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Abstract

Arbuscular mycorrhizal fungi (AMF, Glomeromycotina), in addition to forming symbioses with the majority of land plants,
harbor vertically transmitted endosymbiotic bacteria ‘Candidatus Glomeribacter gigasporarum’ (CaGg) and ‘Candidatus
Moeniiplasma glomeromycotorum’ (CaMg). CaGg is a nonessential mutualist of AMF, whereas the lifestyle of CaMg is
unknown. To start unraveling the interactions between AMF and their endosymbionts in nature, we examined diversity and
distribution of AMF-associated endobacteria in North Atlantic dunes at Cape Cod. Of nearly 500 foredune AMF isolates
successfully genotyped during a systematic study, 94% were classified as Gigasporaceae. Two percent of all AMF spores
harbored CaGg, and 88% contained CaMg. CaGg was found only in the Gigasporaceae, whereas CaMg was present in
Gigasporaceae, Acaulosporaceae, and Diversisporaceae. Incidence of CaGg across AMF was not affected by any of the
environmental parameters measured, whereas distribution of CaMg in one of the fungal hosts was impacted by plant density.
CaMg populations associated with AMF individuals displayed high levels of genetic diversity but no evidence of gene flow,
suggesting that host physical proximity is not sufficient to facilitate horizontal transmission of CaMg. Finally, in addition to
a novel lineage of CaGg, we discovered that AMF likely harbor Burkholderia-related bacteria with close phylogenetic
affinity to free-living Burkholderia and endobacteria of other Mucoromycota fungi.

Introduction mineral nutrients, such as phosphorus and nitrogen, in

exchange for photosynthesis-derived carbon [1]. Conse-

Arbuscular mycorrhizal fungi (AMF, subphylum Glomer-
omycotina) form mutualistic associations with roots of the
majority of terrestrial plants [1]. They provision plants with

Accession numbers Sequences generated in this study are deposited at
GenBank under accession numbers: MG493487-MG494246
(Table S5).
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quently, AMF play important roles in functioning of ter-
restrial ecosystems and global nutrient cycling, and are of
rising interest in sustainable agriculture as alternatives to
non-renewable mineral fertilizers [2, 3].

For decades, AMF have been known to harbor mor-
phologically diverse endosymbiotic bacteria in their hyphae
and spores [4]. Among them, ‘Candidatus Glomeribacter
gigasporarum’ (CaGg, Betaproteobacteria) stands out as the
most extensively studied endobacterium of AMF [5]. CaGg
resides in fungus-derived vesicles inside hyphae and spores
of AMF in the family Gigasporaceac. AMF spores that
harbor CaGg have been shown to produce longer pre-
symbiotic hyphae than spores that are CaGg-free [6], a
phenomenon attributed to the ability of CaGg to prime
energy metabolism of the fungus [7]. Despite the ancient
origin of the CaGg—Gigasporaceae association, CaGg
remains nonessential to its fungal host [6, 8]. In other
words, AMF display facultative dependence on CaGg. In
turn, CaGg cannot be cultivated in separation from AMF
[9], and is obligately dependent on its host [10].
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Importantly, the CaGg—Gigasporaceae symbiosis does not
appear to be in transition toward a reciprocally obligate state,
in which CaGg is essential to AMF survival, as would be
expected in associations where endosymbionts are vertically
transmitted within host populations [8]. As a consequence,
evolutionary stability of the CaGg—Gigasporaceae associa-
tion in its current non-reciprocally obligate form was
hypothesized to be the result of shifting environmental
conditions, whereby only certain environments, such as
those requiring extensive pre-symbiotic hyphal proliferation
to contact the plant host, would favor CaGg presence in
AMF [8]. However, the exact conditions that support CaGg
incidence in AMF are unknown due to lack of ecological
studies.

Another endobacterium of yet unknown lifestyle, which
AMF harbor, has been recently named ‘Candidatus Moe-
niiplasma glomeromycotorum’ (CaMg, Mollicutes) [11,
12]. Its metabolic profile and molecular evolution patterns
suggest that CaMg might be a parasite of AMF [13, 14].
Importantly, CaMg and CaGg can co-exist and form an
intracellular ‘microbiome’ of AMF [14, 15]. Similar to
CaGg, CaMg is vertically transmitted via fungal spores
[11]. However, in contrast to CaGg, which has only been
found in the family Gigasporaceae, CaMg is widely dis-
tributed among phylogenetically distinct AMF lineages
[11, 12]. Populations of CaMg in AMF isolates/spores/
operational individuals exhibit unexpected intra-host
genetic diversity [11-15]. Based on genomic and mole-
cular evolution analyses, this genetic diversity is thought to
be the result of symbiont horizontal transmission and
recombination [13, 14, 16].

