dark
period and allows the cell to maintain a higher G3P level
and consequently experience less dark death (Fig. 4b). The
fitness benefit (selection coefficient) is generally larger at
darker locations (Fig. 5), because dark death is a more
significant factor there, which amplifies the fitness advan-
tage of the wild type.

This is a testable prediction coming out of the model, and
we attempted to validate this pattern experimentally, using

laboratory experiments with wild type and laboratory no-
clock mutant strains. These experiments were unsuccessful,
in that they showed a stronger fitness benefit at higher light
intensities (Section S3, Figs. S27, 28 which presents
methods and results of this experiment). These results
suggest the model is incomplete, but the discrepancy may
also be due to differences between the mutant strains used
for the model development (Fig. 2, kaiC, kaiBC, and cikA
mutants) and experiment (kaiABC mutant), optimization of
GlgG rate in the ocean environment, different light regimes
in the ocean and lab, and neither strain may be a good
representative of the wild type no-clock strain.

Interestingly, the fitness map (Fig. 4a) shows more
structure than a simple low-to-high latitude gradient. That is
because a number of factors affect the light experienced by
the population, including (in order of significance),
incoming radiation (R2= 0.78, also lower at the cloudier
equator, Fig. S11), vertical mixing (R2= 0.37, highest in
Southern Ocean, Fig. S8), light extinction (R2= 0.096,
higher in turbid coastal areas and to lesser extent equator
and northern latitudes), and vertical advection (R2= 0.046,
positive at Equator and coastal upwelling areas, Fig. S9).

The model predicts that the fitness benefit of the circa-
dian clock is less in the low latitude open ocean, where the
light level is higher. These patterns constitute a true pre-
diction in the sense that no parameters were calibrated to
achieve these patterns. Further, they are an emergent
property of the model. In other words, they result from the
complex interaction of the intracellular mechanisms and are
not imposed or directly defined by the model design or
input. The model is based entirely on laboratory experi-
ments with simple LD cycles (i.e., L:D 12:12) and constant
light intensity, which is quite different from the light pattern
in the model, which varies gradually over the diel cycle and
year, and horizontally and vertically. It is entirely possible,
for example, that the model would have predicted a weaker
fitness benefit of the clock at higher latitudes, due to sum-
mertime increased photoperiod.

Interestingly, the global pattern is generally consistent with
the observed biogeography of Prochlorococcus and Syne-
chococcus, including latitudinal extent (blue lines in Fig. 4a)
and dominance in coastal vs. open ocean domains [10], as
well as laboratory experiments that show that Synechococcus
is better able to survive darkness than Prochlorococcus [33].
Comparing the model no-clock Synechococcus strain to
Prochlorococcus is a simplification, because although the
latter does not have a bona fide circadian clock, it has an
hourglass timer [2, 12–14]. The simplification is necessary
however, because the present model does not include the
Prochlorococcus timekeeping mechanism (which also has not
been characterized at the molecular level). Nonetheless, we
believe the comparison is meaningful, because it goes in the
right direction along the dimension of timekeeping
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R² = 0.4345
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Fig. 5 Selection coefficient vs. light experienced by the population.
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functionality, from light-induced behavior (Synechococcus
no-clock mutant, model no-clock mutant) to hourglass timer
(real Prochlorococcus) to bona fide circadian clock (Syne-
chococcus wild type, model wild type).

Summary and outlook

The circadian clock manages energy over the diel cycle, and
our study shows that this results in an important fitness
benefit and that this benefit is weaker in the low latitude
open ocean, which is consistent with observed marine
microbe circadian ecology.

Several past models have combined gene-level and
ecosystem processes [34–36], but our approach to dyna-
mically simulate gene, transcript, protein, and metabolite
levels for an entire environmental system is novel.

We investigated the role of a molecular mechanism, the
circadian clock, in the fitness of cyanobacteria, and then
scaled up to the global biogeography, the distribution of
Synechococcus and Prochlorococcus. The scope of our
study is wide and complete in the dimension of biological
organization, from the molecular to the globe, but also
narrow and limited in the mechanistic dimension, the role of
the clock in energy management. Since the clock controls
genome-wide gene expression [4, 5], we expect there to be
many additional effects on cellular fitness. Even for GLG
metabolism there are multiple effects, because GLG is not
only an energy store, but its synthesis also serves as an
electron sink during daytime [9]. In addition, there are many
other factors controlling the distribution of Synechococcus
and Prochlorococcus, like temperature [11]. Our choice to
keep the model simple is in part based on necessity, because
most other mechanisms are not as well understood as the
circadian clock and its role in energy management. It was
also a strategic choice, because excluding other mechanisms
allows us to isolate and illustrate the effect of the included
mechanism. The downside of the focus on a single
mechanism is that it limits the model’s ability to compre-
hensively represent the fitness benefits of the clock and
biogeography of marine cyanobacteria. Nonetheless, our
study is proof-of-concept that a molecular mechanism can
be integrated into a full-scale ecosystem model and produce
meaningful and intuitive results, and the same general
approach can be used to explore additional mechanisms,
maybe by extending the present model.

The present model only resolves a handful of mechanisms
and corresponding representative genes, but the structure
permits expanding it to the genome scale, for which obser-
vations are available [4, 27, 28, 32]. Genome-scale tran-
scription and metabolism models for cyanobacteria have
been developed [37–39] and some of those concepts can be
adopted for this effort. The model can be extended to include
other cyanobacteria and heterotrophs, which also exhibit diel

rhythms [32], and then integrated into biogeochemical
models [40, 41]. Eventually, this methodology can be
extended to include the dark ocean and closed biogeo-
chemical cycles, and used to make climate change predic-
tions. One major advantage of such a model would be that it
can be informed by molecular-level observations, including
gene, transcript, protein and metabolite levels, and single-
cell observations [32, 42–45]. This would constitute a big
step toward closing the growing gap between our models
and observations and knowledge [46, 47].
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