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DESIGN: Prospective diagnostic study.
OBJECTIVES: Anatomical evaluation and graduation of the severity of spinal stenosis is essential in degenerative cervical spine
disease. In clinical practice, this is subjectively categorized on cervical MRI lacking an objective and reliable classification. We
implemented a fully-automated quantification of spinal canal compromise through 3D T2-weighted MRI segmentation.
SETTING: Medical Center - University of Freiburg, Germany.
METHODS: Evaluation of 202 participants receiving 3D T2-weighted MRI of the cervical spine. Segments C2/3 to C6/7 were
analyzed for spinal cord and cerebrospinal fluid space volume through a fully-automated segmentation based on a trained deep
convolutional neural network. Spinal canal narrowing was characterized by relative values, across sever segments as adapted
Maximal Canal Compromise (aMCC), and within the index segment as adapted Spinal Cord Occupation Ratio (aSCOR). Additionally,
all segments were subjectively categorized by three observers as “no”, “relative” or “absolute” stenosis. Computed scores were
applied on the subjective categorization.
RESULTS: 798 (79.0%) segments were subjectively categorized as “no” stenosis, 85 (8.4%) as “relative” stenosis, and 127 (12.6%) as
“absolute” stenosis. The calculated scores revealed significant differences between each category (p ≤ 0.001). Youden’s Index
analysis of ROC curves revealed optimal cut-offs to distinguish between “no” and “relative” stenosis for aMCC= 1.18 and
aSCOR= 36.9%, and between “relative” and “absolute” stenosis for aMCC= 1.54 and aSCOR= 49.3%.
CONCLUSION: The presented fully-automated segmentation algorithm provides high diagnostic accuracy and objective
classification of cervical spinal stenosis. The calculated cut-offs can be used for convenient radiological quantification of the severity
of spinal canal compromise in clinical routine.
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INTRODUCTION
The evaluation of individual anatomy is essential for treatment of
patients with degenerative cervical spine disease starting with
degenerative cervical spondylosis and ending up in evident
degenerative cervical myelopathy (DCM).
Several pathophysiological factors are important for the

assessment of degenerative cervical spine disease and can be
visualized using different Magnetic Resonance Imaging (MRI)
techniques [1–3]. Essential is the anatomical configuration of the
spinal canal and its narrowing, which is commonly evaluated on
conventional T2-weighted sequences. As a result of the spinal
canal compromise, different stages of spinal cord affection
appear and can be visualized using advanced MRI sequences [2].
Severe spinal cord damage can be already visualized on
conventional T2-weighted sequences as hyperintensities and
T1-weighted sequences as hypointensities, consequently

leading to spinal cord atrophy [4]. The correlation of imaging
alterations and symptoms of affected patients is heterogeneous
and it is crucial to evolve the links between imaging and its
clinical and prognostic value to implement the optimal
treatment [5, 6].
The severity of a spinal stenosis is traditionally classified

subjectively in poorly delineable categories by radiologists in
clinical routine, whereas a more precise graduation could be
useful for dedicated treatment planning. Additionally, an objective
and reproducible classification is necessary to standardize
research evaluations beside patients’ care.
The aim of this study was to standardize and objectively

quantify the spinal canal compromise by implementing a fully-
automated classification based on 3D segmentations of the spinal
cord and cerebrospinal fluid (CSF) space on routinely-applicable,
high-resolution T2-weighted MRI.
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METHODS
Study outline
This pooled data analysis was based on 114 patients affected from
degenerative cervical spine disease and 88 asymptomatic volunteers that
had been enrolled in two independent prospective trials, receiving an
identical T2-weighted MRI sequence of the cervical spine. Included
patients had to provide symptoms of degenerative cervical spine disease
and radiographic disc degeneration with contact to the spinal cord or
spinal stenosis with cord compression [7]. Myelopathic symptoms were not
necessary for inclusion. Patients with contraindication for MRI, previous
surgery of the cervical spine as well as non-degenerative alterations
(tumor, inflammation, infection, trauma) or relevant multilevel spinal cord
compression were excluded [7]. Healthy participants had to be asympto-
matic without any neurological disease or severe comorbidity. The studies
were approved by the institutional ethics committee (references 261/17
and 338/17) and registered at the National Clinical Trials Registry
(DRKS00012962, DRKS00017351). A signed informed written consent was
obtained from each participant prior to inclusion in both trials. MRI scans
between 04/2018 and 01/2022 were included for evaluation.