Our knowledge of the biology of AMF-associated
endobacteria, their population structure, and distribution
across hosts comes primarily from analyses of culture
collection-derived fungal isolates, and little is known about
these endobacteria in natural populations of AMF. In the
present study, we set out to examine the natural distribution
of CaGg and CaMg in AMF in the North Atlantic dune
environment with a particular focus on: (1) surveying
incidence of endobacteria in AMF, (2) exploring the effect
of environmental factors on the association between AMF
and endobacteria, and (3) assessing diversity of CaGg and
CaMg.

The North Atlantic dune ecosystem is well suited for
addressing questions concerning AMF and their endo-
bacteria. Previous studies suggested that coastal foredune
areas are dominated by AMF representing the family of
Gigasporaceae [17-21], a group known to frequently harbor
CaGg [8]. Abundance of AMF spores reaches maximum in
late fall, when they can be isolated directly from field
samples without the need for enrichment in trap cultures
[17, 22]. Working directly with such field collected spores
enables reliable quantification of endobacteria occurrence
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within AMF. As an early succession system, which is
exposed to harsh environmental conditions, foredunes differ
from many other natural terrestrial systems in having low
plant diversity [23]. North Atlantic foredune plant com-
munities are dominated by a native perennial pioneer spe-
cies Ammophila breviligulata, American beachgrass [24,
25]. This near monoculture offers a convenient model in
which the impact of plant community structure on AMF
diversity is expected to be minimal, allowing to isolate
effects of other variables. Specifically, steep environmental
gradients, which extend from the ocean inland, permit for
assessment of environmental impacts at small spatial scales.
Typically, salinity and environmental disturbances, such as
wind and substrate mobility, decrease inland from the
ocean, whereas biotic pressures increase [23]. As a con-
sequence, AMF closer to the ocean are expected to be
exposed to higher abiotic pressure and disturbances relative
to fungi farther away.

Our pilot survey of AMF at the Cape Cod National
Seashore revealed presence of both CaGg and CaMg.
Subsequent systematic sampling in the foredunes, which
display the steepest environmental gradients and lowest
plant diversity, indicated that CaGg and CaMg differed in
their distribution patterns across AMF. Incidence of CaGg
in spores of AMF was not affected by environmental
parameters, whereas plant density significantly impacted
distribution of CaMg. As in previous studies [12-15],
individual isolates of dune AMF harbored diverse popula-
tions of CaMg. However, the lack of evidence of mixing
between CaMg from different dune AMF suggested that
host physical proximity is not sufficient for horizontal
transmission of CaMg. Finally, in addition to a novel
clade of CaGg, we discovered bacteria previously not
known to be associated with Glomeromycotina, and likely
hosted inside AMF hyphae and spores. These Burkholderia-
related bacteria cluster phylogenetically with free-living
Burkholderia and endobacteria of other Mucoromycota
fungi.

Materials and methods
Pilot survey

To survey the diversity of AMF and their endobacteria at
North Atlantic dunes, samples were collected haphazardly
from diverse habitats in the Province Lands area of the Cape
Cod National Seashore on 11 November 2010. Sampled
habitats included foredunes (F, 10 samples), backdunes (B,
6 samples), transitionary dune-woodland areas (M, 10 sam-
ples), and woodlands (W, 7 samples). The Edelman auger
@7 cm (Agrisearch Equipment) was used after removing the
topmost layer of 20-40 cm of sand to reach the zone of
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actively growing roots. A total of 33 soil samples were
transported to the lab on ice, air dried, and stored at 4 °C
until further processing.

Systematic sampling

To link diversity of AMF and their endobacteria with
environmental variables, samples were collected in a sys-
tematic manner from a foredune area dominated by A.
breviligulata (42°4°50.2’°N 70°13°2.4’W) on 3 November
2013. Four transects were laid out starting from the edge of
vegetation at the seaward side (corresponding to the end of
the beach) and extending 100m inland (Figure S1).
Transects were placed 10, 20, and 40 m apart (10 m between
Transect 1 and 2; 20 m between Transect 2 and 3; 40 m
between Transect 3 and 4). A total of 44 samples were
collected. Samples were taken every 10 m by collecting the
soil around a plant nearest to each 10 m mark. These sam-
ples were used for AMF spore extractions and soil para-
meter analyses, as described further. At each sampling
point, the following was recorded: (1) total number of
individual plants in a 70 cm radius around the area of soil
sampling, (2) distance to four nearest plants in the 70 cm
radius around the area of soil sampling, later averaged to
give average nearest neighbor distance (NND), and (3) total
number of non-A. breviligulata plants. These parameters
were used to estimate total plant density at each sampling
point as well as dominance of A. breviligulata over other
plants.

