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Abstract
The ability of corals and other cnidarians to survive climate change depends partly on the composition of their endosymbiont
communities. The dinoflagellate family Symbiodiniaceae is genetically and physiologically diverse, and one proposed
mechanism for cnidarians to acclimate to rising temperatures is to acquire more thermally tolerant symbionts. However,
cnidarian-dinoflagellate associations vary in their degree of specificity, which may limit their capacity to alter symbiont
communities. Here, we inoculated symbiont-free polyps of the sea anemone Exaiptasia pallida (commonly referred to as
‘Aiptasia’), a model system for the cnidarian-dinoflagellate symbiosis, with simultaneous or sequential mixtures of thermally
tolerant and thermally sensitive species of Symbiodiniaceae. We then monitored symbiont success (relative proportional
abundance) at normal and elevated temperatures across two to four weeks. All anemones showed signs of bleaching at high
temperature. During simultaneous inoculations, the native, thermally sensitive Breviolum minutum colonized polyps most
successfully regardless of temperature when paired against the non-native but more thermally tolerant Symbiodinium
microadriaticum or Durusdinium trenchii. Furthermore, anemones initially colonized with B. minutum and subsequently
exposed to S. microadriaticum failed to acquire the new symbiont. These results highlight how partner specificity may place
strong limitations on the ability of certain cnidarians to acquire more thermally tolerant symbionts, and hence their adaptive
potential under climate change.

Introduction

The symbiosis between cnidarians (e.g. corals, anemones,
and jellyfish) and photosymbionts (primarily dino-
flagellates of the family Symbiodiniaceae) is widespread in
the marine environment, and has particular ecological
importance with respect to the growth and survival of coral
reefs [1–3]. The family Symbiodiniaceae is genetically and

physiologically diverse, with seven genera and numerous
species currently described and many more awaiting for-
mal description [4–6]. Symbiont community composition
greatly affects host performance [7–10], and impacts the
ability of the holobiont (the host and all of its symbionts)
to thrive at different latitudes, depths, irradiances, and
temperatures [11–14].

Despite the high diversity of Symbiodiniaceae, host-
symbiont associations are nonrandom, exhibiting varying
degrees of specificity. Some host species associate with
multiple dominant or co-dominant symbiont types, while
others associate with only one primary type, and nearly all
contain background symbionts [15–17]. The degree of
specificity depends on the host, the symbiont, and the
environment [18–20]. The cellular mechanisms involved
in determining specificity are still unclear, though cell
surface recognition during phagocytosis of the symbiont
by the host is known to be involved [21–24], as is the
capacity of different symbiont types to circumvent the
host’s immune response [25]. Furthermore, the competi-
tive interactions between different Symbiodiniaceae could
play a role but have received little attention [26, 27].
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Understanding how host-symbiont specificity arises is
not only important for understanding the evolution of par-
ticular partnerships, but also the potential to form new
partnerships. This is especially important when considering
the survival of scleractinian corals and other cnidarians as
our climate changes, through the acquisition of new sym-
biont species or through adjustments in the relative numbers
of current species [28–30]. Evidence for such transitions is
abundant e.g., [31–38], but they typically occur under
stressful conditions, such as those that cause coral bleaching
—the loss of a majority of symbiont cells/pigments. Thus,
under normal conditions, the greater colonization success of
homologous symbionts (those that regularly associate with
a particular host) appears to prevent persistent colonization
by heterologous symbionts (those that typically do not
associate with a given host), even if these ‘foreign’ sym-
bionts manage to evade the host’s immune system. Indeed,
when hosts are rendered aposymbiotic (symbiont-free)
under laboratory conditions they can typically form new
associations when inoculated with a range of homologous
or heterologous symbionts [10, 39–41]. Yet such a ready
ability to form new, lasting partnerships does not appear to
occur often in the wild [33, 42, 43].

