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Abstract
Microbial community assembly is a complex process shaped by multiple factors, including habitat filtering, species
assortment and stochasticity. Understanding the relative importance of these drivers would enable scientists to design
strategies initiating a desired reassembly for e.g., remediating low diversity ecosystems. Here, we aimed to examine if a
human fecal-derived defined microbial community cultured in bioreactors assembled deterministically or stochastically, by
completing replicate experiments under two growth medium conditions characteristic of either high fiber or high protein
diets. Then, we recreated this defined microbial community by matching different strains of the same species sourced from
distinct human donors, in order to elucidate whether coadaptation of strains within a host influenced community dynamics.
Each defined microbial ecosystem was evaluated for composition using marker gene sequencing, and for behavior using 1H-
NMR-based metabonomics. We found that stochasticity had the largest influence on the species structure when substrate
concentrations varied, whereas habitat filtering greatly impacted the metabonomic output. Evidence of coadaptation was
elucidated from comparisons of the two communities; we found that the artificial community tended to exclude saccharolytic
Firmicutes species and was enriched for metabolic intermediates, such as Stickland fermentation products, suggesting overall
that polysaccharide utilization by Firmicutes is dependent on cooperation.

Introduction

A critical knowledge gap in the field of microbial ecology is
understanding the relative contribution of the forces that
drive microbial community assembly. Uncovering this
information would facilitate the development of rationally
designed strategies to remediate microbial communities
exhibiting undesirable functionality or successive progres-
sion after a perturbation. Such forces have been proposed to
include environmental selection, historical contingency,
dispersal limitation and stochasticity [1]. Environmental
selection additionally encompasses several distinctive sub-
factors that yield well to manipulation or measurement for

predictions, including niche availability (i.e., habitat filter-
ing) and microbial interactivity (i.e., species assortment and
coadaptation) [2–4]. Bioreactors present a promising strat-
egy for studying the importance of such drivers, because
culture conditions within them can be tightly controlled, and
the use of defined microbial consortia can additionally serve
to not only deconvolute the system but also to allow for
manipulation to address each factor individually [5, 6].
Bioreactors are also currently utilized for both research and
industrial processes [7–13], and thus observing and quan-
tifying the contribution of these ecological forces on com-
munity assembly is in itself useful information for these
applications.

The human gut microbial ecosystem (i.e., human gut
microbiota) is a suitable testing ground for ecological the-
ory. This ecosystem is known to be critical to health and
well-being [14–16], with alterations in both community
structure and function reported in several GI disorders
[17, 18]. Proper succession of the human gut microbiota
during infancy and childhood is also essential to proper
development and education of the immune system [19],
with such deviations again associated with later onset of
autoimmune conditions [20–22]. Therapeutics targeting the
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human gut microbiota have been trialed in such cases,
including probiotics and fecal microbiota transplantation.
However, the results of such clinical trials have been mixed
[23–25], with several factors having been found to influence
outcomes, including dosage, number of strains/donor and
diet. Clearly, the availability of an ecological theoretical
framework to contextualize the environmental and micro-
bial constitution would improve the design process of these
ecosystem interventions. Further, bioreactor-based models,
such as the Simulator of Human Intestinal Microbial Eco-
system (SHIME) system [26, 27] and single-vessel units
[13], are popular methodological approaches for investi-
gating human gut microbial ecology, due to their replic-
ability, sample yields, cost and lack of ethical constraints.

Thus, in our study, we aimed to quantify the relative
impact of two of the drivers of microbial community
assembly, environmental selection and stochasticity, in
terms of both compositional species structure and metabolic
behavior, through use of a defined microbial community
derived from a human fecal sample and single-vessel
bioreactor-based models. For the evaluation of environ-
mental selection, we chose to utilize different medium
formulations that replicate a high fiber, low protein diet and
a high protein, low fiber diet, as diet has been proposed to
be the dominant environmental influencer acting on the
human gut microbiota [28]. We additionally scrutinized the
two subfactors of environmental selection, habitat filtering
and species assortment, by including a second defined
microbial community matching the species constitution of
the first, but where each bacterial strain was sourced from a
unique human donor. Therefore, the diets would be a
representation of habitat filtering, whereas the distinctive
communities would model species assortment or coa-
daptation. To control for adaptation to the dietary condition
that could occur during the initial assembly, we additionally
introduced a dietary change after allowing sufficient time
for community equilibration to measure the response to a
relevant perturbation. Finally, for the evaluation of sto-
chasticity, we assessed the reproducibility of replicates
using several multivariate statistical methods to explore
community dynamics.

Materials and methods

Creation of defined microbial communities

Two defined microbial communities were created to
examine the effects of coadaptation on the dynamics of
community assembly. The first community served as a
control, in which all bacterial strains were derived from the
same fecal sample. The second community was constructed
to match the species composition of the first (as determined

by aligning the 16S rRNA genes from each respective pair),
but with each bacterial strain sourced from a unique donor’s
fecal sample. The isolation methods and donor description
of the control community (CC) is described in Petrof et al.
[29]; however, additional species from this isolation round
were added to improve the diversity of the formulation
(Table S1). The same isolation techniques were utilized to
derive the microbial strains for the second, “artificial”
community (AC). The donors or international culture col-
lections used to source each species of the AC are indicated
in Table S1.

Genomic DNA (gDNA) isolated from each strain was
individually 16S rRNA gene sequenced using an Illumina
MiSeq instrument (Illumina Inc., Hayward, CA, USA) in
order to use the high read count output as a method to
interrogate the purity of each sample. The gDNA was first
extracted from each strain following the protocol described
in Strauss et al. [30], and the library preparation, sequencing
and data processing were then conducted as described in the
16S rRNA-based compositional profiling section below. An
average read depth in the 103 range was typically achieved
when sequencing single strains. The strains were decidedly
pure when all amplicon sequence variants (ASVs) that
could not be attributed to the target species were of low
abundance (<1%) and could be accounted for as sample
cross-contamination through referencing sample blanks.
Any strains that were not pure were subjected to serial
dilution to extinction, as a method to improve isolation, and
were then re-evaluated by the above technique.

