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Abstract
Just as the expansion in genome sequencing has revealed and permitted the exploitation of phylogenetic signals embedded in
bacterial genomes, the application of metagenomics has begun to provide similar insights at the ecosystem level for
microbial communities. However, little is known regarding this aspect of bacteriophage associated with microbial
ecosystems, and if phage encode discernible habitat-associated signals diagnostic of underlying microbiomes. Here we
demonstrate that individual phage can encode clear habitat-related 'ecogenomic signatures', based on relative representation
of phage-encoded gene homologues in metagenomic data sets. Furthermore, we show the ecogenomic signature encoded by
the gut-associated ɸB124-14 can be used to segregate metagenomes according to environmental origin, and distinguish
'contaminated' environmental metagenomes (subject to simulated in silico human faecal pollution) from uncontaminated data
sets. This indicates phage-encoded ecological signals likely possess sufficient discriminatory power for use in
biotechnological applications, such as development of microbial source tracking tools for monitoring water quality.

Introduction

The faecal contamination of environmental waters used for
drinking and recreational purposes poses a major potential
risk to public health. Detection of faecal contamination and
determination of its origin (microbial source tracking; MST)
is an emerging element in managing these risks and

safeguarding water quality. At present, the cultivation of
faecal indicator bacteria (FIB) from water samples, such as
faecal coliforms, Escherichia coli and Enterococcus spp.,
remains a mainstay of methods for detecting faecal pollu-
tion of water resources [1–4]. Although the detection and
enumeration of FIB have long been useful in strategies to
improve and maintain water quality, they are subject to a
range of limitations that impair their overall utility. Lim-
itations include their lack of specificity to human faeces,
poor persistence or potential regrowth in certain environ-
ments, and long turnaround times associated with culture-
based detection [5–8].

Consequently, numerous alternative human-specific
MST approaches have been developed in recent years,
including both culture-dependent and molecular-based
approaches. Culture-independent, molecular-based approa-
ches to MST are increasingly attractive as they offer the
potential to overcome certain limitations inherent in culture-
dependent approaches. These include a reduced turnaround
time and improved sensitivity, which should lead to more
efficient quantification and prediction of risk. Ultimately,
molecular-based MST approaches could conceivably deli-
ver an indication of water quality directly at the point of
sample collection, and in near real time [9].
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To date, the development of molecular-based MST
methods has focused primarily on the detection and
amplification of target genes or sequences associated with
specific faecal bacteria, typically using either end point or
quantitative PCR [3, 10]. More recently, improved access to
high-throughput next-generation sequencing technologies,
along with the growing portability, ease-of-use and afford-
ability of such systems, have begun to offer the prospect of
developing metagenomic approaches to MST (e.g., refs. [9,
11]). The application of metagenomics to MST should
permit high-resolution methods based on surveillance of
whole microbial communities, and identification of habitat-
specific genetic patterns that can distinguish microbial
ecosystems (also termed 'ecogenomic signatures').

Alternatives to FIB are also likely to be important in the
development of more effective MST tools. In particular, the
detection of human gut-specific bacteriophage (phage) that
infect anaerobic gut bacteria are increasingly viewed as
potentially superior indicators of pollution compared to
direct detection of their bacterial host. The advantages of
phage for MST are a longer environmental persistence,
greater abundance than the host bacteria and the ability of
phage to replicate within cultured host species. All of which
can serve to amplify any signal of human faecal con-
tamination and improve sensitivity [12, 13]. These potential
advantages of phage in MST are further supported by
reports of the isolation and characterisation of apparently
human gut-specific phage, and the subsequent use of these
as MST tools [12–17].

Furthermore, many of the advantages offered by phage in
traditional culture-based MST methods [15] would also
seem to apply to the development of phage-based culture-
independent approaches. These include metagenomic MST
tools, which could conceivably target the entire retinue of
viruses associated with a particular microbial ecosystem
(the virome). However, the potential for such virome-based
metagenomic MST is currently uncertain, and first requires
fundamental study in order to define the principles under
which phage-based metagenomic MST could operate. In
particular, it remains unclear to what extent individual
phage, or wider phage communities, associated with target
ecosystems are diagnostic of underlying host microbiomes
and contain unambiguous ecogenomic signals which offer
sufficient discriminatory power for MST.

Here we hypothesise that individual human gut-
associated phage, infecting key members of this micro-
biome, will encode a distinct habitat-associated signal
derived from the co-evolution and adaptation of phage and
host to life within the human gut. If so, homologues of
genes encoded by such phage should display an increased
relative abundance in human gut-derived metagenomes,
compared to metagenomes from other microbial ecosys-
tems. To test these theories, we utilised publically available

viral and whole community metagenomic data sets to
develop a comprehensive ecological profile of ɸB124-14, a
phage previously proven to infect a restricted set of human-
associated Bacteroides fragilis strains, including those with
MST utility [18, 19], and compared this to phage from non-
gut habitats. Our previous genetic and ecological profiling
of ɸB124-14, indicated that this phage has utility as a
marker of human faecal pollution, with potential as a plat-
form for the development of quantitative molecular MST
tools [18]. As such, ɸB124-14 constitutes an excellent
model with which to begin to explore the existence of
habitat-specific ecogenomic signatures in phage genomes
and their application to development of improved MST
approaches.

Results

Representation of sequences with similarity to
bacteriophage-encoded ORFs in viral metagenomes

To evaluate the relative representation of genes with simi-
larity to those encoded by ɸB124-14 in viral metagenomes,
we calculated the cumulative relative abundance of sequen-
ces similar to translated ɸB124-14 open reading frames
(ORFs) in each metagenome (Fig. 1). These data sets
encompassed the human, porcine and bovine gut, as well as a
broad range of aquatic environmental habitats (see Supple-
mentary Table S1). Sequences generating valid hits to at least
one ɸB124-14 ORF were identified in all data sets evaluated,
but a significantly greater mean relative abundance of
ɸB124-14-encoded ORFs was evident in human gut vir-
omes, compared with environmental data sets (Fig. 1a). No
significant differences were apparent between the mean
cumulative relative abundance of ɸB124-14 human gut vir-
omes and other gut viromes examined (Fig. 1a). Individual
human gut viromes were also observed to display a notably
greater variation in ɸB124-14 cumulative relative abundance
than other data sets analysed (Fig. 1a).