The sea anemone Aiptasia (Exaiptasia pallida) is a
widely adopted model system for the study of cnidarian-
dinoflagellate symbioses [44, 45]. This anemone is dis-
tributed throughout the world’s tropical seas, and in the
Indo-Pacific associates only with Breviolum minutum (ITS2
type B1), though Atlantic populations can additionally
associate with Symbiodinium linucheae (A4) and rarely with
a member of the genus Cladocopium [46]. Consistent with
this high degree of host-symbiont specificity, laboratory
experiments show that B. minutum colonizes Indo-Pacific
Aiptasia at a much faster rate than S. microadriaticum (A1)
and Durusdinium trenchii (D1a), while Effrenium voratum
(E1) and Cladocopium sp. (C3) fail to persist after just a few
weeks [10]. Furthermore, B. minutum forms a more bene-
ficial symbiosis than heterologous species, facilitating faster
host growth and asexual reproduction consistent with
greater rates of photosynthesis and carbon translocation
[9, 10, 47]. It also appears to be a highly compatible sym-
biont, as Aiptasia is more immunotolerant of B. minutum
than it is of heterologous D. trenchii [8]. The relationship
between Aiptasia and B. minutum therefore provides an
excellent model for elucidating the mechanisms that pro-
mote such a high degree of partner fidelity in the wild,
despite the ability of this sea anemone to form a range of
associations in a laboratory setting.

Here we measured the colonization success of
B. minutum, the homologous partner of Aiptasia,
relative to two thermally tolerant heterologous species:
S. microadriaticum and D. trenchii. In a recent partial-rank
aggregation analysis that included reports on the relative

thermotolerance of Symbiodiniaceae both in hospite and
in vitro, B. minutum was ranked the 38th most heat-tolerant
type (out of 64), while S. microadriaticum and D. trenchii
were ranked 26th and 8th, respectively [48]. We measured
the relative abundance of these different symbiont species in
a clonal Aiptasia line after: (1) inoculating symbiont-free
polyps with each Symbiodiniaceae species in isolation, (2)
inoculating symbiont-free polyps simultaneously with each
pairwise combination of Symbiodiniaceae species; and (3)
exposing polyps in established symbioses to alternate
symbionts. We performed the experiments at 24, 32, and 34
°C to explore the effect of elevated temperature on sym-
biont dynamics. We hypothesized that, under elevated
temperatures, the success of homologous B. minutum
would decline, causing Aiptasia to transition to an alternate
symbiont community composed of a greater proportion of
heat-tolerant heterologous species. Ultimately, we aimed to
assess the extent to which host-symbiont specificity might
override the potential to establish novel symbioses with
more thermally resistant partners even at elevated tem-
peratures, and help to explain the strong partner fidelity seen
in Aiptasia in the field.

Methods

Experimental organisms

All experiments were performed with a clonal culture of the
symbiotic sea anemone Exaiptasia pallida (culture ID:
NZ1; commonly referred to as ‘Aiptasia’) isolated from
the Indo-Pacific region. Polyps were maintained in
aquaria at 24 °C under a standard light regime of 80 µmol
photons m−2 s−1 photosynthetically active radiation (PAR)
on a 12:12 h (light:dark) photoperiod, and fed twice weekly
with freshly hatched Artemia nauplii. To generate apos-
ymbiotic anemones, polyps were menthol-bleached as
described by Matthews et al. [49]. This treatment was
repeated daily for 4 weeks or until no symbionts were
present, as determined by the absence of chlorophyll
fluorescence under confocal microscopy (IX81, Olympus
New Zealand; 635 nm laser, 655–755 nm emission filter).