Bioreactor operation

A 500 mL Multifors bioreactor system (Infors AG, Bott-
mingen/Basel, Switzerland) was inoculated with the defined
microbial communities and operated as a model of the
human distal colon as previously described [31]. Briefly,
bioreactors were run under the following conditions to
mimic the physiological conditions found within the human
colon: (1) 37 °C, (2) pH 7.0, (3) retention time of 24 h (500
mL of feed added per vessel per day at a constant rate while
maintaining volume), and (4) anaerobic conditions through
sparging of N2 gas. The feed medium was designed to
replicate two dietary conditions, high fiber, low protein
(HF) and high protein, low fiber (HP), based upon the
formulation in Marzorati et al. [32] but modified to
accommodate a single-vessel system as in McDonald et al.
[13] (Table S2). The study design is depicted in Fig. 1. In
general, four experiments were completed, with samples
taken before (B) and after (A) a dietary switch: (1) CC; HF
to HP, (2) CC; HP to HF, (3) AC; HF to HP, and (4) AC;
HP to HF. Three biological replicates were taken for each
experimental sampling point (every 2 days from day 2 to
day 28). Technical replicates at each sampling point were
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pooled for analysis, for sequencing this was done to account
for amplification bias [33] and for 1H-NMR this was done
because previous work has shown acquisition error is
minimal [34].

16S rRNA-based compositional profiling

The gDNA from bioreactor samples was extracted through
use of the QIAamp Fast DNA Stool Mini Kit (Qiagen Inc.,
Germantown, MD, USA) according to the manufacturer’s
directions, but with extra steps included to improve cell
lysis. Prior to proceeding with their recommended protocol,
cells were first pelleted through centrifugation at
14,000 rpm for 15 min at 4 °C. After resuspension in the
lysis buffer, 0.2 g of zirconia beads (Biospec Products Inc.,
Bartlesville, OK, USA) were added, then the samples were
bead-beat with a Digital Disruptor Genie (Scientific

Industries Inc., New York City, NY, USA) at 3000 rpm for
4 min. The samples were subsequently incubated at 90 °C
for 15 min, and finally, ultrasonicated at 120 V for 5 min
(Branson Ultrasonics, Danbury, CT, USA). Libraries for
sequencing were constructed by a one-step PCR amplifi-
cation with 400 ng of Nextera XT Index v2 sequences
(Illumina Inc.) plus standard 16S rRNA v4 region primers
[35] and 2 μL of gDNA template in Invitrogen Platinum
PCR SuperMix High Fidelity (Life Technologies, Burling-
ton, ON, Canada). Cycler conditions included an initial
melting step of 94 °C for 2 min, followed by 50 cycles of
94 °C for 30 s, annealing temperature for 30 s and 68 °C for
30 s, with a final extension step of 68 °C for 5 min. The
annealing temperature comprised of a 0.5 °C increment
touch-down starting at 65 °C for 30 cycles, followed by 20
cycles at 55 °C. The PCR products were subsequently
purified using the Invitrogen PureLink PCR Purification Kit

Fig. 1 Experimental design of bioreactor runs. Bioreactors were either
inoculated with the control community (CC) consisting of 23 bacterial
isolates from a single donor fecal sample or the artificial community
(AC) consisting of 23 bacterial isolates from separate donor fecal
samples that match the species of the CC by 16S rRNA gene sequence
similarity (≥97%). Bioreactors were either fed a high fiber, low protein
medium or a high protein, low fiber medium, which are distinguished
by color in the figure. After allowing a 14-day equilibration (B), the
medium formulations were changed, and then the bioreactors were run
for an additional 14 days (A). Experiments are numbered by the

microbial community and starting diet combination (1–4), with each
experiment conducted in biological triplicate. Sampling occurred every
2 days, in which 2 × 2 mL were taken and stored at −80 °C for 16S
rRNA gene sequencing and 1H-NMR-based metabonomics, respec-
tively. The box with the dotted line showcases this sampling schematic
and how samples were divided into early (green box) and late (purple
box) groups for moving window analysis to determine temporal sta-
bility. The comparisons conducted and statistical tests used to deter-
mine significance are outlined in Table S3
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(Life Technologies) according to the manufacturer’s direc-
tions. Normalization and Illumina MiSeq sequencing was
carried out at the Advanced Analysis Center located in the
University of Guelph, ON, Canada.

The obtained sequencing data set was processed using R
software version 3.5 with the package DADA2 version 1.8,
following their recommended standard protocol [36].
Classification to the genus level was additionally carried out
via DADA2 using the SILVA database [37] version 132.
Classification to the species level, however, was conducted
by uploading the ASVs to NCBI BLAST (https://blast.ncbi.
nlm.nih.gov) and selecting the identification with the
highest percentage and lowest e-value, while cross-
referencing with the known species constitution of the
defined microbial communities. The data set was then
denoised by adding the ASVs that returned identical species
classifications together, and after which the ASVs that
equated to <0.01% total abundance across all samples were
removed. Finally, the data set was normalized by center-log
ratio transformation through use of the package ALDeX2
version 1.12, taking the median of the Monte-Carlo
instances as the value [38]. The statistical analysis of this
data set is described in Table S3, with details provided in
the supplementary information.

1H-NMR-based metabonomics

Sample preparation, 1H-NMR spectral acquisition and
processing, and profiling of metabolites was conducted as
previously described [31]. Briefly, samples were cen-
trifuged at 14,000 rpm (maximum speed) for 15 min to
clarify, and the supernatants were passed through a 0.22 μm
filter. The addition of Chenomx internal standard (Chenomx
Inc., Edmonton, AB, Canada) to the filtrates at 10% v/v and
the scanning parameters were implemented according to the
recommendations of the Chenomx NMR suite 8.3, in order
to match the found compounds to their library. A Bruker
Avance III 600MHz spectrometer with a 5 mm TCI 600
cryoprobe (Bruker, Billerica, MA, USA) at the Advanced
Analysis Center located in the University of Guelph, ON,
Canada was utilized for spectral acquisition. Spectra were
collected at a sample temperature of 298 K. The spectra
were then analyzed using both an untargeted spectral bin-
ning and targeted metabolite profiling approach with the
Chenomx NMR suite. For spectral binning, the default
parameters of 0.04 ppm sized bins along the 0.04–10 ppm
region of the spectrum line with omission of water
(4.44–5.50 ppm) and normalization by standardized area
(fraction of the chemical shape indicator, DSS) were
implemented. For metabolite profiling, target regions of
interest in the spectra were selected by partial least squared-
discriminant analysis (PLS-DA) of the spectral binning
data set (refer to supplementary information). Metabolite

identifications were then based on the best fit for the peak
regions with the available libraries of compounds. The
libraries included both the internal set included with the
Chenomx software suite, and the downloaded HMDB [39]
set release 2. The statistical analysis of both data sets is
described in Table S3, with details provided in the supple-
mentary information.