To determine if these 'gut-associated' ɸB124-14 relative
abundance profiles represented a habitat-related signal in
ɸB124-14, or could be attributed to properties of phage
genomes or the human gut virome in general, we repeated
this experiment using additional genomes from phage not
considered to be associated with the human gut. These
included the Cyanophage SYN5 [20], and the Burkholderia
prophage KS10 [21]. ɸSYN5 was isolated from temperate
marine environments, while ɸKS10 was identified in B.
cenocepacia strain K56-2, an organism typically associated
with the plant rhizosphere, but also an opportunistic human
pathogen [22]. Based on tetranucleotide profiling, ɸKS10
has previously been shown to be among the most distantly
related phage to ɸB124-14 [18].
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Neither ɸSYN5 nor ɸKS10 exhibited the gut-associated
enrichment of similar ORFs evident for ɸB124-14, when
cumulative relative abundance profiles of each phage were
considered across all habitats represented (Fig. 1b, c).

However, ɸSYN5 displayed a significantly greater
representation in a subset of data sets from marine envir-
onments relative to gut viromes, congruent with its
environmental origin and indicative of an ecological profile
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distinct from ɸB124-14 (Fig. 1b). In contrast, sequences
similar to ɸKS10 ORFs appeared to be only very poorly
represented in the majority of data sets examined, with no
discernible ecogenomic profile identified within the data
sets analysed (Fig. 1c). Comparison of phage-to-phage
relative abundance profiles within specific habitats rein-
forced the potential for a gut-associated ecogenomic signal
in ɸB124-14, with ɸSYN5 and ɸKS10 shown to have
significantly lower representation in all gut-derived viromes
examined (Fig. 1d, e, f, g).

Detection of the ɸB124-14 ecogenomic signal in
whole community metagenomes

Because the human gut virome is believed to be dominated
by temperate phage [23, 24], and we have previously
demonstrated that conventional whole community shotgun
metagenomes derived from human gut bacteria capture
notable fractions of the gut-associated Bacteroides phage
population [25], we next explored the representation of
ɸB124-14 ORFs in assembled whole community metagen-
omes. These encompassed data sets derived from the human
gut and other body sites, as well as a range of non-human gut
and environmental habitats (Supplementary Table S1).

Analysis of the cumulative relative abundance of
sequences with similarity to ɸB124-14 ORFs across habi-
tats, showed no significant differences between whole
community human gut metagenomes and non-human gut or
environmental data sets (Fig. 2a). A significantly decreased
representation at other human body sites compared to the
human gut was detected (Fig. 2a). Identical analyses using
ɸSYN5 showed that, compared to human gut data sets,
ɸSYN5 ORFs had significantly greater representation in
environmental data sets, congruent with the environmental
origin of this phage (Fig. 2b). ɸKS10 again showed no
discernible ecological profile within these data sets (Fig. 2c).

When phage relative abundance profiles were compared
directly within specific habitats on a phage-to-phage basis, a
significantly greater representation of sequences with simi-
larity to ɸB124-14 ORFs was apparent in human-derived
data sets in general, compared with ɸSYN5 or ɸKS10
(Fig. 2d, e, f). ɸB124-14 ORFs also showed significantly
greater representation in non-human gut metagenomes
compared to ɸSYN5 (Fig. 2g), but no significant differ-
ences were noted between phage when environmental
metagenomes were examined (Fig. 2h).

The ɸB124-14 ecogenomic signal can discriminate
human gut viromes from other data sets

Given the observed enrichment of sequences with similarity
to ɸB124-14 ORFs in mammalian gut-derived viral meta-
genomes, and other human-derived whole community
metagenomes, we next examined the potential for this
putative ecogenomic profile to distinguish human gut
metagenomes from those derived from other habitats. We
reasoned that a genuine habitat-related ecogenomic sig-
nature should permit the accurate segregation and grouping
of metagenomic data sets based on their environmental
origin. To test this, non-metric multidimensional scaling
(nMDS) was used for unsupervised ordination of individual
metagenomes, based on relative abundance profiles of
ɸB124-14 ORFs in each data set. The level and significance
of separation between groups of metagenomes was subse-
quently investigated using analysis of similarities (ANO-
SIM) [26]. To increase stringency-only metagenomes with
representation of at least two distinct phage ORFs were
included in this analysis.

Ordination of all available data sets based on the ɸB124-
14 relative abundance profile, generated a clear overall
separation between viral metagenomes and those derived
from whole communities (Fig. 3a, c, Supplementary Fig. S1
and Supplementary Table S2). Assembly of data sets was
indicated to have only minimal impact on nMDS distribu-
tions based on ordination of assembled human gut viromes.
These data sets displayed lower overall relative abundance
values than unassembled counterparts, but collectively
remained closely associated with unassembled data sets,
and strongly separated from whole community metagen-
omes (Fig. 3a, c and Supplementary Fig. S1). When the
relationship between viral data sets was examined in more
detail, human gut viromes were observed to exhibit a clear
and significant separation from other viral data sets (bovine,
porcine and environmental) based on the ɸB124-14 relative
abundance profile (Fig. 3b, c and Supplementary Fig. S1).

In contrast, ɸSYN5 ORF relative abundance profiles
provided considerably poorer resolution of metagenome
groups, and reduced the number of metagenome groups
meeting minimum criteria for inclusion in this analysis

Fig. 1 Cumulative relative abundance of sequences with similarity to
ORFs encoded by Bacteroides ɸB124-14, Cyanophage SYN5 and
Burkholderia phage KS10 in viral metagenomes. Reads from each
virome were mapped to translated ɸB124-14, ɸSYN5 or ɸKS10
ORFS using BlastX. Details of data sets used are provided in Sup-
plementary Table S1. a–c Relative representation of phage ORFs
across habitats represented by viromes. Charts show cumulative rela-
tive abundance of sequences with similarity to ORFs encoded by
Bacteroides ɸB124-14, Cyanobacteria ɸSYN5 and Burkholderia
ɸKS10. For environmental data sets, those derived from temperate
marine environments most relevant to the predicted ɸSYN5 host
habitat were also analysed as a distinct subgroup. d–g Comparison of
phage representation within specific habitats. Charts show cumulative
relative abundance of sequences with homology to ORFs from each
phage examined in viral metagenomes from the human gut, porcine
gut, bovine gut and the environment. In all figures, bars show mean
plus SEM and statistically significant differences denoted by *P ≤
0.05, **P ≤ 0.01 ****P ≤ 0.0001 vs. human gut viromes (a–c) or
ɸB124-14 (d–g)
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(Fig. 3d, e, f and Supplementary Fig. S1). Use of the
ɸSYN5 ecogenomic profile resulted in more highly dis-
persed groups, with less separation of viral data sets from

each other, and from the whole community environmental
metagenome group (Fig. 3d, e, f). A notable exception was
an apparently enhanced ability to distinguish porcine and
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human gut-derived metagenomes with the ɸSYN5 profile
(Fig. 3e, f). A comparable analysis using ɸKS10 was not
possible due to the very low representation of sequences
with homology to ɸKS10 ORFs in the majority of data sets.