Cultured strains of the three focal Symbiodiniaceae
species (Breviolum minutum, Symbiodinium micro-
adriaticum, and Durusdinium trenchii) were chosen as
inoculates based on their capacity to readily colonize
aposymbiotic Aiptasia [10]; for more details about the
cultures, see Table 1. The algae were sub-cultured from
long-term (>5 years) laboratory stocks and grown in silica-
free f⁄2 medium (Sigma-Aldrich, Auckland, New Zealand)
under the same conditions as the anemones. All cultures
were sampled for experimental use during the log-phase of
growth.
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Single species exposure

Aposymbiotic anemones (n= 4 polyps per symbiont culture,
temperature, and time-point combination) were inoculated
with one of three Symbiodiniaceae cultures: 100%
B. minutum, 100% S. microadriaticum, or 100% D. trenchii.
Polyps of similar size (2–3mm oral disc diameter) were
starved for a week and then transferred to 400-ml clear plastic
jars (one anemone per jar) filled with 0.2 μm filtered seawater
(FSW; IKA T-10, ThermoFisher Scientific) and allowed to
acclimate for three days. Each algal culture was diluted in 25
ml FSW and mixed with one drop of Artemia nauplii, giving
a final concentration of ~1 × 106 Symbiodiniaceae cells ml−1.
Using a glass pipette, 1 ml of inoculate was dispensed onto
the oral disc of each polyp. Thereafter, anemones were fed
once weekly, followed the next day by a water change.
Inoculated anemones were maintained at 24, 32, or 34 °C
under the standard light regime. Polyps were sacrificed at 1
and 2 weeks post-inoculation to determine the densities of
different Symbiodiniaceae species. Each polyp was homo-
genized in 500 μl FSW and centrifuged (Sigma 3–16k) for 5
min at 400 RCF to separate the algal cells from the anemone
tissues. A 100 μl sample was removed from the supernatant
(host fraction) for protein determination via the Bradford
assay [50] and the remaining supernatant was discarded. The
algal pellet was then processed for DNA extraction and qPCR
analysis (see below).

Simultaneous exposure

Aposymbiotic anemones (n= 4 polyps per symbiont
mixture, temperature, and time point combination) were
inoculated with one of three Symbiodiniaceae mixtures:
50% B. minutum+ 50% S. microadriaticum, 50% B. min-
utum+ 50% D. trenchii, or 50% S. microadriaticum+ 50%
D. trenchii. Inoculated anemones were maintained at 24, 32,
or 34 °C under the standard light regime. Polyps were
sacrificed as above at 1 and 2 weeks post-inoculation to
determine the densities of different Symbiodiniaceae spe-
cies via qPCR.

Delayed exposure

Aposymbiotic anemones (n= 6 polyps per symbiont cul-
ture, temperature, and time point combination) were first

inoculated as above with either 100% B. minutum or 100%
S. microadriaticum. The inoculated polyps were maintained
at 24 °C until they became densely colonized (a minimum
of 4 weeks). The anemones were then challenged via
exposure to the alternate Symbiodiniaceae species (i.e.
anemones colonized by B. minutum were re-inoculated with
S. microadriaticum or vice versa), and maintained at 24, 32,
or 34 °C under the standard light regime. Polyps were
sacrificed as above at 1, 2, and 4 weeks post-inoculation to
determine the densities of different Symbiodiniaceae spe-
cies via qPCR.

Quantitative PCR

DNA extraction and qPCR amplification followed the pro-
tocol of Yamashita et al. [51] with modification. For full
details, see the Supplementary Information. In brief, symbiont
DNA was isolated following guanidinium extraction of
the algal pellets and amplification with the Symbiodiniaceae-
specific rDNA primers of Pawlowski et al. [52]. For a
subset of samples, the rDNA was cloned into E. coli vectors,
re-isolated, and sequenced (n= 4 sequences per Symbiodi-
niaceae species). Sequences were blasted against the NCBI
database to confirm ITS2 type, and one sample from each
type was chosen to generate standard curves for qPCR using
the genus/clade-specific primers of Yamashita et al. [51]. All
original sample extracts were then subjected to genus-specific
qPCR, and the 28 S copy number per genus per cell was
estimated by deduction from the regression lines and com-
parison with the standard curves. In this case, because there
was only one species per genus in the experiment, genus
identity resolved species identity.