Results

Determination of microbial community temporal
stability and replicate reproducibility

For this work, it was essential to first determine at which
day the bioreactor-grown microbial communities had
achieved a relatively stable configuration over time (i.e.,
temporal stability), in order to make subsequent compar-
isons. The CC reached temporal stability compositionally
by day 2 and metabolically by day 4, as determined by a
lack of significant time-level variation found by both partial
redundancy analysis (as a continuous variable) and
repeated-measures PERMANOVA (as a categorical vari-
able) through conducting moving window analysis, utiliz-
ing the center-log ratio transformed marker gene sequencing
and 1H-NMR spectral binning data sets (Figs. S1, S2;
Table S4). Upon dietary change from HF to HP, the
microbial community was compositionally similar from the
first time point (day 16) until the end of the run (day 28);
however, metabolic temporal stability was not reached until
day 18. This latter observation is in line with the calculated
amount of time it would take for the bioreactor to shed the
excess 2000 mg/mL concentration of fiber from lingering
fiber-rich medium following medium change to HP com-
position, which is 4 days post medium change (Fig. S3).

Results obtained running the AC under the same condi-
tions were much more variable (Figs. S1, S2; Table S4).
Temporal stability was reached for this community both
compositionally and metabolically by day 2 in the HF
medium, with no significant differences observed at the first
time point of day 16 after the change in medium formula-
tion. In the HP medium, however, the AC followed the
patterns of the CC more closely than in the HF medium,
except for taking longer to reach metabolic temporal sta-
bility (6 days compared to 4 days for the CC).

Next, the reproducibility between replicates of the same
condition was evaluated for both the normalized sequence
count and 1H-NMR spectral binning data sets. Statistically
significant differences between replicates were found within
all conditions for both data sets (Table 1). Stochastic var-
iation was thus clearly present across each experiment, and
thus in order for the changes induced by an introduced
environmental pressure to be deemed statistically significant
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overall, we defined this to mean that it must exceed the
within-condition replicate separation (Fig. 2). This could be
evaluated by overlap of ellipses and magnitude of the
pairwise Mahalanobis distance for the PCA approach, and
recapitulation of the expected clusters by untargeted PAM
clustering for the Euclidean distance approach.

The data from the CC collected prior to the dietary
switch were used to briefly gauge the extent of difference
between biological replicates (Fig. S4). The normalized
sequencing data set was used to evaluate shifts in taxo-
nomic abundance (available on public database figshare
accession number: 10.6084/m9.figshare.c.4413062, with
raw FASTQ files deposited in public database NCBI
BioProject accession number: https://www.ncbi.nlm.nih.
gov/bioproject/524005). The species that were statistically
significantly different in abundance between replicates
include [Eubacterium] rectale (q-value= 4E-2; effect
size= 65%) and Lactobacillus paracasei (q value= 4E-2;
effect size= 62%) in the HF condition, and [Eubacter-
ium] eligens (q value= 1E-2; effect size= 64%), Bifido-
bacterium pseudocatenulatum (q value= 1E-2; effect
size= 58%), Escherichia coli (q value= 1E-2; effect
size= 67%), Eubacterium limosum (q value= 1E-2;
effect size= 66%), Faecalibacterium prausnitzii (q
value= 1E-2; effect size= 74%), Klebsiella aerogenes (q
value= 1E-2; effect size= 78%) and Ruminococcus fae-
cis (q value= 1E-2; effect size= 67%) in the HP condi-
tion. Several metabolites yielded from profiling of
1H-NMR spectra (concentration data available on public
database figshare accession number: 10.6084/m9.figshare.
c.4413062) were also statistically significantly different in
abundance for both conditions (Table S5), including
amino acids, metabolites derived from amino acid fer-
mentation, acetate, lactate, succinate (HP only), and uracil
and alcohols (HF only).

Microbial community response to dietary changes

With the decided criteria from the above objective, i.e., the
pairwise Mahalanobis distance exceeding a value of 1.0 and
untargeted PAM clustering recapitulating the expected
pattern of clustering samples by diet, neither community
altered its composition in response to dietary change
(Table 1). However, the dietary change did elicit a clear
significant difference in the metabolite profile of both
communities (Table 1; Fig. 2). The untargeted PAM clus-
tering approach reliably recapitulated two clusters, each
containing only the samples of one specific diet, as the best
solution. The average between group Mahalanobis distance
was also larger than the maximum obtained average
Mahalanobis distance between replicates by a magnitude of
1.2. Finally, there was no significant difference between
communities that were originally cultured in one medium

compared to those eventually cultured in the same medium
following a period of culture in a different medium, sug-
gesting that within-experiment adaptation was not a con-
founding factor (Table 1).

Based upon the above results, we determined which
features (individual taxa and metabolites) were statistically
significantly different between the medium formulations of
which the communities were initially grown. As expected,
no statistically significant differences were found between
the abundance of species (data not shown). The metabolite
profiles, however, revealed >15 metabolites that exhibited
significant changes in concentration in both the CC and AC
(Table S5). The concentrations of short-chain fatty acids
(SCFAs) and select metabolites of interest that were sig-
nificantly different between growth medium conditions are
depicted in Fig. S2 and Fig. 3 respectively. Most of these
alterations were identical between each community,
including increased concentrations of several amino acids
and their specific fermentation by-products, a lower con-
centration of methanol and a higher concentration of uracil
in the HP medium. Community-specific deviations included
increases in concentration of several amino acids and suc-
cinate, and a decrease in concentration of valerate for the
CC in the HP medium, whereas the AC had a higher con-
centration of isobutyrate and a lower concentration of
glyoxylic acid.