Use of the ɸB124-14 ecogenomic signature to
identify human-associated pollution in
environmental data sets

To evaluate the potential of the ɸB124-14 ecogenomic
signature to identify the presence of human gut-associated
pollution in environmental samples, we simulated the con-
tamination of environmental viromes with human gut vir-
ome content. This was performed by adding the average
human gut-derived relative abundance profile of ɸB124-14
to profiles obtained from environmental viral data sets.
ɸB124-14 gut-associated profiles were added to environ-
mental profiles at 'strengths' ranging from 100 to 0.01%, to
explore the range over which the ɸB124-14 gut-associated
ecogenomic signal may be detectable when combined with
background environmental signals.

This showed a correlation between dilution of the
ɸB124-14 human gut-associated ecogenomic signal, and
separation of 'contaminated' data sets from human gut or
'uncontaminated' environmental viromes (Fig. 4a, b). As the
ɸB124-14 ecogenomic signal strength decreased, con-
taminated data sets exhibited correspondingly increased
separation from human gut viromes by nMDS and ANO-
SIM, and a closer association with uncontaminated envir-
onmental metagenomes (Fig. 4a, b). In addition, it is notable
that contamination of environmental data sets with the
human gut-derived ɸB124-14 ecogenomic signature also
provided a clear indication of human gut-associated pollu-
tion specifically, and these data sets remained distinct and
well separated from bovine and porcine viromes (Fig. 4a,

b). In contrast, the same experiment using the ɸSYN5
human gut-derived relative abundance profile, provided no
discernible separation of contaminated environmental data
sets from uncontaminated viromes, in keeping with the
alternative environmental ecogenomic signature exhibited
by this phage, and reinforcing the gut-specific nature of the
ɸB124-14 relative abundance profile across these data sets
(Fig. 4c, d).

Identification of human gut-associated genes in the
ɸB124-14 genome

To further delineate the human gut-associated ecogenomic
signal inherent in ɸB124-14, and to identify genome
regions with the strongest gut affiliation, we next explored
the representation of individual ɸB124-14 ORFs in all
metagenomes in more detail. This revealed that a subset of
ɸB124-14 ORFs appear to exhibit a highly cosmopolitan
distribution across ecosystems, with similar sequences in
>50% of all data sets examined and representation in almost
every habitat examined (Fig. 5a, b and Supplementary
Table S3). These cosmopolitan ORFs are distributed
throughout the ɸB124-14 genome and encode diverse
functions including DNA recombination and repair, thy-
midylate synthase activity, peptidase activity and a phage
anti-repressor, as well as ORFs of unknown function
(Fig. 5a, b and Supplementary Table S3). The other phage
genomes examined also contained examples of cosmopoli-
tan ORFs, which were predicted to encode functions similar
to counterparts in ɸB124-14 (Supplementary Figs. S2 and
S3 and Supplementary Table S3).

This analysis also revealed a range of ORFs in the
ɸB124-14 genome with a seemingly clear-cut human gut
affiliation (Fig. 5b, c and Supplementary Table S4). These
ORFs were relatively well represented in human gut vir-
omes and human gut whole community data sets, as well as
other mammalian gut viromes, but overall poorly repre-
sented in data sets from other habitats (Fig. 5b). These gut-
associated ORFs were distributed throughout the ɸB124-14
genome, with a notable concentration in regions of the
genome predicted to be involved in synthesis of the viral
capsid and genome packaging (Fig. 5c [18]). When the
representation of these gut-affiliated ɸB124-14 genomic
regions was considered in viral data sets specifically, many
were found to exhibit a significant enrichment in human gut
viromes compared to environmental viromes, or in some
cases all other viral data sets (Fig. 5c). In accordance with
the other analyses conducted, no comparable human gut-
associated pattern was observed for ɸSYN5 and ɸKS10
genomes, but ɸSYN5 ORFs were observed to be well
represented in environmental data sets relative to other
metagenomes examined (Supplementary Figs. S2 and S3).

Fig. 2 Cumulative relative abundance of sequences with similarity to
ORFs encoded by ɸB124-14, Cyanophage SYN5 and Burkholderia
phage KS10 in assembled whole community metagenomes. Data sets
were searched using translated ɸB124-14, ɸSYN5 or ɸKS10 ORF
sequences using tBlastn. Valid hits were used to calculate the cumu-
lative relative abundance sequences with similarity to phage ORFs in
each data set (expressed as Hits/Mb). a–c Relative representation of
phage ORFs across habitats represented by whole community meta-
genomes. Charts show cumulative relative abundance of sequences
with similarity to ORFs encoded by Bacteroides ɸB124-14, Cyano-
bacteria ɸSYN5 and Burkholderia ɸKS10. d–g Comparison of phage
representation within specific habitats. Charts show cumulative rela-
tive abundance of sequences with similarity to ORFs from each phage
examined in whole community metagenomes from the human gut,
human oral cavity (mouth and throat), other human body sites (skin,
nares and vagina), non-human gut and wider environment. For all data
sets, bars show mean plus SEM. ***P< 0.001, ****P< 0.0001 vs.
environmental viromes (a–c) or ɸB124-14 (d–g)
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Simulation and modelling of virome-based source
tracking using ɸB124-14 ecogenomic signatures

To further probe the robustness of this habitat-related signal,
and begin to provide insight into the potential sensitivity,
specificity and accuracy of virome-based MST tools, we
next simulated a more expansive and varied set of envir-
onmental viromes. This was achieved through random

permutation of ecogenomic profiles derived from environ-
mental data sets, followed by introduction of random levels
of human, bovine or porcine pollution (based on addition of
respective ɸB124-14 ecogenomic profiles). Ordination of
these permuted and polluted data sets by nMDS indicated
that the ɸB124-14 ecogenomic signal was still able to
clearly segregate all groups of data, and in proportion to the
strength of human, bovine or porcine signal applied
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(Fig. 6a). Data sets with lower levels of human and bovine
pollution were also observed to converge, in keeping with
previous analyses, but still remained clearly segregated
from uncontaminated environmental data sets (Fig. 6a).
Overall, this analysis suggested that the potential dis-
criminatory power of the ɸB124-14 ecogenomic signal was
preserved despite the additional wide variation in the innate
background environmental signal, and that it could also
distinguish different sources of pollution.

