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DNA methylation markers in the diagnosis and prognosis
of common leukemias
Hua Jiang1, Zhiying Ou1, Yingyi He1, Meixing Yu1, Shaoqing Wu1, Gen Li1, Jie Zhu1, Ru Zhang1, Jiayi Wang1, Lianghong Zheng2,
Xiaohong Zhang1, Wenge Hao1, Liya He1, Xiaoqiong Gu1, Qingli Quan1, Edward Zhang1, Huiyan Luo3, Wei Wei3, Zhihuan Li2,
Guangxi Zang2, Charlotte Zhang1, Tina Poon1, Daniel Zhang1, Ian Ziyar2, Run-ze Zhang2, Oulan Li2, Linhai Cheng2, Taylor Shimizu2,
Xinping Cui4, Jian-kang Zhu5, Xin Sun1 and Kang Zhang1,2,6

The ability to identify a specific type of leukemia using minimally invasive biopsies holds great promise to improve the diagnosis,
treatment selection, and prognosis prediction of patients. Using genome-wide methylation profiling and machine learning
methods, we investigated the utility of CpG methylation status to differentiate blood from patients with acute lymphocytic
leukemia (ALL) or acute myelogenous leukemia (AML) from normal blood. We established a CpG methylation panel that can
distinguish ALL and AML blood from normal blood as well as ALL blood from AML blood with high sensitivity and specificity. We
then developed a methylation-based survival classifier with 23 CpGs for ALL and 20 CpGs for AML that could successfully divide
patients into high-risk and low-risk groups, with significant differences in clinical outcome in each leukemia type. Together, these
findings demonstrate that methylation profiles can be highly sensitive and specific in the accurate diagnosis of ALL and AML, with
implications for the prediction of prognosis and treatment selection.
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INTRODUCTION
Acute lymphocytic leukemia (ALL) and acute myelogenous
leukemia (AML), two common types of human acute leukemia,
arise from hematopoietic progenitors of lymphoid or myeloid
lineage or from hematopoietic stem cells. The diagnosis of
leukemia based on pathological and molecular subtype as well
as other histological markers is currently the gold standard for the
selection of proper treatment and prognosis stratification.1–3

Immunological and molecular-based classifications are also used
in the treatment decision-making process for ALL or AML.
However, they still lack accuracy, especially in prognosis and
survival predictions.
Epigenetic changes such as chromatin modification, microRNA

expression changes, and DNA methylation changes have been
reported extensively in cancer studies.4 The methylation pattern of
CpG sites is an epigenetic regulator of gene expression.5,6

Extensive alterations in DNA methylation have been noted in
almost all cancer types, causing changes in gene expression that
promote oncogenesis.5,7,8 Both epigenetic and somatic mutations
have promise for improving the characterization of malignancy to
predict treatment response and prognosis.7,9–11 Particular changes
in methylation profiles are postulated to be reproducibly found in
specific cancer types. In contrast, somatic mutations, with some
notable exceptions, typically show neither specificity nor sensitiv-
ity for a particular cancer type. Even within commonly mutated
genes, individual mutations may be found across tens or hundreds

of kilobases, limiting the utility of targeted sequencing of these
molecular markers.12,13

Methods for DNA methylation evaluation can be classified into
enzyme-based, anti-methylcytosine antibody-based, and bisul-
fate treatment-based approaches.14 Although each approach
provides specific advantages over the others, the bisulfate
treatment-based method has been the most widely utilized
method due to its reproducibility and single base-pair resolution
and the existence of particulate padlock primer-based bisulfate
sequencing.15,16 Compared to other bisulfate treatment-based
methods, the padlock-based method is more cost-effective,
methylation position-specific, and flexible to modification; there-
fore, it has been commonly utilized for single-base-pair-
resolution analysis.17 In our study, a padlock probe set was
generated from 729 CpG markers that showed differential
methylation values in many cancer types when compared to
the corresponding normal tissues.18

Thus, to explore the utility of methylation patterns in
differentiating leukemic cancers and improving prognosis, we
analyzed the whole-genome methylation profiles of blood
samples from patients with ALL and AML and healthy controls.
We also used methylation patterns to predict survival in these
patients. These markers not only outperformed present-day
methods in their high sensitivity and specificity for diagnosis but
also demonstrated the effect of stratifying patients with different
prognoses.
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RESULTS
Characteristics of patients
Clinical characteristics and molecular profiles, including methyla-
tion data for our study cohort, were obtained for 194 AML
patients, 136 ALL patients, and 754 healthy individuals. The clinical
characteristics of the AML and ALL patients in the study cohorts
and healthy controls are listed in Table 1.