Effect of coadaptation on microbial community
structure and behavior

Finally, the differences between the CC and AC in both
media were evaluated overall and between individual taxa
and metabolites as above, to determine if potential coa-
daptation impacted community composition or behavior.
With the set criteria, there were no significant differences
between the overall compositional nor metabolite land-
scape (Table 1). However, there were several significant
differences between individual taxa and metabolites. For
the taxa, E. rectale (HF/HP; p value= 5E-6/4E-4; effect
size= 74%/62%), Faecalicatena fissicatena (HF/HP; p
value= 2E-5/6E-4; effect size= 60%/54%) and Copro-
coccus comes (HF only; p value= 1E-5; effect size= 65%)
were significantly altered. Upon examining the raw
sequence counts, it was observed that both E. rectale and
C. comes were virtually undetected in the AC, with the
latter likely only reaching statistical significance in the HF
condition due to its relatively higher abundance in the CC.
On the other hand, F. fissicatena was present in both
communities, but at a lower abundance in the CC. For the
metabolites, several amino acids, organic acids and uracil
had increased concentrations in the CC, whereas branched-
chain fatty acids reached higher concentrations in the AC
(Table S5; Fig. 3).
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Discussion

Understanding the drivers of community succession is
useful at the bench when modeling microbial ecosystems
but can also translate to real-world applications. For
example, for the human gut microbiota, such an under-
standing could assist in the design of therapeutic strategies

aiming to correct microbial derangements seen in many GI
disorders, or the building of predictive tools to project
changes over time (for example, during infant develop-
ment). Here, we examined the relative impact of environ-
mental selection and stochasticity on gut microbial
community assembly through use of different substrate
formulations. Further, we differentiated the effects of

Fig. 2 Analysis of overall statistically significant differences in the 1H-
NMR spectral binning data set obtained prior to dietary switches.
Panel (a) depicts samples from days (D) 4–14 (temporally stable) of
the three bioreactors fed the high protein medium formulation,
grouped by microbial community. The artificial community (AC) data
points are colored in pink and the control community (CC) data points
are colored in blue. Samples are labeled by community, replicate (R)
number (1–3) and day. Panel (b) depicts samples from days (D) 2–14
(temporally stable) of all six bioreactors grouped by medium for-
mulation. The high fiber (HF) medium formulation data points are

colored in pink and the high protein (HP) medium formulation data
points are colored in blue. Samples are labeled by medium formula-
tion, replicate (R) number (1–3) and day. The left panel of each is the
result of principal component analysis (PCA), including ellipses
assuming the multivariate t distribution. The right panel of each is the
result of nonmultidimensional scaling (NMDS) of Euclidean distance
matrices, including the best solution of untargeted partitioning around
medoids clustering determined by average silhouette width. The effect
of diet (panel b) exceeds stochasticity, whereas the effect of microbial
community (panel a) does not
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habitat and member coadaptation within environmental
selection, by creating two comparative ecosystems: first, a
microbial community derived from a single fecal sample,

and second, an equivalent community (containing the same
or highly similar species) but with each member sourced
from individual donor fecal samples.

Fig. 3 Concentrations of select
metabolites that were
statistically significantly
different between medium
formulations or communities as
determined by 1H-NMR
metabolite profiling in
bioreactor samples over time.
Bioreactors 1–3 are the
communities that were initially
grown in the high fiber medium
formulation, whereas bioreactors
4–6 are the communities that
were initially grown in the high
protein medium formulation.
The resultant curve from LOESS
modeling is plotted for each
metabolite per bioreactor. Panel
(a) depicts the control
community, and panel (b)
depicts the artificial community.
Plots include error bars
representing the expected
amount of technical
measurement inaccuracy (10%)
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First, it was essential to remove all forms of technical
bias resulting from the use of a bioreactor-based model. It is
widely reported in the literature that an initial period of
adaptation occurs for microbial communities cultured in
bioreactors, after which point both the composition and
behavior is much more consistent throughout the experi-
mental run [13, 26, 27]. Significant variation between
replicate bioreactor runs containing the same microbial
community under identical conditions has additionally
previously been observed; it is unclear whether this sto-
chasticity is a property inherent to microbial communities or
is a result of batch effects [7–11]. We used a combination of
redundancy analysis and a repeated-measures PERMA-
NOVA validated by PAM clustering to determine when the
adaptation period ended. In general, metabolic temporal
stability was found to be attained later than compositional
temporal stability in our experiments, supporting the find-
ings of others [26, 27]. This observation is likely to repre-
sent the shift from exponential growth phase towards finer-
tuning of metabolic efficiency, and could be exacerbated by
the relatively higher technical error introduced by marker
gene sequencing when compared to 1H-NMR [40, 41]. The
use of multivariate techniques was prudent, since we found
that not all metabolites stabilized in concentration at the
same time. For example, the dominant SCFAs, often stea-
died in concentration at a faster rate than less dominant
metabolites, such as amino acid-derived fermentation by-
products (Fig. S2). We used similar multivariate techniques
to determine the extent of change in microbial composition
and behavior within replicates, which we recommend
weighing against the differences between any applied per-
turbation (diets and communities in our case) to evaluate
significance.

Our data suggested that growth medium significantly
altered the metabolic behavior of the microbial community
but not its composition. This is in line with previous
observations that found only minor alterations in microbial
community species structure after a dietary change [42–44]
and it is also known that the composition of the human gut
microbiota is robust during adulthood, with a 60% micro-
bial strain retention rate in a 5-year window [45]. The
metabolic changes we saw in both test ecosystems when
diets were switched included both proteolysis (as evidenced
by higher amino acid concentrations) and amino acid fer-
mentation (as evidenced by higher concentrations of by-
products specific to these metabolisms [15, 46]), which
increased in the HP medium compared to the HF medium
(Fig. 3). Wu et al. found that dietary changes only influ-
enced the species structure of the human gut microbiota
when maintained for long terms [44], i.e., considerably
longer than our experimental timeline of 10 days. Although
it is possible that different diets may influence the total
biomass of the community, and measurement of this would

be of interest, we believe that microbial community adap-
tation is not necessary to consider as a confounding factor
for the relatively short duration of our experiments.