Spore extraction, collection, and decontamination

We used wet sieving and decanting followed by 2M
sucrose centrifugation to extract AMF spores from 50 g of
air-dried soil suspended in 200 ml water as described by
Daniels and Skipper [26]. Spores were collected on 0.45 pm
gridded nitrate cellulose filters and selected for further
processing at random under magnification following
Moebius-Clune et al. [27]. In brief, the grid on the filter was
used to define a transect line along which spores were
sampled, collecting the spore closest to the grid intersection.
To estimate the number of spores (isolates) to be genotyped
per sample in order to obtain the total diversity of the
population from that sample, we generated collector’s
curves in MOTHUR [28]. We found that successful geno-
typing of £8 spores would encompass the AMF diversity in
that sample at 0.05% cutoff. However, to be conservative,
we aimed at surveying at least 10 spores per sample.
Notably, this was not possible for all samples, as, for
example, spores extracted from samples at 0 m away from
the beach were difficult to genotype. Selected spores were
decontaminated individually as in Mondo et al. [8]. In brief,
spores were sequentially washed with 1 mM and 50 mM

H,0,, then with 4% chloramine T, followed by a final wash
with sterile nanopure water.

AMF spore identification

Following surface decontamination, each spore was crushed
with a pipet tip to release its contents. Total spore DNA was
whole-genome amplified using Ilustra™GenomiPhi-V2 kit
(GE Healthcare), and the 1/20 diluted product was used for
PCR. A fragment of the fungal 28S ribosomal RNA (rRNA)
gene was PCR amplified from individual spores with pri-
mers LR1 and NDL22 [29] (Table S1) using JumpStart
RedTaq DNA Polymerase Master Mix (Sigma), as descri-
bed in Mondo et al. [8]. PCR products were cycle
sequenced with the BigDye Terminator 3.1 Cycle Sequen-
cing Kit (Applied Biosystems) and analyzed at the Cornell
University Biotechnology Resource Center on an ABI
3730x]1 DNA Analyzer (Applied Biosystems) after pur-
ification by Sephadex ™ filtration, using the Performa’ DTR
Ultra 96-Well Plate Kit (EdgeBio, Gaithersburg, MD).
DNA sequences were edited in Geneious 9.1.2 (Biomatters
Ltd), aligned with MUSCLE [30], and grouped into
operational taxonomic units (OTUs) at 95% similarity cut-
off [27] using MOTHUR [28]. Because MOTHUR algo-
rithms capture sequence diversity derived from degenerate
bases, the majority of OTUs were singletons, that is, they
were composed of a single sequence. To avoid over-
estimating the AMF diversity due to such singleton OTUs,
we conducted further phylogenetic analyses in which we
clustered the representative sequences from each OTU with
reference AMF sequences to form statistically supported
virtual taxonomic units (VTUs).

Screening for endobacteria

AMF spores were screened individually for incidence of
CaGg by PCR with Burkholderia-specific primers ampli-
fying a portion of the 23S rRNA gene [8, 31] (Table S1),
followed by amplicon sequencing, as described above.
CaMg was detected by gel electrophoresis of PCR products
generated with CaMg-specific primers targeting a portion of
the 16S rRNA gene [12] (Table S1). To dissect intra-host
diversity of CaMg, its 16S rRNA sequences were subcloned
for sequencing after PCR amplification with CaMg-specific
primers [12] and Phusion High-Fidelity DNA polymerase
(New England Biolabs) under conditions of 5-min initial
denaturation at 98 °C followed by 15 cycles of 10s at 98 °
C, 30s at 50 °C, and 1 min at 72 °C, followed by a final
extension of 10 min at 72 °C. Amplicons were cloned using
the TOPO TA Cloning Kit for Sequencing (Invitrogen Life
Technologies). Plasmid DNA from recombinant bacterial
colonies was amplified using the Illustra TempliPhi 100/500
DNA Amplification Kit (GE Healthcare Life Sciences).