MRI specifications
All MRI scans were performed with a 3 T MRI scanner (MAGNETOM
Prisma, Siemens Healthcare, Erlangen, Germany) with a 64-channel
head-neck coil for the cervical spine with a clinical standardized T2-
weighted 3D sequence (T2 SPACE, voxel size 0.6 mm × 0.6 mm × 1.0 mm,
TR 1500 ms, TE 134 ms, Flip angle 105°, GRAPPA PAT: 3, acquisition time
3:53 min).

Automated segmentation process
All MRI datasets were segmented fully-automated for the cross-sectional
area (CSA, mm²) of CSF space and spinal cord per slice from C2 to C7
through a specialized in-house software pipeline (NORA framework,
www.nora-imaging.org). The segmentation process was conducted by a
trained deep convolutional neural network based on an U-net type
architecture [8]. The applied algorithm is provided online (https://
bitbucket.org/reisert/patchwork/wiki/Home). The convolutional neural net-
work was trained on 125 cases and validated using five separate cases, all
out of the study dataset randomly. Dice coefficients for the spinal cord of
0.94 (±0.01) and for CSF space of 0.90 (±0.03) were reached, which was
comparable to the recent literature [9, 10]. To quantify and compare spinal
cord and CSF space volumes in a common reference space, the cervical
vertebral bodies C2 to C7 were annotated and trained by another
patchwork convolutional neural network to allow automated detection.
Using the localization of the vertebral bodies, the images were
straightened along the cord axis and spinal cord and CSF space CSA were
computed. Therefore, the specified image resolution is affected of a
slightly anatomic distortion of the primary radiological 1 mm slice

thickness. The segmentation was integrated in a routinely usable
visualization (Fig. 1). All segmentations were checked concerning apparent
errors independently by two examiners, whereas no measurement had to
be excluded due to misssegmentation.

Calculation of adapted Maximal Canal Compromise (aMCC)
and adapted Spinal Cord Occupation Ratio (aSCOR)
Value curves for CSF space CSA and spinal cord CSA were generated from
C2 to C7 slice by slice. For evaluation of the occurrence of a spinal stenosis,
two already established parameters reflecting spinal canal compromise
were automatically calculated: the adapted Maximal Canal Compromise
(aMCC) and the adapted Spinal Cord Occupation Ratio (aSCOR). The aMCC
is defined as sum of the spinal canal CSA one segment above and below
divided through the doubled spinal canal CSA at the addressed level
[1, 11]. The higher the aMCC, the higher the degree of the spinal stenosis.
The spinal canal was defined as sum of CSF and spinal cord CSA. The
aSCOR relates the CSA of CSF space and spinal cord at the addressed level.
It is calculated as the percentage of spinal cord CSA to the total spinal
canal [12, 13]. The higher the aSCOR, the higher the spinal stenosis, similar
to the aMCC.
For the calculation of both scores, we focused on the “middle third”

between the centers of two vertebral bodies, like depicted in Fig. 1C,
reflecting the level of the intervertebral disc as commonly pathologically
affected area. An overview of the complete evaluation procedure including
score definition is illustrated in Fig. 1. The post-processing with
segmentation and calculation of both scores after image acquisition takes
about 3min.

Subjective categorization of spinal stenosis
To achieve ground truth, all MRI scans were subjectively evaluated
concerning presence and severity of a spinal stenosis for each cervical
segment from C2 to C7 through three independent observers, each
providing more than ten years experience in spinal imaging. This resulted
in five ratings (C2/3, C3/4, C4/5, C5/6, C6/7) per MRI scan and observer. For
the subjective grading, we applied common clinically used categories
adapted to Kang et al. [14] as follows: “no” stenosis (no degenerative
elements contacting the spinal cord), “relative” stenosis (focal narrowing of
the CSF space with contact to the spinal cord or circumferential narrowing
with residual CSF signaling) and “absolute” stenosis (absent CSF space with
or without spinal cord volume reduction). Exemplary cases are shown in
Fig. 2. Solely the acquired T2 SPACE sequence was used for subjective
grading and the observers were blinded to clinical data of the evaluated
measurements.
The inter-rater reliability of all three observers was evaluated through

Intra-class Correlation Coefficient (ICC) statistics and qualified according to
Koo et al. [15]: ICC < 0.50= poor, ICC 0.50–0.75=moderate, ICC
0.75–0.90= good, ICC > 0.90= excellent.