We found that our control and artificial communities
were similar to each other in terms of overall composition
and metabolic behavior. However, in terms of species
structure, both E. rectale and C. comes failed to integrate
into the AC, although the included strains of these species
were part of the CC. Both of these species are saccharolytic
and capable of degrading fructans e.g., inulins; E. rectale
can also utilize starch and xylan-derived polymers [47–49].
Intriguingly, there is evidence in the literature that these two
species may share a connection; Lozupone et al. built a co-
occurrence network from fecal metagenomic data collected
from 124 unrelated adults and found that C. comes co-
occurred with E. rectale [50]. This fits with known micro-
bial physiology, for example, E. rectale is known to require
cooperation with other species to utilize resistant starches, as
it is incapable of conducting this activity on its own
[51, 52]. Lozupone et al. found that Bacteroides spp.
additionally co-occurred with E. rectale and C. comes, thus
it is possible that the Bacteroides ovatus strains in our
communities also represented potential collaborators [50].
Rakoff-Nahoum et al. elegantly showed that a strain of B.
ovatus produced both membrane-bound and secreted forms
of a glycoside hydrolase capable of degrading inulin [53].
When the secreted form of the enzyme was knocked-out, the
fitness of B. ovatus was not impacted when grown in
monoculture but was significantly diminished when grown
in a community setting. Tuncil et al. additionally demon-
strated that Bacteroides thetaiotaomicron and B. ovatus had
reciprocal glycan substrate preferences that were maintained
from monoculture to coculture [54]. These studies indicate
potential mechanisms of coadaptation within a gut microbial
ecosystem, such that specific species would adapt to occupy
unique niches, or would collaborate to exploit the same
niche (at least in terms of polysaccharide consumption). It is
possible that the B. ovatus strain in the AC lacked secretory
catabolic enzymes that would have assisted E. rectale and
C. comes in utilizing e.g., fructans, or that the glycan sub-
strate preference of the B. ovatus had shifted in favor of
consumption of the fructans that E. rectale and C. comes
could have otherwise degraded themselves, thus effectively
outcompeting them and explaining their loss from the AC
system over time. Alternative explanations beyond meta-
bolism might also include a communication mismatch
between strains via e.g., quorum sensing [55] or incompa-
tible antimicrobial defense mechanisms [56]. Thus, our
finding that specific strains are lost from the AC not only
revealed the presence of a possible, cooperative microbial
guild within the CC, but also demonstrated that strain level
variation is an important property to consider in studies
aiming to examine microbial community cooperation.
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Intriguingly, we found an elevated amount of amino acid
fermentation in the AC compared to the CC, as indicated by
decreased amino acid concentrations and increased con-
centrations of their specific fermentation by-products
[15, 46]. This heightened metabolic activity would explain
the lower amount of cluster separation for the AC compared
to the CC when considering medium formulation. We noted
evidence of Stickland fermentation occurring more often in
the AC compared to the CC (as evidenced by higher con-
centrations of isobutyrate, isovalerate and valerate in AC
compared to CC samples); Stickland fermentation is a
metabolism specific to the Firmicutes (usually within the
Clostridia) (Fig. 3) [57, 58]. Relevant to this finding, Shoaie
et al. demonstrated that when E. rectale was co-cultured
with B. thetaiotaomicron, E. rectale switched its gene
expression from a profile indicating fermentation of sac-
charides to one that fit with fermentation of amino acids
[59]. In this case, it is likely that the E. rectale strain
responded to the introduced competition by occupying a
different niche. When these results are considered alongside
our findings, they suggest that polysaccharide utilization by
the Firmicutes is dependent on a collaborative effort
between species, most likely because members of the Fir-
micutes tend to possess more highly specialized metabo-
lisms [60, 61], and in the absence of such cooperation, these
species will become putrefactive instead. Many GI disorders
are characterized by low diversity [62], and in particular, a
loss of bacterial species from clostridial cluster XIVa,
including E. rectale and C. comes [63, 64]. Further, there is
often a concurrent lack of butyrate (a metabolite that is
produced mainly through fermentation by certain Firmi-
cutes members [65]), and increased inflammation (which
can be promoted by the products of protein fermentation
[15, 66, 67]). It is possible that an erosion of cooperative
interactivity has occurred in these situations, resulting in
extinction of particularly dependent species and altered
behaviors from those that remain, exacerbating symptoms.

One limitation of our study was the ability to determine
microbial strain purity. We introduced deep sequencing of
16S rRNA gene region (V4) amplicons obtained from each
strain stock to increase the limit of detection of “con-
tamination” by very low-level microbial species in com-
parison to classical streak-to-purity microbiology
techniques. While this approach proved extremely helpful
and gave us confidence in the purity of the majority of the
isolates used for this study, there were exceptions. As the
first of these, we found that Akkermansia muciniphila
bloomed in the CC bioreactors, which was initially unex-
pected as it was not deliberately included in the ecosystem
and not detected by our deep sequencing check. PCR was
used to specifically look for Ak. muciniphila [68] using
gDNA extracted from each strain stock, revealing that Ak.
muciniphila was present as a low-level contaminant of the

CC Acidaminococcus intestini stock. This result was
unexpected, since an Ak. muciniphila signal was not
detected by deep 16S rRNA gene sequencing of the CC Ac.
intestini stock sample (>10,000 total reads) (Table S6).
After carrying out a re-extraction and re-sequencing of
gDNA from the Ac. intestini stock strain, this time cultured
on FAA supplemented with mucin (the latter being the
preferred growth substrate of Ak. muciniphila [69]), we
were able to clearly detect Ak. muciniphila, since this sup-
plementation allowed Ak. muciniphila to grow and become
10% of the total growth (Table S6). For the sake of our
experiment, we added an appropriate, donor derived strain
of Ak. muciniphila to the AC prior to conducting the bior-
eactor experiments for this community and then scrutinized
the sequencing count data set for any other outliers once
completed. Such scrutiny led to the finding of one further
exception to purity: we found an unexpected number of
reads classified as Phascolarctobacterium, and when Pha-
colarctobacterium-specific PCRs [14, 70] were conducted
on the gDNA of the bioreactor samples and strains, we
found Phascolarcterobacterium faecium to be present in all
six replicates of the bioreactor runs, as well as the E. rectale
stock, of the AC but not in the CC. We were unable to
separate and recover P. faecium from the E. rectale stock
culture despite multiple attempts (data not shown). Again,
P. faecium was present at a rate of 1 per 10,000 cells of E.
rectale. P. faecium did not reach high numbers in the
bioreactor environment, however, as it was not statistically
significantly increased in the AC when compared to the CC.
We examined the possible consequences of its inclusion to
our experiment. P. faecium is asaccharolytic and incapable
of Stickland fermentation, instead consuming succinate as a
substrate to produce propionate [14, 71]. We therefore
suggest that the inclusion of P. faecium would not have
impacted upon polysaccharide utilization networks or
increased putrefactive activity. One potential confounding
influence P. faecium may have had was on succinate and
propionate concentrations, as levels of succinate and pro-
pionate had decreased and increased respectively. Despite
this unresolvable P. faecium contamination in one com-
munity but not the other, we continued with the experiment,
since there is a dearth of validated alternatives for detecting
contaminants present at extremely low levels, and we
believe we did the best we could at ensuring strain purity
given the currently available tools. However, the potential
impact of P. faecium presence on the behavior of the AC
community should not be ignored.