To confirm cell enumeration by qPCR, one cultured
sample of each of the three species was diluted, extracted,
and amplified (n= 6 replicates per sample). For the com-
binations 50% B. minutum+ 50% S. microadriaticum and
50% B. minutum+ 50% D. trenchii, seven two-culture
mixtures were generated with Symbiodiniaceae species
ratios ranging from 1:99 to 99:1. Following qPCR, the
predicted versus observed symbiont ratios were assessed for
accuracy using least-squares linear regression. A subset of
polyps from each treatment was tested periodically to
confirm a lack of contamination by symbionts from other
treatments (see Supplementary Information: Fig. S1;
Tables S1 and S2).

Table 1 Symbiodiniaceae culture details

Culture ID Original host source Geographical location Symbiodiniaceae species ITS2 type Relationship to the host

FlAp2 Exaiptasia pallida Long Key, Florida Breviolum minutum B1 Homologous

CCMP2467 Stylophora pistillata Gulf of Aqaba Symbiodinium microadriaticum A1 Heterologous

Ap2 Unknown anemone sp. Okinawa Durusdinium trenchii D1a Heterologous
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Statistical analyses

To test the effects of temperature, time, and their interaction
on symbiont density per species within each experimental
treatment, the data were log-transformed to achieve nor-
mality and homoscedasticity then analyzed via two-way
ANOVA and Tukey post hoc tests (α= 0.05) in the R
statistical environment [53]. Differences in the log-
transformed symbiont density between species within each
treatment were calculated via one-way ANOVA. The data
were plotted with the package ‘ggplot2’ [54]. All raw data
and R code for the analyses are included in the Supple-
mentary Information.

Results

Single species exposure

Colonization success (symbiont cell density) varied by
symbiont species in the single species exposures. In inde-
pendent host polyps, the homologous B. minutum (Fig. 1a)
surpassed heterologous S. microadriaticum (Fig. 1b) and
heterologous D. trenchii (Fig. 1c) regardless of treatment
(one-way ANOVA, p < 0.05), whereas the density differ-
ence between S. microadriaticum and D. trenchii was
rarely significant. The density of B. minutum varied with
temperature and the time x temperature interaction, the
density of S. microadriaticum varied by the interaction
only, and the density of D. trenchii varied by temperature
only (two-way ANOVA, p < 0.05). The density of the
heterologous symbionts remained low throughout the
experiment (average range: 0–3 × 105 cells per mg protein),
but homologous B. minutum density was very high at 24
and 32 °C (average range: 1–6 × 107 cells per mg protein).
However, B. minutum density dropped significantly at
34 °C (average range: 2–3 × 105 cells per mg protein;
two-way ANOVA, p < 0.05), while still remaining higher
than for the heterologous species in parallel treatments.
A similar heat-induced bleaching pattern (though much
smaller in magnitude) was observed for D. trenchii, but not
for S. microadriaticum.

Simultaneous exposure

Colonization success varied by symbiont species when
introduced in 50/50 mixtures simultaneously. When paired
within the same host polyp, success of the homologous
B. minutum surpassed that of the heterologous S. micro-
adriaticum (Fig. 2a) or D. trenchii (Fig. 2b) regardless of
treatment (one-way ANOVA, p < 0.05). In these two trials,
the proportion of B. minutum was always higher than
for the heterologous species, ranging from 93–100% (versus

S. microadriaticum) or from 96–100% (versus D. trenchii).
The density of the heterologous symbionts remained
low throughout the experiments (never exceeding an
average of 3 × 104 cells per mg protein in a given treat-
ment), whereas homologous B. minutum density began
low at 24 and 32 °C in week one, then increased dramati-
cally by week two to levels comparable to the single
species exposure. However, B. minutum density remained
low at 34 °C. Thus, temperature and time either significantly
or marginally influenced B. minutum density in both
experiments, and the interaction was significant when
B. minutum was paired with S. microadriaticum (two-way
ANOVA, p < 0.05). Neither temperature nor time influ-
enced S. microadriaticum density, and only temperature
impacted D. trenchii density.