SPRINGER NATURE
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Plasmid inserts were cycle-sequenced using T3 and T7
primers and analyzed as described above. Cloned CaMg
sequences were clustered at 94% similarity level [11], fol-
lowed by phylogeny reconstruction including the repre-
sentative sequence from each OTU.

Phylogeny reconstructions

All DNA sequences were aligned using MUSCLE [30].
Phylogenies were reconstructed under the GTR-+I+I
nucleotide substitution model implemented in MrBayes
3.2.5 [32], with a 25% burn-in and the average standard
deviation of split frequencies (<0.01) used as a convergence
diagnostic.

Soil chemistry analyses

Soil samples collected during systematic foredune sampling
were air dried at room temperature and stored at 4 °C until
analyzed at the Cornell Nutrient Analysis Laboratory (tests
#1060 and #1880). Details of the procedures are described
in Moebius-Clune et al. [33]. In brief, nutrients were
extracted from soil by shaking with Modified Morgan’s
solution and filtered through a paper filter. The filtrate was
analyzed on an inductively coupled plasma emission spec-
trometer (ICP, Spectro Arcos) for macro- and microele-
ments. pH of a 2:1 suspension of water and soil was
determined using a Lignin pH robot. Soluble salts were
extracted in a 1:1 soil-water suspension, and the electrical
conductivity of the supernatant measured with a calibrated
conductivity meter. Three soil samples from each transect
were analyzed corresponding to distances 0, 40, and 100 m
from the beach.

Statistical analyses

Linear regression was used to examine the relationship
between distance from the beach and different environ-
mental variables, including vegetation and soil chemistry
characteristics. To assess the impact of soil parameters on
incidence endobacteria in AMF spores, soil chemistry data
from samples collected at 0, 40, and 100 m from the beach
were extrapolated, separately for each transect, to the
remaining samples using two different methods: (i) linear
interpolation values were computed for each missing dis-
tance from the beach based on soil chemistry parameters at
distances 0, 40, and 100 m, and (i1) LOESS curve was fitted
to the soil chemistry parameters at distances 0, 40, and 100
m versus distance relationship, and values were computed
for the remaining missing distances.

Influence of environmental parameters on endobacteria
incidence in AMF spores was analyzed using the Ismeans
and lme4 packages in R. General linearized mixed models
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with binomial distribution were used to model CaGg and
CaMg incidence in AMF spores. Environmental variables
(plant density, dominance of A. breviligulata, soil salinity,
and pH) were modeled as fixed effects. To account for
variability between and within transects, transect was
modeled as a random effect. To account for variability
between and within each sampling point within a transect,
distance was modeled as a random effect nested within
transect. The resulting model accounted for potential cor-
relation in endobacteria incidence between transects and
between sampling points within transects. All environ-
mental parameters, except distance, were modeled as con-
tinuous variables. Distance was modeled as a factor variable
because log odds of endobacteria incidence did not appear
to be a linear function of distance. Significance of distance
was tested with a likelihood ratio test. Post-hoc pairwise
comparisons between distances were performed using
Tukey adjustments for multiple comparisons. Influence of
soil chemistry parameters (soluble salts, sodium, calcium,
and pH) on incidence of endobacteria within AMF spores
was modeled three independent times, using either only the
data that were obtained for distances 0, 40, 100 m, or the
values from the two different extrapolations described
above.

Analysis of molecular diversity

To quantify the extent of diversity among CaMg genotypes,
we conducted hierarchical analysis of molecular variance
(AMOVA) implemented in Arlequin 3.5 [34]. We tested the
null hypothesis that any variation among CaMg is due to
random sampling. To estimate variance components and @
statistics, which are F statistic analogs and reflect the cor-
relations of genotypic diversity at different levels of hier-
archical subdivision, we used p-distances computed from
the alignment of the 16S rRNA gene haplotypes found in
CaMg associated with VTU Gigaspora GAR and VTU
Acaulospora that co-occurred spatially. The specific @
statistics were: (i) @gt, the correlation of the molecular
diversity of random CaMg genotypes within AMF isolates
relative to the correlation of random pairs of genotypes
drawn from the entire CaMg diversity, (ii) @sc, the corre-
lation of random CaMg genotypes among AMF isolates
relative to the correlation of random pairs of CaMg geno-
types drawn from a AMF VTU, and (iii) @cr, the correla-
tion of the molecular diversity of random CaMg genotypes
within AMF VTUs relative to the correlation of random
pairs of genotypes drawn from the entire CaMg diversity.
Statistical significance of the null hypothesis was tested
by permutational analysis: 90,000 permuted matrices
were generated to obtain the null distribution and to test for
the significance of the variance components and the &
statistics.
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Detection of recombination