We conclude that stochasticity is a property inherent to
human gut microbial ecosystems but is exceeded by forces
of environmental selection, at least in terms of driving
microbial community behavior. Substrate availability was
shown to dictate functionality over cooperative interactivity,
but that does not preclude the existence of coadaptation.
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Our work fits into the observations of previous studies, that
indicate microbial community assembly in the human gut is
a deterministic process [72], habitat filtering predominates
species assortment [2], competitive interactions are more
numerous than cooperative ones [73], but microbial guilds
covering metabolic modules exist [3, 4]. We have also
found evidence that microbial community alterations
exhibited in GI disorders could result from a break-down of
cooperation. Future work studying microbial interactions
should consider strain level variation, and could, for
example, compare interactions between strains derived from
high versus low diversity ecosystems and the possibility
that interactions drive the emergence of alternative stable
states.

Data availability

The data sets generated during and/or analyzed during the
current study are available in the figshare repository (10.6084/
m9.figshare.c.4413062), and the NCBI BioProject repository
(https://www.ncbi.nlm.nih.gov/bioproject/524005).

Acknowledgements We would like to acknowledge the Natural Sci-
ences and Engineering Research Council of Canada and Ontario
Ministry of Training, Colleges and Universities scholarships to KO for
providing funding. Funding was gratefully received from an NSERC
Discovery Grant and a National Institutes of Health R21 (AI121575-
01) to EA-V. We are most thankful to our collaborators, Dr. Mike
Surette, McMaster University, Canada and Dr. Sydney Finegold, VA
Wadsworth Laboratory, USA for the gift of suitable matching strains
for our AC community, as well as members of the EA-V lab for
providing other needed isolates—Dr. Mike Toh, Michelle Daigneault,
Erin Bolte and Dr. Rafael Peixoto.

Compliance with ethical standards

Conflict of interest EA-V is the co-founder and CSO of NuBiyota
LLC, a company that is working to commercialize human gut-derived
microbial communities for use in medical indications. The other
authors declare that they have no conflict of interest.

Publisher’s note: Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

References

1. Costello EK, Stagaman K, Dethlefsen L, Bohannan BJM, Relman
DA. The application of ecological theory towards an under-
standing of the human microbiome. Science. 2012;336:1255–62.

2. Levy R, Borenstein E. Metabolic modeling of species interaction
in the human microbiome elucidates community-level assembly
rules. Proc Natl Acad Sci USA. 2013;110:12804–9.

3. Larsen OFA, Claassen E. The mechanistic link between health and
gut microbiota diversity. Sci Rep. 2018;8:2183.

4. Zhang C, Yin A, Li H, Wang R, Wu G, Shen J, et al. Dietary
modulation of gut microbiota contributes to alleviation of both
genetic and simple obesity in children. EBioMedicine.
2015;2:968–84.

5. Großkopf T, Soyer OS. Synthetic microbial communities. Curr
Opin Microbiol. 2014;18:72–7.

6. Zhou J, Ning D. Stochastic community assembly: does it matter in
microbial ecology? Microbiol Mol Biol Rev. 2017;81:e00002–17.

7. Pagaling E, Strathdee F, Spears BM, Cates ME, Allen RJ, Free A.
Community history affects the predictability of microbial eco-
system development. ISME J. 2014;8:19–30.

8. Graham DW, Knapp CW, Van Vleck ES, Bloor K, Lane TB,
Graham CE. Experimental demonstration of chaotic instability in
biological nitrification. ISME J. 2007;1:385–93.

9. Zhou J, Liu W, Deng Y, Jiang Y-H, Xue K, He Z, et al. Stochastic
assembly leads to alternative communities with distinct functions
in a bioreactor microbial community. mBio. 2013;4:e00584–12.

10. Kohrs F, Heyer R, Bissinger T, Kottler R, Schallert K, Püttker S,
et al. Proteotyping of laboratory-scale biogas plants reveals mul-
tiple steady-states in community composition. Anaerobe.
2017;46:56–68.

11. Gast CJVD, Ager D, Lilley AK. Temporal scaling of bacterial
taxa is influenced by both stochastic and deterministic ecological
factors. Environ Microbiol. 2008;10:1411–8.

12. Van de Wiele T, Van den Abbeele P, Ossieur W, Possemiers S,
Marzorati M. The Simulator of the Human Intestinal Microbial
Ecosystem (SHIME®). In: Verhoeckx K, Cotter P, López-
Expósito I, Kleiveland C, Lea T, Mackie A, et al., editors. The
impact of food bioactives on health: in vitro and ex vivo models.
Cham (CH): Springer; 2015.

13. McDonald JAK, Schroeter K, Fuentes S, Heikamp-Dejong I,
Khursigara CM, de Vos WM, et al. Evaluation of microbial com-
munity reproducibility, stability and composition in a human distal
gut chemostat model. J Microbiol Methods. 2013;95:167–74.

14. Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. Microbial
degradation of complex carbohydrates in the gut. Gut Microbes.
2012;3:289–306.

15. Portune KJ, Beaumont M, Davila A-M, Tomé D, Blachier F, Sanz
Y. Gut microbiota role in dietary protein metabolism and health-
related outcomes: the two sides of the coin. Trends Food Sci
Technol. 2016;57:213–32.

16. Round JL, Mazmanian SK. The gut microbiota shapes intestinal
immune responses during health and disease. Nat Rev Immunol.
2009;9:313–23.

17. Cho JA, Chinnapen DJF. Targeting friend and foe: emerging
therapeutics in the age of gut microbiome and disease. J Microbiol
Seoul Korea. 2018;56:183–8.

18. Daliri EB-M, Tango CN, Lee BH, Oh D-H. Human microbiome
restoration and safety. Int J Med Microbiol. 2018;308:487–97.

19. Renz H, Holt PG, Inouye M, Logan AC, Prescott SL, Sly PD. An
exposome perspective: early-life events and immune development
in a changing world. J Allergy Clin Immunol. 2017;140:24–40.

20. Fujimura KE, Sitarik AR, Havstad S, Lin DL, Levan S, Fadrosh
D, et al. Neonatal gut microbiota associates with childhood mul-
tisensitized atopy and T cell differentiation. Nat Med.
2016;22:1187–91.

21. Arrieta M-C, Stiemsma LT, Dimitriu PA, Thorson L, Russell S,
Yurist-Doutsch S, et al. Early infancy microbial and metabolic
alterations affect risk of childhood asthma. Sci Transl Med.
2015;7:307ra152.