Genome-wide methylation profiling identifies specific methylation
signatures in leukemia
We randomly split the TCGA AML samples, Chinese ALL samples,
and normal blood samples of healthy controls into training and
validation data sets at a 70/30 ratio using R. We then compared
methylation differences between the TCGA AML samples and
normal blood samples and between the Chinese ALL samples and
normal blood samples in the training data sets using the nearest
shrunken centroids method.19 Two sets of CpG sites were then
identified and used to differentiate the TCGA AML samples from
normal blood samples and the Chinese ALL samples from normal

blood samples in the validation data sets. This method of random
splitting was repeated 20 times. Tables 2A, 2B, 3A, 3B shows
confusion tables describing the performance of these classifiers in
differentiating AML and ALL samples from normal blood samples
on one of the 20 training and validation data sets. The 20 sets of
CpG sites identified through AML-normal comparison revealed
four common CpG sites. These four CpG sites were plotted in an
unsupervised fashion in AML versus normal blood samples
(Fig. 1a). The accuracy of using these four CpG sites for predicting
AML leukemia was assessed by the ROC curve (Fig. 1b), which had
an AUC of 0.9998.
Similarly, we identified seven common CpG sites through the

ALL-normal comparison (Fig. 2a). The accuracy of using these
seven CpG sites for predicting ALL leukemia was assessed by the
ROC curve (Fig. 2b), which had an AUC of 0.9995. It is worth noting
that two common CpG sites (cg05304729 and cg18518074)
appeared both in the AML-normal comparison and in the ALL-
normal comparison (Figs. 1a, 2a). Taken together, these data
demonstrated that differential methylation of CpG sites was able

Table 1. Clinical characteristics.

Characteristic AML ALL Normal

Total (n) 194 136 754

Gender

Femal-no. (%) 90 (46) 42 (31) 401 (53)

Male-no. (%) 104 (54) 94 (69) 353 (47)

Age at diagnosis (year)

Median 55 5 63

Range 18–88 1–13 19–101

White race-no/total no. (%)

White 176 (91) 0 504 (67)

Asian 2 (1) 136 (100) 7 (1)

Other 16 (8) 0 243 (32)

White cell count at diagnosis (×109/L)

Mean 37.94 ± 30.72 8.15 ± 5.78 NA

Median 17 5 NA

FAB subtype — no. (%)

AML with minimal maturation: M0 19 (10) NA NA

AML without maturation: M1 42 (22) NA NA

AML with maturation: M2 43 (22) NA NA

Acute promyelocytic leukemia: M3 19 (10) NA NA

Acute myelomonocytic leukemia: M4 41 (21) NA NA

Acute monoblastic or monocytic leukemia: M5 22 (11) NA NA

Acute erythroid leukemia: M6 3 (1.5) NA NA

Acute megakaryoblastic leukemia: M7 3 (1.5) NA NA

ALL-L1 NA 74 (55) NA

ALL-L2 NA 37 (27) NA

ALL-L3 NA 14 (10) NA

Other subtype 2 (1) 11 (8) NA

Cytogenetic risk group-no (%)

Favorable (Low risk) 36 (19) 19 (14) NA

Intermediate (Standard risk) 110 (57) 64 (47) NA

Unfavorable (High/Very high risk) 43 (22) 39 (29) NA

Missing data 3 (2) 14 (10) NA

ALL-L1: Small cells with homogeneous nuclear chromatin, a regular nuclear shape, small or no nucleoli, scanty cytoplasm, and mild to moderate
ALL-L2: Large, heterogeneous cells with variable nuclear chromatin, an irregular nuclear shape, 1 or more nucleoli, a variable amount of cytoplasm, and
variable basophilia
ALL-L3: Large, homogeneous cells with fine, stippled chromatin; regular nuclei; prominent nucleoli; and abundant, deeply basophilic cytoplasm. The most
distinguishing feature is prominent cytoplasmic vacuolation
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to distinguish the blood of particular leukemia types from normal
blood with high specificity and sensitivity (Figs. 1b, 2b). Overall,
these results demonstrate the robust nature of these methylation
patterns in identifying the presence of a particular type of
leukemia.

Methylation profiles can distinguish between different leukemia
We have shown the ability of our method to distinguish between
the blood of particular types of leukemia and normal blood
samples. We then investigated whether our algorithm was able
to distinguish different types of leukemic cancers (ALL and AML)
arising from bone marrow. We identified five CpG sites that
could be used to differentiate the TCGA AML samples from our
Chinese ALL samples (Fig. 3a) and generated confusion tables
(Tables 2C, 3C) describing the performance of our classifiers on
one of 20 training and validation data sets consisting of the
TCGA AML samples and the Chinese ALL cohort samples used in
Tables 2A, 2B, 3A, 3B. It is worth noting that among these five
CpG sites, one (cg00142402) was also identified in the AML and
normal comparison, and two (cg08261841 and cg09247255)
were also identified in the ALL and normal comparison. The

accuracy of using these five CpG sites for differentiating between
AML and ALL can be assessed by the ROC curve (Fig. 3b), which
had an AUC of 0.9998. Together, these results demonstrate the
efficacy of using methylation patterns for the accurate diagnosis of
a cancer histological subtype. The 11 unique CpG sites that could
differentiate among TCGA AML, Chinese ALL and normal blood
samples are plotted in an unsupervised fashion in Fig. 4.