To evaluate the possible discriminatory power of ɸB124-
14 relative abundance profiles and specific human gut-
affiliated ORF subsets in more detail, ROC curves were
constructed based on relative abundance profiles from all
ɸB124-14 ORFs, as well as subsets exhibiting significantly
higher representation in human gut viromes compared to
other viral data sets (Fig. 6b). This revealed that the
cumulative relative abundance profile derived from all
ɸB124-14 ORFs had potentially high diagnostic potential in
terms of distinguishing uncontaminated data sets from
polluted environmental viromes, but held no real diagnostic
potential for the distinction of human-polluted data sets
from those subject to simulated bovine or porcine

contamination (Fig. 6b). A comparable performance was
also predicted when ROC analysis was based on ORFs with
significantly increased mean relative abundance in human
gut viromes compared to environmental viromes (desig-
nated subset 1; Fig. 6b). In contrast, ROC analysis based
only on those ORFs exhibiting significantly higher average
representation in human gut viromes compared to all other
viromes analysed (designated subset 2; Fig. 6b), showed
considerably greater potential for distinguishing data sets
subject to human-derived pollution from non-human sour-
ces, but a reduced capacity for distinguishing polluted from
unpolluted data sets in general (Fig. 6b). Collectively, these
analyses indicated a two-step process utilising different
ɸB124-14 ORF subsets should provide the best perfor-
mance in terms of sensitivity, specificity and overall
accuracy.

To test these predictions, threshold cumulative relative
abundance values (minimum sensitivity of 0.91 and the
highest available specificity) were selected from ROC
analyses and applied to the two-step categorisation of ran-
domly permuted and polluted data sets (Fig. 6c). In this
process, data sets were first categorised as polluted or non-
polluted (Step 1), and polluted data sets subsequently
scrutinised further to identify those contaminated specifi-
cally with human-derived signals (Step 2). This experiment
confirmed that relative abundance profiles from Subset 1
ORFs were able to distinguish polluted from unpolluted
data sets with high accuracy (high sensitivity, high speci-
ficity), but performed poorly in subsequent specific identi-
fication of human-polluted data sets (high sensitivity, low
specificity) (Fig. 6c). In contrast, the converse was observed
for categorisation based solely on Subset 2 ORFs (Fig. 6c).
However, a good overall performance was obtained when
Subset 1 and Subset 2 relative abundance profiles were used
in combination. The application of Subset 1 ORF profiles in
Step 1, and Subset 2 ORF profiles in Step 2, resulted in a
highly accurate distinction of polluted from unpolluted data
sets, as well as specific identification of those contaminated
by human-derived signatures (Fig. 6c).

Discussion

Here we provide evidence that a distinctive, human gut-
associated ecogenomic signature can extend to specific phage
from the human gut virome and distinct ecogenomic
signatures can be found in phage from other habitats.
Our analysis, encompassing both viral and whole community
metagenomic data sets covering a wide range of environ-
ments, reveals the existence of a clear human gut-associated
ecogenomic signature within the Bacteroides ɸB124-14
genome [18]. Analysis of the representation of
sequences with similarity to this phage genome clearly

Fig. 3 Unsupervised ordination of metagenomic data sets based on
phage ecogenomic signatures. Non-metric multidimensional scaling
(nMDS) was used to ordinate individual metagenomic data sets based
on the relative abundance profiles of individual ORFs from either
ɸB124-14 or ɸSYN5. The strength and significance of separation
between groups of metagenomes with related environmental origins
was evaluated using ANOSIM. To reduce the noise and increase
stringency, only metagenomes with representation of two or more
distinct phage ORFs were included in this analysis. a, b, d, e nMDS
ordination of all metagenomes (all data sets), or exclusively viral
metagenomes (viromes only), based on ɸB124-14 or ɸSYN5 ORF
relative abundance profiles. Filled ellipses show standard deviation of
dispersion of each group relative to the group centroid. For nMDS
based on ɸSYN5 relative abundance profiles, no data sets from human
gut virome assemblies, human oral cavity or human body sites met the
minimum criteria for inclusion. c, f ANOSIM analysis of differences
between groups of metagenomes used in nMDS. Charts show the
ANOSIM R statistic for each comparison relative to the unassembled
human gut viral data sets. An increasing strength of separation
between groups is indicated as the R statistic approaches 1 (total
separation). Symbols above bars indicate statistical significance of
observed separation between groups: **P ≤ 0.001, *P ≤ 0.05. For
ɸSYN5 analyses, groups where no data sets met the threshold criteria
for representation of a minimum of two distinct ORFs, were not
included in nMDS or ANOSIM and indicated as 'failed detection
threshold' in f. Human gut viromes, bovine viromes, porcine viromes,
env viromes—unassembled viral metagenomes derived, respectively,
from the human, bovine and porcine gut, or of non-host-associated
environmental origin; human gut viromes (assem)—assemblies of
human gut viral data sets; human gut whole, NH gut—whole com-
munity data sets derived from human or non-human gut, respectively;
body, oral—whole community metagenomes from various human
body sites or the oral cavity, respectively. env whole—whole com-
munity metagenomes non-host-associated environmental origin.
Details of data sets in each group are provided in Supplementary
Table S1
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groups metagenomic data sets based on their environmental
origin, and identified regions of the ɸB124-14 genome
with the strongest human gut affiliation. Furthermore,
through an in silico modelling approach, we provide
preliminary proof-of-concept, and show these gut-associated
genome regions likely hold sufficient discriminatory

power for the development of phage-based metagenomic
MST tools.