To detect recombination among CaMg associated with VTU
Gigaspora GAR and VTU Acaulospora that co-occurred
spatially, we used the genetic algorithm for recombination
detection (GARD) method [35] available through a web
interface [36]. GARD searches the sequence alignment for
evidence of segment-specific phylogenies and assesses
goodness of fit using the small sample AIC (AICc) criterion
derived from a maximum likelihood model fit to each seg-
ment. To verify whether the segment-specific topologies are
significantly different, the Kishino—Hasegawa test [37] is
conducted. The Kishino—Hasegawa test estimates the var-
iance of the difference between log likelihood scores of two
phylogenetic trees.

Results

AMF and their endobacteria across dune habitats at
Cape Cod

A pilot survey of AMF and their endobacteria across
diverse dune habitats at Cape Cod, including foredunes,
backdunes, dune-woodland transition, and woodland, yiel-
ded 325 AMF isolates (spores). Only ~40% of these AMF
could be genotyped successfully, revealing 10 VTUs (see
Materials and methods section) (Fig. 1, Table S2). In terms
of abundance, over 75% of isolates were classified in the
family Gigasporaceae, followed by Acaulosporaceae, which
accounted for 16% of isolates. The foredunes were domi-
nated by VTU Gigaspora GAR, which comprised AMF
clustering with Gi. gigantea, Gi. albida and Gi. rosea
(Fig. 1). Other Gigasporaceae VTUs stood out as more
abundant in the remaining areas of backdunes, dune-
woodland transition, and woodland (Table S2). In addi-
tion to Gigasporaceae and Acaulosporaceae, we also
detected representatives of Diversisporaceae and Glomer-
aceae, as well as a couple of isolates whose relationship
with Paraglomeraceae, Archaeosporaceae, and Ambispor-
aceae remained unresolved.

CaGg was found in 7% of the Gigasporaceae isolates,
including VTU Gigaspora GAR, VTU Scutellospora, and
VTU Cetraspora (Fig. 2, Table S2). In contrast, CaMg was
found in nearly 50% of all AMF isolates, including repre-
sentatives of Gigasporaceae, Acaulosporaceae, and Diver-
sisporaceae (Table S2). Several isolates of Glomeraceae
were consistently free of CaMg (Table S2).

Foredune AMF

To assess whether environmental factors affect the inci-
dence of endobacteria across AMF, we conducted

systematic sampling along four transects spanning a fore-
dune area dominated by A. breviligulata (Figure S1). Of
over 1000 AMF spores sampled, 499 could be genotyped
and grouped into five VTUs: VTU Gigaspora GAR
(68.2%), VTU Racocetra (22.5%), VTU Acaulospora
(5.4%), VTU Dentiscutata (3.6%), and VTU Cor-
ymbiglomus (0.2%) (Fig. 1, Dataset S1). At the edge of the
vegetation line (0 m away from the beach), AMF spores
were sparse, and the ones that were isolated oftentimes
failed to yield PCR amplicons of an AMF 28S rRNA gene
sequence. As a result, there was a low number of AMF
sequences obtained at Om away from the beach. VTU
Gigaspora GAR dominated the AMF community at all
sampling points except at 0 and 70 m where VTU Acau-
lospora was dominant (Fig. 3). VTU Racocetra increased in
abundance beyond 10 m from the beach.

Foredune environmental parameters

Total plant number at sampling points across the foredune
study site was inversely proportional to average NND. In
other words, as the number of plants at a sampling point
increased, distance between them decreased (r2 =0.75, P<
0.001, Fig. 4a). Because total number of plants and average
distance between them were so tightly correlated, we
focused on total plant number as the measure of plant
density. We found that plant density decreased slightly with
increasing distance from the beach (r2=O.O4, P <0.001,
Fig. 4b), and that dominance of A. breviligulata also
declined with increasing distance from the beach (2= 0.1,
P <0.001, Fig. 4c).

The pH of soil along the foredune transects ranged from
5.5 to 7.5, with the average of 6.21 (Table S3). These
values, although consistent with what has been previously
reported by the National Park Service [38], did not correlate
with distance from the beach. Soil salinity, measured as
soluble salts (conductivity, mmhos em™ ') declined with
increasing distance from the beach (+* = 0.37, P = 0.03), as
did the calcium (> =0.65, P=0.001) and sodium (=
0.45, P=0.01) ion concentrations (Table S3). These pat-
terns were largely expected, because the dune environment
is typically characterized by decreasing levels of soil sali-
nity with increasing distance from the shore due to
decreased exposure to sea spray [23].