In the simultaneous exposure experiment between the
two heterologous symbionts (Fig. 2c), densities of both
species remained low regardless of treatment (never
exceeding 2 × 104 cells per mg protein), and the only
significant difference between species was detected at 24 °
C, where D. trenchii was greater in abundance
than S. microadriaticum (one-way ANOVA, p < 0.05).
Symbiodinium microadriaticum colonization increased
with temperature (from an average of 16% at 24 °C, to
47% at 32 °C, to 80% at 34 °C). By necessity, D. trenchii
showed the opposite pattern: its proportion decreased as
the temperature increased. However, temperature only
significantly impacted D. trenchii density (two-way
ANOVA, p < 0.05), and neither temperature, time, nor
their interaction affected S. microadriaticum density.
As in the other trials, D. trenchii density was lowest
at 34 °C.

Delayed exposure

When anemones were challenged with heterologous
S. microadriaticum after first forming a stable symbiosis
with homologous B. minutum, S. microadriaticum did not
manage to colonize the polyps in appreciable amounts,
representing < 0.1% of the symbiont community at any
combination of temperature and time point (Fig. 3a). Thus,
B. minutum density always exceeded S. microadriaticum
density (one-way ANOVA, p < 0.05). The density of
B. minutum declined with time at 24 °C, though to a small
degree (3 × 106 cells at week one to 6 × 105 cells at week
four), while density remained relatively low at 32 and 34 °C
regardless of time. Temperature, time, and their interaction
all significantly impacted the density of both species
(two-way ANOVA, p < 0.05).

In the alternate case, when anemones were challenged
with homologous B. minutum after first forming a stable
association with heterologous S. microadriaticum, B.
minutum was able to partially colonize the anemone
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(Fig. 3b). The average proportion of B. minutum across
temperatures increased from 7% at week one to 36% at
week four. Notably, the density of S. microadriaticum

declined with time at 24 °C (2 × 105 cells at week one to
1 × 104 cells at week four), such that the change in pro-
portion of symbiont types was accounted for mainly by a
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Fig. 1 Single species
colonization experiments. Pure
cultures of one Symbiodiniaceae
species (a 100% B. minutum;
b 100% S. microadriaticum; and
c 100% D. trenchii) were
introduced to aposymbiotic
anemones (n= 4 polyps per
treatment per time point).
Symbiont densities (cells per mg
host protein) were measured one
and two weeks after inoculation
under cool (24 °C), ambient
(32 °C), and thermal stress
conditions (34 °C) via genus-
specific qPCR. Pie charts
represent the average proportion
of each species in the host’s total
symbiont community. Error bars
represent the standard error of
the mean. Letters correspond to
distinct cell densities within a
species across treatments (color
coded; two-way ANOVA;
p < 0.05). To visualize large cell
density changes without
obscuring small changes, results
were depicted across two plots
each: note the y-axis break and
unique scales
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loss of the heterologous species rather than a gain in the
homologous species. Density remained low for both
species at 32 and 34 °C. The density of S.

microadriaticum was significantly greater than the density
of B. minutum during weeks one and two but not week
four at 24 and 34 °C (one-way ANOVA, p < 0.05). In this
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Fig. 2 Simultaneous
colonization experiments.
Simultaneous mixtures of two
different Symbiodiniaceae
species (a 50% B. minutum and
50% S. microadriaticum; b 50%
B. minutum and 50% D.
trenchii; and c 50% S.
microadriaticum and 50% D.
trenchii) were introduced to
aposymbiotic anemones (n= 4
polyps per treatment per time
point). Symbiont densities (cells
per mg host protein) were
measured one and two weeks
after inoculation under cool
(24 °C), ambient (32 °C), and
thermal stress conditions (34 °C)
via genus-specific qPCR. Pie
charts represent the average
proportion of each species in the
host’s total symbiont
community. Error bars represent
the standard error of the mean.
Letters correspond to distinct
cell densities within a species
across treatments (color coded;
two-way ANOVA; p < 0.05).
Asterisks correspond to distinct
cell densities across species
within a treatment (one-way
ANOVA; p < 0.05). To
visualize large cell density
changes without obscuring small
changes, results were depicted
across two plots each: note the
y-axis break and unique scales
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case, temperature, time, and their interaction affected
S. microadriaticum density (two-way ANOVA, p < 0.05),
but not B. minutum density.