These findings are congruent with previous smaller-scale
evaluations of the ɸB124-14 ecological profile using both
sequence alignments [18], the tetranucleotide usage profile
of the ɸB124-14 genome [25] and evaluation of phage
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Fig. 4 Detection of human gut-associated ecogenomic signals in
simulated 'polluted' environmental data sets. The potential for the
ɸB124-14 ecogenomic signal to identify human faecal pollution in
environmental data sets was explored by simulating pollution of
selected environmental viromes. This was achieved by combining
average human gut virome ɸB124-14, or ɸSYN5 relative abundance
profiles, with those of selected environmental viromes. Human gut-
associated profiles were combined at 'strengths' ranging from 100 to
0.01% of human gut virome average, with profiles of viromes from the
Bay of British Columbia, Sargasso Sea, Gulf of Mexico, Tampa Bay
and Reclaimed Water. Relationships between groups of 'uncontami-
nated' and 'polluted' metagenomes were explored using nMDS and
ANOSIM as for Fig. 3. a, c nMDS ordination of uncontaminated
metagenomes and those modified to include either ɸB124-14 or
ɸSYN5 human gut virome profiles. Filled ellipses show standard
deviation of dispersion of each group relative to the group centroid.

Black ellipse denotes groups of 'polluted' environmental data sets, with
'strength' (100–0.01%) of human gut signal added. b, d ANOSIM
analysis of the differences between groups of metagenomes used in
nMDS ordination. Charts show the ANOSIM R statistic for each
uncontaminated group of metagenomes compared with data sets
modified to simulate different levels of human faecal pollution. An
increasing strength of separation between groups is indicated as the R
statistic approaches 1 (total separation). Open symbols indicate no
significant separation from the polluted data set compared, while
closed symbols indicate significant separation (P ≤ 0.05). Human gut
viromes, bovine viromes, porcine viromes, env viromes—unas-
sembled viral metagenomes derived, respectively, from the human,
bovine and porcine gut, or of non-host-associated environmental ori-
gin; env whole—whole community metagenomes non-host-associated
environmental origin. Details of data sets in each group are provided in
Supplementary Table S1
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replication in gut-specific host bacteria [19]. However, a
notable difference in the present analysis was not only the
increased scale, encompassing a considerably greater
number and diversity of metagenomes than previous stu-
dies, but also the premise from which the ɸB124-14 gen-
ome was analysed.

We hypothesised that any gut-associated ecogenomic
signature encoded by ɸB124-14 would be derived from the
co-evolution of this phage and its bacterial host within
the human gut, and should manifest as an increased relative
abundance of sequences with similarity to ɸB124-14-
encoded genes in viromes from this habitat. However, by
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default this gene-centric hypothesis also allows that not all
ɸB124-14 genes would be subject to the same selective
forces, or be expected to display the same levels of ecolo-
gical success in a given viral community or host micro-
biome. Therefore, rather than a single unified and fixed
genetic unit, we instead viewed ɸB124-14 as an assemblage
of independent but associated genes, each with its own
evolutionary trajectory within a given microbial commu-
nity, and calculated representation in metagenomic data sets
on an individual gene-by-gene basis. Exploration of the
ɸB124-14 genome in this way is also more compatible with
the mosaic nature and inherent plasticity of phage genomes
[27–29], and stands to provide more flexibility in the use of
phage sequences in the development of MST tools.

Overall, this approach allowed us to identify genes or
genome regions with the strongest affiliation to the human
gut microbiome in ɸB124-14, and therefore the most sui-
table potential targets for development of molecular or
metagenome-based MST assays. Although only a general
association with the mammalian gut virome (human, por-
cine and bovine) was initially noted in surveys of cumula-
tive relative abundance, likely reflecting common features
of these mammalian gut microbiomes (such as an abun-
dance of Bacteroides sp. [30, 31]), discrete regions with
more specific human gut affiliation were resolved through
more detailed analysis of the ɸB124-14 genome. Impor-
tantly, our results also show this approach is equally capable
of distinguishing alternative ecogenomic signatures in other

phage, or indicating the absence of any habitat affiliation
should clear ecogenomic signals not be readily identifiable
in a phage genome.

This was clearly demonstrated by conducting identical
analyses of phage from other environments (ɸSYN5 and
ɸKS10), which are considered to have no notable associa-
tion with the human gut microbiome, and displayed no
human gut-related ecogenomic signature. A distinct envir-
onmental ecogenomic signature was detected in ɸSYN5
using this approach, while no discernible ecogenomic signal
was apparent in ɸKS10. While ɸSYN5 observations are in
keeping with the habitat of its bacterial host, the lack of any
detectable ecological affiliation in ɸKS10 likely reflects the
paucity of available data sets covering terrestrial habitats
relevant to this bacteriophage, and the overall 'healthy'
status of volunteers from which human metagenomes were
derived. It is also possible that the temperate nature of
ɸKS10 may contribute to the lack of a detectable ecoge-
nomic profile, but the use of whole community metagen-
omes should compensate for this aspect of the ɸKS10
lifestyle. Collectively, analysis of both ɸSYN5 and ɸKS10
provide further support for the hypothesis that relative
abundance profiles of genes similar to ɸB124-14 ORFs in
metagenomic data sets are indeed reflective of a gut-related
ecogenomic signal.

Congruent with the concept of ɸB124-14 as a collective
of genes with independent evolutionary trajectories was the
clear variability in gut affiliation of individual ORFs evident
across the ɸB124-14 genome. Notably, no strong repre-
sentation in any habitat was observed for some genes, while
some aspects of the ɸB124-14 functional repertoire (the
majority related to DNA regulation and replication) were
indicated to be conserved across multiple disparate envir-
onments. Examples of similar highly cosmopolitan genes
were also identified in ɸSYN5 and ɸKS10, and phage-
encoded genes with broad environmental distribution have
been reported in other studies [32–35], suggesting these
may be relatively common within phage genomes. These
cosmopolitan genes were counterbalanced by genes that
showed a seemingly more provincial, gut-specific repre-
sentation. Taken together, these observations are compatible
with the notion that the abundance of genes similar to
particular ɸB124-14 ORFs in human gut data sets reflects
environmental selection on a gene-by-gene basis [36], the
extant features of the human gut virome in terms of dom-
inance of temperate phage and an intimate role for phage in
community function and stability (reviewed in ref. [37]).