Influence of environmental factors on endobacteria
incidence in foredune AMF

An examination of endobacteria incidence in foredune
AMF revealed a striking difference in the abundance of
CaCg and CaMg. CaGg was found in only 2% of all AMF
spores, and was limited to VTU Gigaspora GAR (Fig. 2,
Dataset S1). CaMg, on the other hand, was very abundant,
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with 88% of all AMF spores harboring it, including repre-
sentatives of the family Gigasporaceae, as well as VTU
Acaulospora and VTU Corymbiglomus (Dataset S1). All

spores that supported CaGg also contained CaMg (Fig. 2),
which was not always the case in AMF examined during the
pilot survey (Table S2) or in culture collections [14, 15]. In
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<« Fig. 1 AMF phylogeny based on the 28S rRNA gene sequence. Taxa

in red are representatives of Cape Cod OTUs constructed by clustering
at 95% similarity of sequences retrieved during the 2010 pilot survey
and 2013 systematic study; the remaining are reference taxa. 2010
taxon identifiers include spore number, sampling location (F, foredune;
B, backdune; M, transition area; W, woodland), and sample number;
2013 taxon identifiers denote transect number, sample number, and
spore number. Numbers above branches represent Bayesian posterior
probability; values above 0.8 are displayed. The complete phylogeny
and sequence alignment are included in Dataset S2

particular, Gigaspora margarita BEG34, a model for the
CaGg—Gigasporaceae symbiosis, harbors CaGg but not
CaMg [12, 14].

CaMg distribution varied among the different foredune
AMF VTUs. CaMg was abundant in spores of VTU
Gigaspora GAR (90%), VTU Racocetra (93%), and VTU
Dentiscutata (83%), and found in less than half of spores of
VTU Acaulospora (46%).

Distribution of CaGg and CaMg in foredune AMF was
not significantly affected by distance from the beach.
Moreover, none of the environmental parameters that we
measured (plant density, A. breviligulata dominance, sali-
nity, pH, Ca, and Na soil content) had an impact on CaMg
or CaGg distribution across all AMF isolates. However,
when we modeled effect of environmental parameters on
endobacteria distribution in individual VTUs, we found that
in VTU Acaulospora, CaMg incidence was correlated with
plant density (P = 0.01, Fig. 5). These patterns suggest that
fungal host identity has an important role in how CaMg
distribution is affected by environmental variables.

CaMg diversity in Cape Cod AMF

CaMg is known to exhibit high genetic diversity in culture
collection isolates of AMF, often with higher levels of
diversity within than among host individuals [11-15]. To
determine whether this pattern was also apparent in natural
populations of CaMg from sand dunes, we analyzed CaMg
population structure from two distantly related AMF iden-
tified in our samples, VIU Gigaspora GAR and VTU
Acaulospora (Fig. 6, Figure S2). Besides being distantly
related phylogenetically, these AMF differed in CaMg
incidence, with VTU Gigaspora GAR displaying a much
higher CaMg incidence than VTU Acaulospora
(Dataset S1).

To examine CaMg diversity, we assessed unique cloned
16S rRNA gene sequences (haplotypes) from different
spores of VTU Gigaspora GAR and VTU Acaulospora co-
occurring within three soil samples (Fig. 6 and Figure S2).
We found that individuals of VTU Gigaspora GAR har-
bored several deeply divergent CaMg haplotype clusters,
which were interspersed across the phylogeny of CaMg

associated with Acaulosporaceae, Diversisporaceae, and
Gigasporaceae (Fig. 6). Conversely, VTU Acaulospora
harbored two divergent haplotypes of CaMg (Fig. 6).
AMOVA [34] revealed that the variance component of
CaMg diversity between these two VTUs of AMF was
small and, instead, high levels of diversity were apparent
within CaMg populations associated with individual AMF
isolates (over 70% of variance), as well as among isolates
within AMF VTUs (over 27% of variance) (Table S4). The
latter pattern resembles partitioning of CaMg diversity
within and among AMF isolates within a geographic region
[14].

CaMg transmission within AMF is predominantly ver-
tical [11, 12]. However, CaMg molecular evolution patterns
indicate a low level of horizontal transmission [14]. We
tested the hypothesis of horizontal transmission in CaMg by
examining the patterns of 16S rRNA gene diversity among
CaMg associated with VTU Gigaspora GAR and VTU
Acaulospora co-occurring within the same soil samples
(Figure S2), with a particular focus on genetic recombina-
tion. GARD [35] revealed no evidence of gene exchanges
among CaMg from these two distantly related hosts that co-
existed spatially, suggesting that physical proximity
between AMF species is not sufficient for horizontal
transmission of CaMg to occur.