Fig. 1 Overview of the fully-automated evaluation procedure of an exemplary patient with cervical stenosis in C5/6. A High-resolution 3D
T2-weighted images. B Segmentation of spinal cord (yellow) and CSF space (green) with determination of the vertebral bodies from C2 to C7.
C Calculation of CSF and spinal cord volumes at the middle third of each evaluated segment (white shaded rectangle). Right: Formula for
aMCC (CSF space proportion of the index to both surrounding segments) and aSCOR (proportion of spinal cord and CSF space at the index
segment) as objective parameters.
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For further evaluations, a consensus in case of disagreement of the
observers was forced through the assumption of the categorization of the
two matching observers, fading-out the third aberrant rating.

Statistical analysis
The statistical evaluation was performed by IBM SPSS Statistics 27. Normal
distribution for each variable was assessed by Shapiro–Wilk-Test. Group
comparison was done by Mann–Whitney-U-test for independent samples
for nominal variables and Kruskal–Wallis-test for ordinal variables. The
optimal cut-off values for aMCC and aSCOR to separate for “no”, “relative”
and “absolute” stenosis were approximated by calculation of the Youden’s
Index of Receiver Operating Characteristic (ROC) analysis. The two-way
model with absolute agreement for single-measurements and multiple
raters in an ordinal scale was applied for ICC statistics [16].

RESULTS
Baseline characteristics
A total of 202 datasets were available, consisting of 114 (56.4%)
patients with symptoms due to cervical degenerative spine
disease and 88 (43.6%) asymptomatic volunteers. Median age of
all included participants at the date of MRI was 55.0 [IQR
41.8–63.9] years and 94 (46.5%) were female. Age distribution
showed significantly younger healthy volunteers (median 50.5
[IQR 31.0–62.0] years) compared to the included symptomatic
patients (median 58.0 [IQR 48.0–66.3] years, p= 0.001). All
symptomatic patients and even 20 (22.7%) of the 88 asympto-
matic volunteers showed a spinal stenosis at any cervical level.
For further evaluation, each cervical segment was evaluated

concerning the extent of the spinal canal compromise regardless
of the clinical status.

Subjective categorization of spinal stenosis
A total of 1010 cervical segments were subjectively categorized by
each of the observers. Identical ratings from all three observers
occurred in 89.5% (904/1010 cervical segments). Table 1 shows
the number of absolute agreements and the associated ICCs
separated for the different cervical levels, indicating good to
excellent results (0.869–0.932, p < 0.001).
After achieving consensus from the three independent ratings,

798 (79.0%) of all evaluated 1010 cervical segments showed “no”
stenosis, whereas 85 (8.4%) showed a “relative” and 127 (12.6%)
an “absolute” spinal stenosis. The distribution for the different
cervical levels is shown in Table 2, presenting a predominantly
pathologically affected level C5/6 (40.1%), followed by C3/4
(21.8%) and C4/5 (22.8%).

Spinal stenosis classification by adapted Maximal Canal
Compromise (aMCC)
Dividing all cervical segments respective their subjective stenosis
categorization, there were significantly increasing median aMCC
values for progressive cervical stenosis (“no” stenosis 1.07 [IQR
1.02–1.15] vs. “relative” stenosis 1.34 [IQR 1.20–1.49] vs. “absolute”
stenosis 1.86 [IQR 1.56–2.37], p < 0.001 and p= 0.001, Fig. 3).
Calculation of Youden’s Index revealed an optimal cut-off to
separate “no” from “relative” stenosis for an aMCC of 1.18,
reaching a sensitivity of 81% and specificity of 82%. For “absolute”
stenosis the cut-off was expectably higher at 1.54 (sensitivity 78%,
specificity 80%, Fig. 3). ROC curves are added as Supplement 1. We
additionally separated the median aMCC values for the single
cervical levels, revealing persistent significant differences for the
differentiation of the stenosis categorization (all p < 0.001), except