22. Kostic AD, Gevers D, Siljander H, Vatanen T, Hyötyläinen T,
Hämäläinen A-M, et al. The dynamics of the human infant gut
microbiome in development and in progression toward type 1
diabetes. Cell Host Microbe. 2015;17:260–73.

23. Quraishi MN, Widlak M, Bhala N, Moore D, Price M, Sharma N,
et al. Systematic review with meta-analysis: the efficacy of faecal
microbiota transplantation for the treatment of recurrent and
refractory Clostridium difficile infection. Aliment Pharm Ther.
2017;46:479–93.

3090 K. Oliphant et al.

https://www.ncbi.nlm.nih.gov/bioproject/524005


24. Cao Y, Zhang B, Wu Y, Wang Q, Wang J, Shen F. The value of
fecal microbiota transplantation in the treatment of ulcerative
colitis patients: a systematic review and meta-analysis. Gastro-
enterol Res Pract. 2018;2018:5480961.

25. Sun J, Marwah G, Westgarth M, Buys N, Ellwood D, Gray PH.
Effects of probiotics on necrotizing enterocolitis, sepsis, intra-
ventricular hemorrhage, mortality, length of hospital stay, and
weight gain in very preterm infants: a meta-analysis. Adv Nutr.
2017;8:749–63.

26. Liu L, Firrman J, Tanes C, Bittinger K, Thomas-Gahring A, Wu
GD, et al. Establishing a mucosal gut microbial community
in vitro using an artificial simulator. PLoS ONE. 2018;13:
e0197692.

27. Van den Abbeele P, Grootaert C, Marzorati M, Possemiers S,
Verstraete W, Gérard P, et al. Microbial community development
in a dynamic gut model is reproducible, colon region specific, and
selective for Bacteroidetes and Clostridium cluster IX. Appl
Environ Microbiol. 2010;76:5237–46.

28. Xu Z, Knight R. Dietary effects on human gut microbiome
diversity. Br J Nutr. 2015;113:S1–5.

29. Petrof EO, Gloor GB, Vanner SJ, Weese SJ, Carter D, Daigneault
MC, et al. Stool substitute transplant therapy for the eradication of
Clostridium difficile infection: ‘RePOOPulating’ the gut. Micro-
biome. 2013;1:3.

30. Strauss J, White A, Ambrose C, McDonald J, Allen-Vercoe E.
Phenotypic and genotypic analyses of clinical Fusobacterium
nucleatum and Fusobacterium periodonticum isolates from the
human gut. Anaerobe. 2008;14:301–9.

31. Yen S, McDonald JAK, Schroeter K, Oliphant K, Sokolenko S,
Blondeel EJM, et al. Metabolomic analysis of human fecal
microbiota: a comparison of feces-derived communities and
defined mixed communities. J Proteome Res. 2015;14:1472–82.

32. Marzorati M, Vilchez-Vargas R, Bussche JV, Truchado P, Jaur-
egui R, El Hage RA, et al. High-fiber and high-protein diets shape
different gut microbial communities, which ecologically behave
similarly under stress conditions, as shown in a gastrointestinal
simulator. Mol Nutr Food Res. 2017;61.

33. Kennedy K, Hall MW, Lynch MDJ, Moreno-Hagelsieb G, Neu-
feld JD. Evaluating bias of illumina-based bacterial 16S rRNA
gene profiles. Appl Env Microbiol. 2014;80:5717–22.

34. Schreier C, Kremer W, Huber F, Neumann S, Pagel P, Lienemann
K, et al. Reproducibility of NMR analysis of urine samples:
impact of sample preparation, storage conditions, and animal
health status. BioMed Res Int. https://www.hindawi.com/journals/
bmri/2013/878374/. Accessed 12 Feb 2019.

35. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone
CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at
a depth of millions of sequences per sample. Proc Natl Acad Sci
USA. 2011;108(Suppl 1):4516–22.

36. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA,
Holmes SP. DADA2: High-resolution sample inference from
Illumina amplicon data. Nat Methods. 2016;13:581–3.

37. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P,
et al. The SILVA ribosomal RNA gene database project:
improved data processing and web-based tools. Nucleic Acids
Res. 2013;41:D590–6.

38. Fernandes AD, Reid JN, Macklaim JM, McMurrough TA, Edgell
DR, Gloor GB. Unifying the analysis of high-throughput
sequencing datasets: characterizing RNA-seq, 16S rRNA gene
sequencing and selective growth experiments by compositional
data analysis. Microbiome. 2014;2:15.

39. Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, et al.
HMDB: the Human Metabolome Database. Nucleic Acids Res.
2007;35:D521–6.

40. Sokolenko S, Blondeel EJM, Azlah N, George B, Schulze S,
Chang D, et al. Profiling convoluted single-dimension proton

NMR spectra: a Plackett–Burman approach for assessing quanti-
fication error of metabolites in complex mixtures with application
to cell culture. Anal Chem. 2014;86:3330–7.

41. Bender JM, Li F, Adisetiyo H, Lee D, Zabih S, Hung L, et al.
Quantification of variation and the impact of biomass in targeted
16S rRNA gene sequencing studies. Microbiome. 2018;6:155.

42. Duncan SH, Belenguer A, Holtrop G, Johnstone AM, Flint HJ,
Lobley GE. Reduced dietary intake of carbohydrates by obese
subjects results in decreased concentrations of butyrate and
butyrate-producing bacteria in feces. Appl Environ Microbiol.
2007;73:1073–8.

43. Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X,
et al. Dominant and diet-responsive groups of bacteria within the
human colonic microbiota. ISME J. 2011;5:220–30.

44. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y, Keilbaugh
SA, et al. Linking long-term dietary patterns with gut microbial
enterotypes. Science. 2011;334:105–8.

45. Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H,
Goodman AL, et al. The long-term stability of the human gut
microbiota. Science. 2013;341:1237439.

46. Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and
Genomes. Nucleic Acids Res. 2000;28:27–30.

47. Scott KP, Martin JC, Duncan SH, Flint HJ. Prebiotic stimulation
of human colonic butyrate-producing bacteria and bifidobacteria,
in vitro. FEMS Microbiol Ecol. 2014;87:30–40.

48. Rosero JA, Killer J, Sechovcová H, Mrázek J, Benada O, Flie-
gerová K, et al. Reclassification of Eubacterium rectale (Hauduroy
et al. 1937) Prévot 1938 in a new genus Agathobacter gen. nov. as
Agathobacter rectalis comb. nov., and description of Agathobacter
ruminis sp. nov., isolated from the rumen contents of sheep and
cows. Int J Syst Evol Microbiol. 2016;66:768–73.