Analysis of CaGg diversity at Cape Cod reveals
previously uncharacterized bacteria

To date, our knowledge of CaGg and CaMg population
structure comes primarily from analyses of culture collec-
tion isolates of AMF [8, 13-15, 39], and little is known
about these endobacteria in nature. Using 23S rRNA gene
sequences PCR amplified with Burkholderia-specific pri-
mers, we reconstructed a phylogeny of CaGg detected at
Cape Cod, and discovered a new clade that was distinct
from endobacteria in culture collection isolates (Fig. 2).
These CaGg sequences were recovered during both the
2010 pilot survey and the 2013 systematic study (Fig. 2,
Table S2, Dataset S1). Interestingly, they shared 99.9%
identity with each other, regardless of the sampling year,
indicating a temporally stable population.

In addition to CaGg, Burkholderia-specific PCR primers
revealed novel Burkholderiaceae sequences in spores of
dune AMF collected during the pilot survey and systematic
sampling. These sequences were repeatedly recovered from
VTU Gigaspora GAR and VTU Acaulospora spores, and
grouped away from the CaGg (Fig. 2, Table S2, Data-
set S2). One of these Burkholderia-related sequences clus-
tered with Mycoavidus cysteinexigens, an endosymbiont of
another Mucoromycota fungus, Mortierella elongata [40].
The remaining sequences fell into two clusters, one
grouping with free-living Burkholderia and the other
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clustering away from both free living and other known
endofungal Burkholderia. Considering that we surface
decontaminated all spores examined, these bacteria were
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likely present inside the fungal cells and could represent a
new group of endobacteria previously not known to live in
AMF. However, fluorescence in situ hybridization
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« Fig. 2 Relationships between CaGg, Burkholderia-related endo-

bacteria of Rhizopus microsporus and Mortierella elongata, as well as
free-living Burkholderia based on the 23S rRNA gene sequence.
Endobacteria marked with asterisks co-existed with CaMg. Taxon
identifiers in red represent bacterial sequences obtained from AMF
during the 2010 pilot survey, and denote AMF VTU, spore number,
sampling location (F, fordune; B, backdune; M, transition area; W,
woodland), and sample number. Taxon identifiers in blue represent
bacteria found in AMF in 2013, and indicate AMF VTU, transect, and
sample number followed by spore number. Numbers above branches
represent Bayesian posterior probability, values above 0.8 are shown

1Y

25 -o- VTU Acaulospora
== \/TU Corymbiglomus

5 -& VVTU Dentiscutata
_g 201 -+ VTU Gigaspora GAR
E ¢ VTU Racocetra
c
o 154
o
@
° 10 4
S
<

0 4

0 25 50 75 100

1004

754

50+

254

Relative VTU abundance (%) o

0 25 5 75 100
Distance from the beach (m)
Fig. 3 Abundance and distribution of AMF at the Cape Cod National

Seashore foredune study site at varying distances from the beach.
a Abundance; error bars represent 1 SEM. b Relative abundance

experiments with Burkholderia-specific probes are needed
to confirm this hypothesis.

Discussion

We found that the foredune North Atlantic study system at
Cape Cod, with its nearly monospecific cover of A. brevili-
gulata and steep environmental gradients, was dominated by
AMF classified in the families Gigasporaceae and Acaulos-
poraceae. As these families were reported to dominate the
AMF community at Cape Cod in the 1990s [21], our find-
ings indicate that Gigasporaceae and Acaulosporaceae form
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Fig. 4 Vegetation characteristics at the Cape Cod National Seashore
foredune study site. a Relationship between average nearest neighbor
distance (NND), i.e., average distance to four nearest plants in the 70
cm radius around the area of soil sampling, and total number of plants
in a 70 cm radius from the sampling point. b Relationship between
total number of plants and distance from the beach. ¢ Relationship
between dominance of A. breviligulata and distance from the
beach. Linear regression was used to model the relationships in these
graphs
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Such conditions are likely to occur when chances of a
germinating fungal spore to contact its plant host are low-
ered due to low plant density typified by larger distances
between potential plant hosts. In Cape Cod foredunes, plant
density declined with increasing distance from the ocean,
with larger distances recorded between individual plants.
However, we detected no correlation between CaGg pre-
sence in AMF and plant density, suggesting that plant
density may not be a factor in determining CaGg incidence
in AMF.