Fig. 2 Subjective categorization of cervical spinal stenosis. Exemplary transverse T2-weighted images at level C5/6 for all three subjective
stenosis categories: “no stenosis”= no degenerative elements contacting the spinal cord; “relative stenosis”= focal narrowing of the CSF
space with contact to the spinal cord or circumferential narrowing with residual CSF signaling; “absolute stenosis”= absent CSF space with or
without spinal cord volume reduction.

Table 1. Inter-observer statistics for subjective spinal stenosis categorization by all three raters (Intra-class Correlation Coefficient (ICC), two-way
model, absolute agreement, single-measurements, mixed effects model).

Cervical level C2/3 C3/4 C4/5 C5/6 C6/7

Absolute agreement of all three raters 199/202 (98.5%) 185/202 (91.6%) 179/202 (88.6%) 166/202 (82.2%) 175/202 (86.6%)

ICC 0.869 0.921 0.932 0.916 0.885

p-value <0.001 <0.001 <0.001 <0.001 <0.001

Table 2. Subjective consensus spinal stenosis categorization separated for the different cervical levels (n= 202 per level).

Cervical Level C2/3 C3/4 C4/5 C5/6 C6/7

No stenosis 200 (99.0%) 158 (78.2%) 156 (77.2%) 121 (59.9%) 163 (80.7%)

Relative stenosis 0 25 (12.4%) 12 (5.9%) 31 (15.3%) 17 (8.4%)

Absolute stenosis 2 (1%) 19 (9.4%) 34 (16.8%) 50 (24.8%) 22 (10.9%)
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for distinguishing “relative” from “absolute” stenosis in C3/4 (1.35
[IQR 1.27–1.55] vs. 2.13 [1.70–2.97], p= 0.286) and C6/7 (1.31
[1.20–1.49] vs. 1.82 [1.40–2.26], p= 0.173). Boxplots are shown in
Fig. 4 and absolute values are added as Supplement 2.

Spinal stenosis classification by adapted Spinal Cord
Occupation Ratio (aSCOR)
Similar to the aMCC, the evaluation revealed significantly
increasing median aSCOR values for progressive cervical stenosis
(“no” stenosis 31.90% [IQR 28.47–35.60] vs. “relative” stenosis
41.89% [IQR 37.16–47.15] vs. “absolute” stenosis 53.26% [IQR
46.95–59.64], both p < 0.001, Fig. 3). Separating for the different
cervical levels showed corresponding significant results, except for
distinguishing “relative” from “absolute” stenosis in C6/7, barely
missing the level of statistical significance (38.52% [34.03–44.58]
vs. 48.34% [41.88–54.74], p= 0.053, Fig. 4, Supplement 2). Optimal
cut-off values were determined by Youden’s Index for an aSCOR of
36.9% for “no” to “relative” stenosis (sensitivity 78%, specificity
81%) and 49.3% for “relative” to “absolute” stenosis (sensitivity
67%, specificity 87%, Fig. 3). The ROC curves for aSCOR are
attached as Supplement 1 as well.

DISCUSSION
To gain dedicated anatomical classification in patients with
degenerative cervical spine disease, we implemented a fast and
routinely applicable, fully-automated segmentation of CSF space and
spinal cord to determine the severity of spinal canal compromise
based on a high-resolution MRI sequence. We established cut-off
values for aMCC and aSCOR to separate patients without stenosis and
relative to absolute spinal stenosis. This quantification algorithm is a
milestone in objective and reproducible radiological assessment in
patients with suspected DCM and for the first time implemented into
clinical routine diagnostics.
To gain the application into a clinical routine setting, the

procedure has to be quick, reliable and convenient.
The acquisition time for our sequence of 3:53min in combination

with a post-processing of 3min reflects an appropriate length as
required for daily clinical practice. Spinal cord and canal segmenta-
tion has been described previously, whereas automated segmenta-
tion procedures are still under investigation. De Leener et al. [10]
reported a reliable segmentation process with Dice coefficients of
0.91 for 18 subjects. However, they stated a notably longer
acquisition time of 22min and focused on the process technology

Fig. 3 Boxplots for aMCC and aSCOR values. Comparison using Kruskal–Wallis test for independent samples revealed significant differences
between all evaluated groups (p ≤ 0.05). The cut-offs between the groups (rectangle) were determined by ROC analysis and calculation of
Youden’s Index.