Discussion

This study is the first to investigate the effects of thermal
stress on multi-species symbiosis establishment dynamics in
the Aiptasia—Symbiodiniaceae model system. Given the
different thermal tolerances of the three symbiont species
used (D. trenchii > S. microadriaticum > B. minutum) and
previous evidence for symbiont transitions in other cnidar-
ians under heat stress, we expected to see a shift away from
a B. minutum-dominated community and towards an S.
microadriaticum- and/or D. trenchii-dominated community
in Aiptasia as temperatures rose. However, in all cases, B.
minutum persisted as the dominant partner.

Single species exposure

As expected, when introduced as the only potential symbiont,
the homologous B. minutum colonized aposymbiotic Aiptasia
polyps far more readily than either S. microadriaticum or
D. trenchii, achieving densities an order of magnitude greater
than the two heterologous species at both 24 and 32 °C
(Fig. 1). These results are similar to those of previous colo-
nization studies performed under ambient conditions [10].
Marked declines in symbiont density were observed at 34 °C
for B. minutum and D. trenchii, but even here B. minutum
densities continued to exceed those of the other two species,
despite their greater thermal tolerance under culture condi-
tions. Therefore, while these heterologous symbionts have
the potential to persist in Aiptasia at elevated temperatures,
host-symbiont specificity likely limits their success relative to
the native partner. Future work should examine whether these
patterns are also observed during symbiont uptake when the
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Fig. 3 Delayed colonization
experiments. Delayed mixtures of
two different Symbiodiniaceae
species (a first 100% B. minutum
until the symbiosis stabilized,
followed by 100% S.
microadriaticum; and b first
100% S. microadriaticum until
the symbiosis stabilized, followed
by 100% B. minutum) were
introduced to aposymbiotic
anemones (n= 6 polyps per
treatment per time point).
Symbiont densities (cells per mg
host protein) were measured one,
two, and four weeks after the
secondary inoculation under cool
(24 °C), ambient (32 °C), and
thermal stress conditions (34 °C)
via genus-specific qPCR. Pie
charts represent the average
proportion of each species in the
host’s total symbiont community.
Error bars represent the standard
error of the mean. Letters
correspond to distinct cell
densities within a species across
treatments (color coded; two-way
ANOVA; p < 0.05). Asterisks
correspond to distinct cell
densities across species within a
treatment (one-way ANOVA;
p < 0.05). To visualize large cell
density changes without
obscuring small changes, results
were depicted across two plots
each: note the y-axis break and
unique scales
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host is already under thermal stress, as opposed to exposure
to thermal stress post-uptake as was performed here. These
single-species data provided baseline colonization rates
against which the simultaneous and delayed exposures could
be compared.

Simultaneous exposure

The homologous B. minutum was dominant when intro-
duced simultaneously with either heterologous species
under ambient conditions, representing the greatest pro-
portion of the symbiont community at the coolest tem-
perature (24 °C; Fig. 2). Contrary to our expectations based
upon its thermal sensitivity, however, B. minutum remained
dominant at 32 and 34 °C, with the heterologous species
rarely exceeding 2% of the total community, mirroring the
single-species exposure results. Even though symbiont cell
density was relatively low at the most extreme temperature,
the homologous symbiont still dominated the more heat-
tolerant alternatives, at least in terms of proportional
abundance. A similar dominance by the native symbiont in
Aiptasia at ‘normal’ temperature (25 °C) was reported by
Belda-Baillie et al. [55], who showed that when anemones
were inoculated with a mixture of 6 different Symbiodi-
niaceae isolates (genera Symbiodinium, Breviolum and
Cladocopium) and maintained for 3 months, the homo-
logous B. minutum was always dominant in the end, and
remained so even when exposed again to this same sym-
biont mixture and maintained for another month.