In contrast to CaGg, CaMg was extremely abundant in
dune AMF. This was largely unexpected, as molecular
evolution patterns suggest that CaMg may be a parasite of
AMF [13, 14]. Moreover, there is experimental evidence
indicating that endobacteria closely related to CaMg are
conditional parasites of Mortierellomycotina, another group
of Mucoromycota fungi [41]. Although the exact role of
CaMg in the biology of AMF has not been established, two
evolutionary scenarios could account for the persistence of a
heritable parasite in AMF populations: (i) occasional hor-
izontal transmission [42, 43], and (i1) conditional mutualism
[44-46].

According to evolutionary theory, some degree of hor-
izontal transmission is important for vertically transmitted
symbionts that lower host fitness in antagonistic interactions
[42, 43]. Otherwise, such heritable parasites are unlikely to
persist in a host population. Horizontal transmission has
been hypothesized to occur in CaMg [13, 14, 16], however,
it was never demonstrated experimentally. At Cape Cod we
found no evidence of CaMg mixing between two distantly
related AMF that co-occurred within the same soil samples,
suggesting that physical proximity is not sufficient to
facilitate horizontal transmission of CaMg. Such absence of
CaMg transfer between neighboring hosts suggests that
partner genetic factors may have a role in horizontal
transmission of CaMg, a hypothesis that remains to be
tested.

In the absence of horizontal transmission, persistence of
heritable parasites is predicted to depend on their ability to
act as conditional mutualists that improve host fitness under
specific conditions [44-46]. These specific conditions may
be related to resources available to the host [44, 46]. In
habitats with patchy distribution of resources, antagonistic
symbionts are expected to persist even if their vertical
transmission is imperfect, that is, they are not inherited by
all host progeny [46]. In coastal dunes, we found that in
VTU Acaulospora, incidence of CaMg was variable and
correlated positively with plant density. If horizontal
transmission of CaMg is indeed absent among dune AMF,
this pattern may suggest that CaMg is a conditional mutu-
alist presenting its AMF hosts with variable fitness out-
comes that depend on resource availability represented by
host plant density.

Protecting the host from another, more virulent, hor-
izontally transmitted antagonist is another form of condi-
tional mutualism expected to keep heritable parasites from
extinction [45]. Although no known horizontally trans-
mitted parasites have been characterized in AMF to date,
AMF associate with soil bacteria in the mycorrhizosphere
environment, and these bacteria can have both mutualistic
and antagonistic/parasitic effects on the fungus [47]. In this
context, testing the hypothesis that CaMg is a conditional
defensive mutualist of AMF is likely to unravel a complex
network of functionally uncharacterized interactions that
AMF form with rhizospheric bacteria. In particular, at Cape
Cod, we identified multiple AMF isolates from which we
recovered DNA sequences of CaMg together with DNA of
bacteria related to free-living Burkholderia and endo-
bacteria of another Mucoromycota fungus. Future work is
needed to confirm the intracellular location of these bac-
teria, examine their mode of transmission, measure impact
on AMF fitness, and characterize interactions with CaMg.

Overall, the effects of environmental factors on incidence
of endobacteria across dune AMF differed between the two
endosymbionts and were related to the identity of host
fungi. CaGg was rare despite a high relative abundance of
its Gigasporaceae hosts, and its distribution was not
explained by any environmental variables. CaMg was
common in VTU Gigaspora GAR and less frequent in VTU
Acaulospora. Importantly, incidence of CaMg in VTU
Gigaspora GAR was not affected by environmental factors,
whereas in VTU Acaulospora, it was favored by increasing
plant density. These patterns suggest that fungal host
identity is a notable determinant of how CaMg distribution
across AMF responds to environmental variability.

Conclusion

Our study showed that associations between AMF and their
heritable endobacteria are not easily perturbed by shifting
environmental conditions that typify costal dunes. We
confirmed the existence of heterogeneous populations of
CaMg in AMF in nature, analogous to what has been
reported in culture collection isolates of AMF. However,
contrary to our expectation, we found no evidence that
CaMg is horizontally transmitted between distantly related
hosts occupying the same habitat. In addition, assessment of
endobacteria diversity revealed a novel group of CaGg, as
well as a previously unreported group of Burkholderia-
related endobacteria in AMF. Collectively, we conducted
the first ecological study of AMF-associated endobacteria
and assessed their diversity and population structure.
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