Using the ɸB124-14 relative abundance profile to 'con-
taminate' viral data sets of environmental origin, also per-
mitted crude in silico simulations of human faecal pollution,
and modelling of how MST tools based on bacteriophage
ecogenomic profiles and gut-affiliated phage gene subsets
may conceivably operate. In these experiments, we focused

Fig. 5 Identification of human gut-associated genes in the ɸB124-14
genome. The representation of each ɸB124-14 ORF in all data sets
was used to assess the consistency of the human gut-associated eco-
genomic signal across the phage genome, and identify ORFs with
human gut affiliations. a Average relative abundance (hits/Mb), and
representation of ɸB124-14 ORFS across all 840 data sets examined.
Colours of bars indicate the % of data sets with at least one valid hit to
each ORF as described in the associated legend. Significant differences
in average relative abundance for ORFs represented in 50% of more of
the data sets examined are shown by symbols above bars and colours
indicate significance vs. all other ɸB124-14 ORFs, or significance vs.
all other ɸB124-14 ORFs with less than 50% representation in data
sets examined. Bars show SEM. b Heatmap showing relative abun-
dance of individual ɸB124-14 ORFs in each metagenomic data set
examined. Columns represent ORFs as indicated on a x-axis, and rows
represent metagenomic data sets. The intensity of shading of each cell
represented the relative abundance (hits/Mb) of each ORF in each
particular metagenome, corresponding to the scale provided. c Relative
representation of ɸB124-14 ORFs in human gut-derived viral data sets
compared to other viromes. Points show the average relative abun-
dance of each ORF in viral metagenomes from each category,
expressed as Log10 hits/Mb. Membership of each ORF with previously
described functional gene clusters in the ɸB124-14 genome [18] is
indicated below the x-axis. Symbols above points indicate significantly
greater relative abundance in human gut viromes compared with either
all other viromes, or compared with those of environmental origin. *P
< 0.05, **P< 0.01, ***P< 0.001, ****P< 0.0001. Details of data
sets in each group are provided in Supplementary Table S1
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on viral metagenomes specifically due to the clear segrega-
tion of viromes in nMDS ordinations, and the proposed
advantages of phage in MST applications [12, 13]. For initial
evaluations (Fig. 4), the choice of environmental viral data
sets 'polluted' was focused on those most likely to be already
impacted by human activity and/or with a strong innate
background environmental signal (e.g., temperate marine
environments, coastal waters near major population

centres and reclaimed water). The data sets selected therefore
encompassed environmental viromes exhibiting the
highest background ɸB124-14 cumulative relative abun-
dance profiles, to provide a conservative and stringent eva-
luation of the potential for the ɸB124-14 gut-associated
ecogenomic signal to distinguish polluted from uncontami-
nated environmental data sets. In addition, the degree to
which the applied human-derived signal was diluted in these
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experiments was congruent with that observed for other
indicators of pollution during events such as Combined
Sewer Overflows [38, 39].

This evaluation demonstrated that the separation of pol-
luted environmental data sets towards human gut viromes
was in proportion to the strength of the introduced human
gut-related ɸB124-14 signal. Expansion of this in silico
modelling approach using a wider range of randomly per-
muted and polluted environmental profiles, and more
focused ɸB124-14 ORF subsets indicated to have the
greatest diagnostic power in ROC analyses, further
demonstrated that the relative abundance of ɸB124-14
ORFs within different viromes can potentially distinguish
those specifically contaminated with human-derived eco-
genomic profiles with high accuracy. The levels of sensi-
tivity and specificity achieved during these simulations were
comparable to those reported for a wide range of qPCR-
based methods using multiple or combined bacterial or viral
gene targets (reviewed in ref. [3]).

Although the in silico modelling undertaken here affords
only a very basic and simplistic simulation of pollution and
the use of phage ecogenomic signatures for MST, these
experiments nonetheless provide an initial proof-of-concept
that viral metagenomic data sets can be distinguished in this
way, and supports the possibility for development of new
MST methods based on these concepts. Moreover, it should
be noted that modelling undertaken here was based on only
a single phage ecogenomic profile, and using only basic
abundance thresholds to discriminate data sets. The meta-
genomic approach opens the potential to simultaneously
utilise a large number of indicators derived from many
phage, and move beyond simple abundance-based thresh-
olds. The inclusion of further phage ecogenomic signatures,
coupled with the development of more powerful diagnostic
algorithms should further enhance performance of these
approaches. Our use of different subsets of ɸB124-14 ORFs
in distinct stages of data set categorisation during simula-
tions, also serves to highlight some of the advantages of
metagenomic approaches to MST.

Furthermore, unlike qPCR and other direct molecular
biology assays, metagenomics can capture information on
an almost unlimited array of genes present in a sample, as
emphasis is placed on the analysis of sequence data to
provide the actual diagnostic test. Because of this, once an
initial metagenomic strategy for sampling and generation of
sequence data has been developed, the cost, time and labour
involved in continual adaptation and improvement of assays
is considerably reduced. Modelling of new strategies is also
readily implemented, and performance of multiple distinct
algorithms or new 'tests' may be compared directly in par-
allel on the same samples and data sets, without compro-
mising results of ongoing source tracking activities. This
should provide considerable flexibility in the design,
implementation and continued improvement of
metagenome-based MST tools, and as new information and
targets are identified these may be easily evaluated on his-
torical data with established provenance, and incorporated
into the MST pipeline without altering the basic sampling
and sequencing protocols. It should also be noted that the
generation of sequence data from samples is also no longer
a major barrier to implementing such approaches. Fully
portable and affordable sequencing platforms, such as the
MinION from Oxford Nanopore Technologies, are com-
mercially available, and have been used in the field for
metagenomics analysis in habitats ranging from the Arctic
Tundra to the International Space Station.