Our results raise the question as to why the symbiont
community did not shift even at elevated temperature. We
offer two potential explanations, which are not mutually
exclusive. First, the specificity between Aiptasia and
B. minutum may supersede any potential for establishing
primary associations with heterologous symbionts, regard-
less of the alternate symbiont’s heat tolerance. This would
mirror certain other high-fidelity associations among
cnidarians [20, 28, 56]. Of course, certain hosts more pre-
dictably change their symbiont communities under thermal
stresses imposed by transplantation or other experimental
manipulation [35, 36, 57]. Thus, Aiptasia appears to be a
poor model for highly flexible cnidarian-dinoflagellate
associations, but a good model for the many marine sym-
bioses that tend to be more specific. It is important to note
that the terms “flexibility” and “specificity” can be overly
simplistic, because many hosts capable of associating with
multiple Symbiodiniaceae species do so with only a highly
constrained subset, and nearly all hosts feature moon-
lighting background populations of diverse symbionts
which may or may not become ecologically relevant under
climate change scenarios [17, 43, 58].

Second, the interaction between B. minutum and its pri-
mary host Aiptasia may greatly improve the symbiont’s

performance in hospite, at least relative to heterologous
species. Indeed, previous metabolomic and proteomic work
on Aiptasia indicates that the host is impacted by thermal
stress before symbiotic B. minutum, suggesting that the
species is more thermally robust when residing in host tis-
sue [59, 60]. This robustness may be facilitated by various
host-buffering mechanisms to maintain a favorable internal
cellular environment [61–63]. Notably, none of the pub-
lished studies used in the consensus thermotolerance rank-
ings of Swain et al. [48] examined the performance of B.
minutum from Aiptasia in hospite, so its greater tolerance in
its homologous host may have been overlooked in the past.

When compared to the single species exposure results, it is
clear that the presence of a second potential symbiont hin-
dered colonization by the homologous symbiont, as it took an
extra week for B. minutum to reach control density when
paired with D. trenchii. The same was true when it was paired
with S. microadriaticum at 32 °C, but control densities were
never reached at 24 °C. These data indicate that some sort of
competitive interaction was at play, with the outcome being
dependent upon the particular combination of symbionts. It
remains unclear to what extent competition among symbionts
(rather than, or in addition to, host control) may result in the
observed specificity of particular cnidarian-dinoflagellate
symbioses, but future studies should investigate the mechan-
isms that may underlie these patterns.

The simultaneous inoculation experiment with the two
heterologous species (S. microadriaticum and D. trenchii)
suggested that relative colonization success can change with
environmental conditions, as the dominant partner shifted
from D. trenchii to S. microadriaticum as temperature
increased. This was a perplexing result because D. trenchii is
typically one of the most tolerant and opportunistic species
under extreme heat [33, 64, 65]. It should be noted, however,
that these were artificial associations, and the absolute density
of symbiont cells was very low at all temperatures. Hence,
caution is warranted when interpreting these data.

Delayed exposure

The final set of experiments was designed to test the
strength of the ‘home field advantage.’ That is, in an
established symbiosis, can newly introduced low-
abundance symbionts displace the dominant species?
The answer is that it appears to depend on the degree of
specificity of the host and symbiont for each other.
When homologous B. minutum was first established as the
dominant symbiont in Aiptasia, subsequent introduction of
heterologous S. microadriaticum failed to cause any com-
munity shift (Fig. 3a). S. microadriaticum was relegated to
background symbiont status, never exceeding 0.1% of the
population. This was true even at the most extreme tem-
perature (34 °C), where absolute cell density declined
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dramatically relative to the ambient treatment. Thus, even
bleaching was insufficient to dislodge the homologous
species’ numerical dominance, despite the alternate species’
greater heat tolerance. A similar pattern has been observed
previously in the jelly Cassiopea xamachana, where uptake
of novel symbionts in the field was much less frequent
when polyps had been experimentally inoculated before-
hand with the native S. microadriaticum rather than with
other symbiont types [7].