Fig. 4 Boxplots for aMCC and aSCOR values separated for the different cervical levels: yellow= C3/4, red= C4/5, green= C5/6,
blue= C6/7. Level C2/3 is not depicted for clarity reasons, because of only two patients with a pathological affected segment. Absolute values
and significance levels comparing the three subjective categories are added as Supplement 2.

M. Hohenhaus et al.

4

Spinal Cord



without linking to a clinical routine application. The CSF segmenta-
tion procedure and volume calculation for 13 patients with
spontaneous intracranial hypotension and 12 healthy volunteers
by Fu et al. showed also sufficient accuracies (Jaccard coefficients
>0.9) using an artificial intelligence model with a similar segmenta-
tion process through U-net architectures [17, 18]. They reported no
information concerning the duration of the image acquisition or
post-processing. Segmentations using convolutional neural net-
works solely for the spinal cord are described for intramedullary
tumors, multiple sclerosis or other inflammatory diseases, whereas
the application in DCM is still rare [19–21].
For 3D segmentation, a slice thickness of at maximum 1mm seems

to be recommendable, with the drawback of a worse but adequate
signal-to-noise-ratio and image contrast [22]. The diagnostic quality
for intramedullary signal alterations could be limited, which has to be
addressed through further evaluations. Two independent examiners
reviewed all segmentations concerning errors, without detecting
unacceptable results that had to be excluded from further analysis.
Still, minor segmentation errors, like aberrations due to strong flow
artifacts through CSF pulsation resulting in T2 signal reduction at the
CSF space as well as two patients showing a prominent central canal,
were seen. In addition, large T2 hyperintensities of the spinal cord due
to myelopathy could complicate the delineation.
The traditionally applied, subjective categorization of cervical

stenosis is lacking standardized comparability. Several subjective
scores have been reported, but none was implemented by default.
The most frequently applied graduation introduced by Kang et al.
[14] includes four grades: absence of stenosis, CSF space reduction
of more than 50%, additional spinal cord deformity, and at least an
associated spinal cord T2 signal change. The inter-observer
heterogeneity of subjective classifications is a well-known
problem. For these categories, an inter-observer agreement was
stated with about 60% and ICC values of 0.716–0.737, depending
on the cervical level [14, 23]. For other classifications similar results
were reported [23, 24]. We applied a three-step classification
system adapted to Kang et al., exclusively facing the anatomic
canal configuration without regard of intramedullary signal
changes. The inter-observer evaluation of our subjective categor-
ization showed good to excellent results (ICC 0.869–0.932), slightly
superior to the literature [14, 23]. But there was still incongruence
in 10.5% of the cases. So, the purpose of an automated
quantification of the spinal canal narrowing is to eliminate
subjectivity and therefore observer dependency. The usage of a
more subtle, subjective classification for spinal stenosis might be
interesting as well, especially to evaluate the 3D segmentation
with aMCC and aSCOR cut-offs, but unfortunately there is no such
a validated score within the recent literature.
As objective parameters, we used already established parameters

adapted to the assessment of cross-sectional areas [1, 11–13]. To take
intra- and inter-individual variations of the spinal cord and canal
dimension into account, both scores are calculated within the same
measurement and not dealing with absolute or normalized external
values. Within a review of Frostell et al. [25] the spinal cord extension
was characterized with an intra-individual variation of about 20% in
transverse and 10% in anteroposterior diameter through the different
cervical levels. The inter-individual heterogeneity is quite higher up to
25–30% [25, 26]. Cadotte et al. [27] evaluated the segmental
intramedullary configuration and distance to the exiting spinal nerve
rootlets through a high-resolution MRI, whereas no information
concerning spinal cord and canal dimension were provided. To our
knowledge, there are currently no more precise 3D data concerning
the morphology of the cervical spinal cord and CSF space.
A limitation for the aMCC is, that this parameter deals with the