Nevertheless, care must be taken not to over interpret the
results presented here, which should be considered in the
context of the limitations and potential biases within
existing metagenomic data sets, the relatively simplistic and
crude modelling undertaken, as well as the relatively poor
representation of most habitats afforded by the

Fig. 6 Simulation and modelling of virome-based source tracking
using ɸB124-14 ecogenomic signatures. To evaluate the potential for
the ɸB124-14 ecogenomic signature to be used in MST, we undertook
more extensive Monte Carlo-based simulations of pollution using
randomly permuted and polluted environmental viromes, and specific
detection of human pollution using ɸB124-14 ORF relative abundance
profiles. a nMDS and ANOSIM analysis of uncontaminated and
'polluted' permutations of environmental viral metagenomes. Symbol
shape for polluted data sets (human, bovine or porcine) represents the
strength of contamination as indicated by the associated key. ANOSIM
shows the separation of groups of data sets with varying ranges of
human or animal contamination, from uncontaminated environmental
viromes (**P= 0.001). ENVU—uncontaminated environmental vir-
ome permutations; ENVHGV—environmental virome permutations
contaminated by human gut ecogenomic signature; ENVBOV—envir-
onmental virome permutations contaminated by bovine gut ecoge-
nomic signature; ENVPORC—environmental virome permutations
contaminated by porcine gut ecogenomic signature; b ROC curves
were constructed from randomly permuted and polluted data sets
displayed in a, based on relative abundance profiles from all ɸB124-
14 ORFS, or a subset of ORFS exhibiting significantly different mean
relative abundance in human gut viromes than other data sets (see
Fig. 5c). Subset 1 ORFS= 5, 16, 18, 20, 21, 22, 23, 25, 34, 36, 43, 44,
59, 61 and 67; subset 2 ORFS= 16, 34 and 56. The area under curve
(AUC) for each ROC curve indicate the diagnostic potential for
cumulative relative abundance of each ORF combination to distin-
guish different groups of data sets, with values approaching 0.5 indi-
cating little or no diagnostic power. All AUC were statistically
significant at P ≤ 0.002. c Histograms show the proportion of data sets
of each type (ENVU; ENVHGV; ENVBOV; ENVPORC) accurately identified
by a two-step classification approach using threshold values indicative
of either pollution in general (step 1) or human pollution more spe-
cifically (Step 2), selected based on sensitivity and specificity values
generated by ROC analyses (a minimum sensitivity of 0.91). This
pipeline was evaluated using threshold values for binning derived from
either subset 1 ORFS, subset 2 ORFS or a combination in which
subset 1 values were applied to step 1, and subset 2 values were
applied to step 2. ****P< 0.0001. Error bars show standard error of
the mean from 100 iterations with 100 new randomly permuted and
polluted data sets of each type per iteration
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metagenomic data sets available. Metagenomes analysed
here were drawn from a variety of sources, and vary in
terms of construction methods, community coverage,
assembly status, sample sizes and sample numbers. Because
of this, the simple relative abundance approach used
here intentionally employs more permissive criteria for
identifying sequences with similarity to target sequences, to
reduce the impact of these methodological variations and
provide a conservative and robust comparison between
data sets. This strategy seeks to identify general patterns in
relative representation of broad functions between data
sets rather than identical genes or sequences, with normal-
isation for differing depths of sequencing between data
sets and has previously been shown to enable useful com-
parison of metagenomes generated by different approaches
[25, 40–42]. Furthermore, the use of more permissive cri-
teria in the relative abundance analyses were also
intended to provide a more robust and conservative test of
the phage ecogenomic signature hypothesis. In essence,
these criteria should maximise the detection of conflicting
non-specific signals in non-target data sets, meaning that
distinct phage ecogenomic profiles need to be discernible
against a higher level of background 'noise' to be identified
in this analysis.

The utility of this approach was also supported in the
present study, in which available data sets were shown to
form cohesive and well-defined groups based on habitat in
nMDS ordinations. Notable examples include conventional
human gut metagenomes produced using distinct metage-
nomic techniques and sequencing methods [24, 43–46],
which were clearly localised to a cohesive group. Com-
parison of assembled and unassembled versions of the same
human gut viral data sets in these experiments also con-
firmed that assembly should have only minimal impact on
the overall results obtained, and did not obscure the habitat-
derived ecological signatures present in these metagenomes,
or the distinction between viral and whole community data
sets. Overall, available evidence suggests that the approa-
ches we have used to compare data sets permit identification
of genuine differences based on relative gene abundance
and provide meaningful insight into habitat-associated fea-
tures of these metagenomes.

Of more concern are the relatively small numbers of
samples and data sets available for all habitats, most notably
viromes and non-human gut whole community data sets.
This is exacerbated by the high inter-individual variability
noted in human viral metagenomes used here and in other
studies [23, 25], but in practice for human gut viromes, this
variation is likely to be offset to some degree by the fact that
MST will be based on aggregate gut microbiome outputs
from human populations as a whole, rather than individual
microbiomes. However, a distinct geographic variation is
also believed to exist in the human gut microbiome [18, 47,

48], and culture-based approaches utilising gut-associated
phage infecting Bacteroides species have already
highlighted the possible need to develop region-specific
MST tools [3, 17]. Although here and in other studies,
whole community human gut data sets derived from indi-
viduals from disparate geographic locations [43, 45, 46]
were found to still group clearly based on habitat in higher-
level analyses, the human gut viromes we analysed are
derived exclusively from individuals residing in the
United States, and so provide little insight into possible
geographical effects. Moreover, the geographic variation in
gut virome composition has yet to be subject to the
same level of scrutiny directed towards the bacterial com-
ponent of this ecosystem. In addition, the number of viral
particles, derived levels of nucleic acids and details of
sampling and processing methods that may provide a useful
lower limit from which diagnostic relative abundance
profiles can be calculated, remain to be determined.
Further large-scale studies will be required to address these
questions, fully test the hypotheses presented here and
fully examine the potential for phage-based metagenomic
MST tools derived from these ecogenomic concepts.
This will not only entail the generation and use of a more
extensive collection of viral metagenomes from
relevant sources, but also the isolation and characterisation
of further phage genomes from these habitats, including
identification of those with ecogenomic signatures that may
be utilised and incorporated into phage-based MST
approaches.

In essence, the gene pool of a given microbial commu-
nity adapts over time reflecting the challenges of life in a
given habitat, as well as the ancestry of community mem-
bers [49]. Here we provide evidence that this may also
manifest as a bias within the viral gene pool of particular
microbiomes, forming the basis for a habitat-related eco-
genomic signature, which can also be detected in individual
member phage. Overall, the work presented here provides
new fundamental insights into phage ecology that could
support the development of a novel range of highly specific,
sensitive, rapid and portable phage-based metagenomic
MST tools.