In contrast, when heterologous S. microadriaticum was
introduced first (Fig. 3b), subsequent introduction of homo-
logous B. minutum did drive a community shift (up to 39% B.
minutum in one replicate after four weeks at ambient condi-
tions). The change was similar at the extreme temperature,
where again the cell density was quite low. Presumably, this
shift to B. minutum would have continued had the experiment
continued. Longer-term trials designed to determine if and
when B. minutum takes over as the numerically dominant
symbiont should be carried out in the future.

The results of both the simultaneous and delayed expo-
sure experiments reinforce the idea that in this particular
association, the homologous symbiont species maintains its
dominance over more heat-tolerant heterologous symbionts
even as temperatures rise and presumably improve the
relative performance of the alternate species. Note that we
did not measure the physiology or nutritional output of each
symbiont species in hospite, and therefore we do not know
if their relative performance actually changed. Nevertheless,
B. minutum’s success owes itself to more than just a home
field advantage—it appears able to supplant alternate sym-
bionts whether it begins as the dominant species or a
background symbiont. These population dynamics are
consistent with the high fidelity of this symbiosis through-
out the Indo-Pacific. Further work is now needed to better
understand the cellular events that underlie these dynamics,
and in particular the relative importance of symbiont
expulsion, apoptosis, autophagy, and cell cycle control to
the regulation of native versus non-native symbiont pro-
liferation through the host’s tissues [66]. Furthermore, we
know little about how competitive interactions between
individual symbiont cells or host-symbiont nutritional
fluxes might contribute to the relative colonization success
of symbionts in a mixed population. Of note though, recent
work has demonstrated that, when colonized solely by B.
minutum or D. trenchii, Aiptasia exhibits marked differ-
ences with respect to host metabolite profile, as well as
various nutritional, stress moderation, and cell–cell signal-
ing pathways [8, 9].

Ecological implications

The potential for symbiotic cnidarians to change their
dinoflagellate partners as an acclimatory response to

global climate change continues to intrigue researchers
[34, 37, 67–70]. However, high host-symbiont specificity
may constrain the potential for partner alteration in certain
cnidarians, limiting their associations to one or few algal
partners [56, 67, 71]. Our study indicates that the Aiptasia
—B. minutum association is highly specific, at least among
Indo-Pacific individuals. However, such partner fidelity
might not be disadvantageous. The relationships between
specialist cnidarians and symbionts may be the outcome of
stringent coevolution [72], resulting in integrated and
functionally optimal mutualisms that can persist under both
stable and stressful conditions; indeed, to our knowledge
there are no published reports of fully bleached Aiptasia in
the field. On the other hand, the “symbiotic entrepreneuri-
alism” of generalist hosts may open the door to competitive
interactions between symbionts that ultimately impair
holobiont function and destabilize the symbiosis [73].

For example, the high degree of host-symbiont specifi-
city between Pacific scleractinian corals in the genus Porites
and Symbiodiniaceae in the Cladocopium C15 lineage is
believed to confer considerable ecological benefit when
compared to more generalist scleractinian coral genera such
as Acropora and Pocillopora [74–76]. Similarly, the
widespread ecological success of Aiptasia across the Indo-
Pacific region could be attributed, in part, to its high degree
of partner fidelity. Moreover, even though this symbiosis
exhibits bleaching at high temperature, the persistent dom-
inance of B. minutum suggests that Aiptasia will retain its
fidelity for this symbiont even as the climate warms.
Whether B. minutum continues to offer the greatest ecolo-
gical benefit to Aiptasia under these changing conditions
warrants further study. Likewise, whether symbiont popu-
lation dynamics in specialist hosts mirror those seen in the
model Aiptasia system awaits further confirmation. Such
knowledge will better inform predictions about the
responses of symbiotic cnidarians, including reef-building
corals, to climate change.
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