segments surrounding the index level, leading to bias if applied in
multilevel spinal stenosis. In our cohort, we evaluated predomi-
nantly monolevel affected patients. The robustness of this
segmentation procedure and the applied parameters have to be
further investigated for severe multilevel degeneration, because

many patients suffer from multisegmental affection. Additionally,
both applied scores were calculated for the area surrounding the
intervertebral disc, as common stenotic region (Fig. 1C). Alter-
natively, taking the whole segment for calculation might include
larger, mostly unaffected areas directly behind the vertebral body
[28]. At least, the aMCC and aSCOR are arbitrarily chosen variables
to classify spinal stenosis, whereas other parameter patterns are
imaginable triggered by this high-resolution imaging.
The stated cut-off values for aMCC and aSCOR reached

acceptable diagnostic accuracies (Fig. 3, Supplement 1), but they
have to be reassessed through further datasets and additionally
correlated to clinical symptoms of affected patients. One of the
limitations of our study is, that we are dealing with solely
radiological data without correlation to clinical affection of the
measured participants. This is part of ongoing investigations.
Additionally, the intramedullary T2 signal intensity has to be
included into the radiological classification of cervical stenosis,
which was already subject of a prior evaluation of our research
group [29]. We are aware that we only included measurements
from a single institution using the same imaging protocol. In
summary, to bring the provided classification algorithm into a
broad usage, it has to be reevaluated through larger patient
cohorts and validated through external and also ideally more
subjective expert observers.
For future prospects, the presented segmentation allows for 3D

shape reconstruction of CSF space and spinal cord in its entirety. Even
the applied three-step classification is a first approach to classify the
anatomy of DCM patients. But already small osteophytes with distinct
spinal cord impression can cause neuronal dysfunction without
circumferential compression (Supplement 3). DCM is known as a
chronically progressive disease and the course of the patients is not
well defined and predictable. In case of symptom deterioration, the
detection of distinct progressive spinal cord compression could be of
importance, which is sometimes hard to distinguish subjectively on
the associated images. So, establishing a subtle, objective classification
for every cervical level could add relevant information. Additionally,
finding radiological alterations in subclinical affected patients with
specific prognostic constellations, would be desirable. Basically, a more
detailed description of pathological alterations seems to be necessary
for optimal treatment planning. And, as already mentioned above, the
evaluation of the shape of the entire spinal cord and canal has to be
addressed in clinical routine, because many DCM patients suffer from
multisegmental spinal canal stenosis in different dimensions, which
was not adequately represented by the patient cohort of this work.
At least, we have to integrate information beside the anatomical

canal compromise. Even diffusion parameters from diffusion-
weighted sequences, CSF and spinal cord motion depicted by
phase-contrast imaging or metabolite configurations using MR
spectroscopy could be integrated into a holistic imaging evaluation
of DCM patients [2, 7, 30]. Afterwards, such a multimodal MRI work-up
has to be correlated to the patients’ symptoms and electrophysiology
to optimize clinical treatment decisions and outcomes. In order to
achieve this goal in the foreseeable future, multicenter and probably
international cooperations are indispensable like in other “big data”
projects. The anatomical classification of the spinal canal compromise
is a crucial requirement for such a multimodal approach, whereas our
evaluation adds the first fast and reliable, fully-automated quantifica-
tion algorithm for spinal stenoses in a routinely clinical fashion.

CONCLUSION
The presented fast and fully-automated 3D MRI segmentation
algorithm provides high diagnostic accuracy for an objective
classification of cervical spinal stenosis in this monocentric
approach. The calculated cut-offs can be used to quantify
radiological severity of spinal stenosis in clinical routine, receiving
a reproducible and objective grading. An advanced classification
system for a more detailed description of spinal stenosis is already
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under investigation based on these 3D anatomical data for an
improved understanding of local pathophysiology and treatment
decision-making in affected patients. Nevertheless, the evaluation
pipeline has to be validated for external images as well as other
MRI protocols before getting into clinical routine and extended for
the application in multisegmental affected patients.

DATA AVAILABILITY
The datasets generated and analyzed during the current study are available from the
corresponding author on reasonable request.
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