Methods

Cumulative relative abundance of genes with
similarity to phage-encoded ORFs

The representation of sequences with similarity to phage-
encoded functions and calculation of cumulative relative
gene representation between data sets was performed as
previously described [18, 40, 50], but with the following
modifications: unassembled viral data sets were surveyed by
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mapping raw sequencing reads to translated ɸB124-14,
ɸSYN5 or ɸKS10 ORFs using BlastX. Assembled whole
community metagenomes and assembled viral data sets were
searched using tBlastn with amino acid sequences from each
predicted phage ORF. For both data set types, valid hits were
considered to be those generating ≥35% identity over ≥50%
of the query sequence and an e-value of ≤1e−5. Valid hits
were used to calculate the relative abundance of each phage-
encoded ORF in each data set (expressed as Hits/Mb of
sequence data). The cumulative relative abundance of ORFs
encoded by each phage was taken as the sum of all individual
ORF relative abundances. Blast searches and calculation of
relative abundance were automated using a custom PERL
script (access and support is freely available on request to
authors), which implemented BLAST v2.2.29 with default
settings, searched custom Blast databases generated from
each metagenomic data set, processed BLAST outputs to
identify valid hits based on criteria above and calculated
relative abundance for each phage ORF in each metagenomic
data set. Data were saved as *.csv format files and imported
into Microsoft XL for further analysis. Significant differences
in cumulative relative abundances between metagenomes
were assessed using the Kruskall–Wallis test with Dunn’s
correction for multiple comparisons. Statistical analyses and
generation of scatterplots were performed in GraphPad Prism
6.0 for Mac OS X.

Unsupervised ordination of metagenomic data sets
based on phage-related ecogenomic profiles

Ordination of metagenomes was performed using the Vegan
package (v2.4) [51] in R to conduct nMDS [26] and
ANOSIM [26], using the metaMDS and anosim functions,
respectively. For nMDS and ANOSIM, individual gene
relative abundance profiles for each phage in each meta-
genomic data set (calculated as described above) were used
and only data sets exhibiting sequences with similarity to at
least two distinct ORFs per phage (i.e., a minimum of two
valid hits to distinct ORFs in BLAST searches) were
included. Relative abundance data were square root trans-
formed, before being used to construct Bray–Curtis distance
matrices (Vegan package in R), and then for nMDS (with a
minimum of 1000 random starts). Square root transformed
data were used directly without further processing for
ANOSIM analyses, which calculated the level and sig-
nificance of separation between defined groups of meta-
genomes based on habitat of origin. The ANOSIM R
statistic indicates increasing separation of groups as values
approach 1, while statistical significance is provided by an
associated P value. Graphical representations of nMDS
ordinations were produced using Vegan ordiplot functions
in R. ANOSIM data were visualised using GraphPad Prism
6.0 for OS X.

In silico simulation of human faecal pollution in
environmental data sets

Contamination of environmental data sets with human
pollution was simulated by addition of the ɸB124-14
human gut virome ecogenomic signature to selected envir-
onmental viromes. The average relative abundance of each
ɸB124-14 ORF within human gut viromes [24] (n=12)
was added to the corresponding ɸB124-14 ORF relative
abundance in selected environmental viromes on a gene-by-
gene basis, at 'strengths' ranging from 100 to 0.01%. The
viromes subjected to this simulated human faecal pollution
were selected based on those most likely to be already
impacted by human activity, and/or contain a strong innate
background environmental signal distinct from that of the
gut microbiome (Bay of British Columbia, Sargasso Sea,
Gulf of Mexico, Tampa Bay and Reclaimed Water). The
ability of ɸB124-14 human gut ecogenomic signals to
discriminate polluted environmental data sets from original
uncontaminated data sets was evaluated using nMDS ordi-
nation and ANOSIM, as described above.

Identification of regions of the ɸB124-14 with the
strongest ecogenomic signal

The variation in the 'strength' of the human gut-associated
ɸB124-14 ecogenomic signal across the phage genome and
representation in data sets from distinct environmental
groups was assessed by transforming all relative abundance
values by addition of a small positive value (y + 0.00001),
before conversion to Log10 hits/MB DNA. Differences in
relative abundance within human gut viromes or ɸB124-14
ORFs was compared to profiles observed in bovine and
porcine gut viromes, environmental viromes, as well as
whole community human gut and environmental metagen-
omes. Significant differences between the relative repre-
sentation of ɸB124-14 ORFs in human gut viromes
compared to other data sets was determined using the
Kruskall–Wallis test with Dunn’s correction for multiple
comparisons, in GraphPad Prism 6 for OS X.

Simulation and modelling of virome-based source
tracking using ɸB124-14 ecogenomic signatures

The use of ɸB124-14 relative abundance profiles for
microbial source tracking was evaluated using a Monte
Carlo-based simulation with uniform probability distribu-
tion input, derived from the maximum baseline relative
abundance values for each ɸB124-14 ORF across all
environmental viral metagenomes. In these simulations,
permutations of environmental ɸB124-14 relative abun-
dance profiles were generated through random variation of
each ORF relative abundance value, ranging from 0 to the
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maximum value observed for a given ORF across all
environmental viromes. Copies of randomly permuted
environmental viromes were subsequently subjected to
simulated in silico pollution through addition of average
human, bovine or porcine ɸB124-14 relative abundance
profiles, at randomly selected signal strengths ranging from
0 to 100%. In each iteration, 100 randomly permuted
environmental viromes were created and used to generate
100 randomly polluted data sets of each type (human,
bovine and porcine). Data from a single iteration was used
to visualise relationships between data sets using nMDS and
ANOSIM as described for unsupervised ordination of
metagenomic data sets above, and also to construct ROC
curves based on cumulative relative abundance profiles for
either all ORFs, or subsets found to be significantly
increased in relative abundance compared to other data sets
(see Fig. 5c). Data from all iterations were used to evaluate
the performance of cumulative relative abundance thresh-
olds in accurately identifying human-polluted data sets in a
two-step binning process, based on threshold values derived
from ROC analyses. Step 1 was used to categorise data sets
as either polluted or non-polluted. In Step 2, data sets
categorised as polluted in Step 1 were sorted further into
‘human-polluted’ and ‘non-human polluted’ categories,
using a second threshold value from ROC analyses.
Threshold values were selected to achieve the best possible
sensitivity and specificity, but with a minimum sensitivity
of 0.91. ROC analysis and statistical comparisons of per-
formance of ORF combinations in categorising data sets
(ANOVA with Bonferroni correction) were conducted
using GraphPad Prism for OS X.
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