49. Holdeman LV, Moore WEC. Coprococcus, twelve new species,
and emended descriptions of four previously described species of
bacteria from human feces. Int J Syst Evol Microbiol.
1974;24:260–77.

50. Lozupone C, Faust K, Raes J, Faith JJ, Frank DN, Zaneveld J,
et al. Identifying genomic and metabolic features that can underlie
early successional and opportunistic lifestyles of human gut
symbionts. Genome Res. 2012;22:1974–84.

51. Cockburn DW, Orlovsky NI, Foley MH, Kwiatkowski KJ, Bahr
CM, Maynard M, et al. Molecular details of a starch utilization
pathway in the human gut symbiont Eubacterium rectale. Mol
Microbiol. 2015;95:209–30.

52. Cockburn DW, Suh C, Medina KP, Duvall RM, Wawrzak Z,
Henrissat B, et al. Novel carbohydrate binding modules in the
surface anchored α-amylase of Eubacterium rectale provide a
molecular rationale for the range of starches used by this organism
in the human gut. Mol Microbiol. 2018;107:249–64.

53. Rakoff-Nahoum S, Foster KR, Comstock LE. The evolution of
cooperation within the gut microbiota. Nature. 2016;533:255–9.

54. Tuncil YE, Xiao Y, Porter NT, Reuhs BL, Martens EC, Hamaker
BR. Reciprocal prioritization to dietary gycans by gut bacteria in a
competitive environment promotes stable coexistence. mBio.
2017;8:e01068–17.

55. Kerényi Á, Bihary D, Venturi V, Pongor S. Stability of multi-
species bacterial communities: signaling networks may stabilize
microbiomes. PLoS ONE. 2013;8:e57947.

56. Cordero OX, Wildschutte H, Kirkup B, Proehl S, Ngo L, Hussain
F, et al. Ecological populations of bacteria act as socially cohesive
units of antibiotic production and resistance. Science.
2012;337:1228–31.

57. Fischbach MA, Sonnenburg JL. Eating for two: how metabolism
establishes interspecies interactions in the gut. Cell Host Microbe.
2011;10:336–47.

58. de Vladar HP. Amino acid fermentation at the origin of the genetic
code. Biol Direct. 2012;7:6.

Drivers of human gut microbial community assembly: coadaptation, determinism and stochasticity 3091

https://www.hindawi.com/journals/bmri/2013/878374/
https://www.hindawi.com/journals/bmri/2013/878374/


59. Shoaie S, Karlsson F, Mardinoglu A, Nookaew I, Bordel S,
Nielsen J. Understanding the interactions between bacteria in the
human gut through metabolic modeling. Sci Rep. 2013;3:2532.

60. Rogowski A, Briggs JA, Mortimer JC, Tryfona T, Terrapon N,
Lowe EC, et al. Glycan complexity dictates microbial resource
allocation in the large intestine. Nat Commun. 2015;6:7481.

61. Cho I, Blaser MJ. The Human Microbiome: at the interface of
health and disease. Nat Rev Genet. 2012;13:260–70.

62. Lane ER, Zisman TL, Suskind DL. The microbiota in inflam-
matory bowel disease: current and therapeutic insights. J Inflamm
Res. 2017;10:63–73.

63. Vital M, Karch A, Pieper DH. Colonic butyrate-producing com-
munities in humans: an overview using omics data. mSystems.
2017;2:e00130–17.

64. Louis P, Flint HJ. Diversity, metabolism and microbial ecology of
butyrate-producing bacteria from the human large intestine. FEMS
Microbiol Lett. 2009;294:1–8.

65. Fan P, Li L, Rezaei A, Eslamfam S, Che D, Ma X. Metabolites of
dietary protein and peptides by intestinal microbes and their
impacts on gut. Curr Protein Pept Sci. 2015;16:646–54.

66. Yao CK, Muir JG, Gibson PR. Review article: insights into
colonic protein fermentation, its modulation and potential health
implications. Aliment Pharm Ther. 2016;43:181–96.

67. Collado MC, Derrien M, Isolauri E, de Vos WM, Salminen S.
Intestinal integrity and Akkermansia muciniphila, a mucin-
degrading member of the intestinal microbiota present in infants,
adults, and the elderly. Appl Environ Microbiol. 2007;73:7767–70.

68. Derrien M, Vaughan EE, Plugge CM, de Vos WM. Akkermansia
muciniphila gen. nov., sp. nov., a human intestinal mucin-
degrading bacterium. Int J Syst Evol Microbiol. 2004;54:1469–76.

69. Wu F, Guo X, Zhang J, Zhang M, Ou Z, Peng Y. Phascolarcto-
bacterium faecium abundant colonization in human gastro-
intestinal tract. Exp Ther Med. 2017;14:3122–6.

70. Watanabe Y, Nagai F, Morotomi M. Characterization of Phas-
colarctobacterium succinatutens sp. nov., an Asaccharolytic,
succinate-utilizing bacterium isolated from human feces. Appl
Env Microbiol. 2012;78:511–8.

71. Del Dot T, Osawa R, Stackebrandt E. Phascolarctobacterium
faecium gen. nov, spec. nov., a novel taxon of the Sporomusa
group of bacteria. Syst Appl Microbiol. 1993;16:380–4.

72. Jeraldo P, Sipos M, Chia N, Brulc JM, Dhillon AS, Konkel ME,
et al. Quantification of the relative roles of niche and neutral
processes in structuring gastrointestinal microbiomes. Proc Natl
Acad Sci USA. 2012;109:9692–8.

73. Coyte KZ, Schluter J, Foster KR. The ecology of the microbiome:
networks, competition, and stability. Science. 2015;350:663–6.

3092 K. Oliphant et al.


	Drivers of human gut microbial community assembly: coadaptation, determinism and stochasticity
	Abstract
	Introduction
	Materials and methods
	Creation of defined microbial communities
	Bioreactor operation
	16S rRNA-based compositional profiling
	1H-NMR-based metabonomics

	Results
	Determination of microbial community temporal stability and replicate reproducibility
	Microbial community response to dietary changes
	Effect of coadaptation on microbial community structure and behavior

	Discussion
	Supplementary information
	Compliance with ethical standards

	ACKNOWLEDGMENTS
	References