Methylation profiles predict prognosis and survival rates
We investigated the effect of methylation markers on the
survival rate of each leukemia subtype (AML and ALL) based on a
semisupervised method.20 Specifically, for each leukemia sub-
type, the CpG sites in the training data were ranked based on
their Cox scores. Thirty-nine CpG sites whose Cox scores
exceeded 2.197 (corresponding to the 96th percentile of the
AML Cox scores) and 93 CpG sites whose Cox scores exceeded
3.215 (corresponding to the 92nd percentile of the ALL Cox
scores) were selected, and their methylation profiles were used
to classify 125 AML patients and 102 ALL patients, respectively,
into “good survival” or “bad survival” by the 2-means clustering
method. The resulting two subgroups for each leukemia subtype

Table 3. Confusion table of validation cohort. (A) Confusion table of
AML and normal blood; (B) Confusion table of ALL and normal blood;
(C) Confusion table of AML and ALL.

A

Validation cohort AML Normal blood

AML 59 6

Normal blood 0 221 Totals

Totals 59 227 286

Correct 59 221 280

False positive 0 6 6

False negative 0 0 0

Specificity (%) 97.4 97.9

Sensitivity (%) 100 100

B

Validation cohort ALL Normal blood

ALL 41 0

Normal blood 0 227 Totals

Totals 41 227 268

Correct 41 227 268

False positive 0 0 0

False negative 0 0 0

Specificity (%) 100 100

Sensitivity (%) 100 100

C

Validation cohort AML ALL

AML 59 0

ALL 0 41 Totals

Totals 59 41 100

Correct 59 41 100

False positive 0 0 0

False negative 0 0 0

Specificity (%) 100 100

Sensitivity (%) 100 100

Table 2. Confusion table of training cohort. (A) Confusion table of
AML and normal blood; (B) Confusion table of ALL and normal blood;
(C) Confusion table of AML and ALL.

A

Training cohort AML Normal blood

AML 134 1

Normal blood 135 526 Totals

Totals 134 527 662

Correct 134 526 660

False positive 0 1 1

False negative 1 0 1

Specificity (%) 99.8 99.8

Sensitivity (%) 99.3 99.8

B

Training cohort ALL Normal blood

ALL 94 0

Normal blood 1 527 Totals

Totals 95 527 662

Correct 94 527 621

False positive 0 0 0

False negative 1 0 1

Specificity (%) 100 100

Sensitivity (%) 98.9 99.8

C

Training cohort AML ALL

AML 135 0

ALL 0 95 Totals

Totals 135 95 230

Correct 135 95 230

False positive 0 0 0

False negative 0 0 0

Specificity (%) 100 100

Sensitivity (%) 100 100
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(AML and ALL) showed the most significant difference with
respect to survival, and from these subgroups, we also obtained
two optimal classification models: one contained 20 methylation
signatures for the AML subtype, and one contained 23
methylation signatures for the ALL subtype (see the methods
section). These two classifiers were then used to classify the 55
AML patients and the 34 ALL patients in the validation cohort.
Individual patient survival data were plotted using a
Kaplan–Meier curve (Fig. 5). A similar result was also observed
in the whole cohort (Fig. S1). These methylation signatures were
able to predict highly significant differences in the survival of
patients with ALL and AML.

DISCUSSION
Tumor-specific methylation patterns have been widely studied for
their potential in cancer diagnosis and prognosis.21–23 Due to the
high cost of whole-methylome sequencing, targeted specific
methylation positions have been more commonly surveyed in
tumor methylation marker discovery screening. For example, our
previous work on hepatocellular carcinoma utilized a 401 padlock

probe set and found ten CpG markers for diagnosis and eight CpG
markers for prognosis.16 In this study, we designed a padlock-
based bisulfate sequencing method using data from the TCGA
database. We demonstrated that differential methylation of CpG
sites was able to distinguish the blood from a particular leukemia
type from normal blood with high specificity and sensitivity
(Tables 2, 3). We also demonstrated our ability to distinguish
histologic subtypes of leukemia (ALL and AML) derived from the
same tissue in the bone marrow (Tables 2, 3). Furthermore, we
showed that methylation patterns can predict survival in ALL or
AML patients and revealed subsets of patients with either a
significant positive or negative prognosis. This finding raises the
possibility that methylation may help to identify relatively benign
or aggressive tumors and may aid in decision-making regarding
the selection of more or less aggressive treatment and monitoring.
DNA methylation patterns likely represent common pathways of
carcinogenesis and may be more reproducibly altered in cancers,
potentially allowing more robust diagnosis and prognostication
than somatic mutations. Indeed, methylation patterns may capture
the biological state of a cell more accurately than histopathology
or somatic mutations alone.

Fig. 1 Methylation profile can differentiate AML blood and normal blood using 4 markers. a Unsupervised hierarchical clustering and the
heat map associated with the methylation profile (according to the color scale shown) in AML blood vs normal blood. b The accuracy of
predicting AML as assessed by the ROC curve.
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Our data have significant implications for improving the
diagnostic yield for biopsies from patients whose bone marrow
biopsy results are inconclusive, which often occurs due to artificial
tissue distortion. These results may further be helpful to identify
leukemic subtypes in cases in which the tissue yield or quality is
inadequate for histology to make an accurate diagnosis, as
histology requires preservation of the tissue architecture.24 In fact,
it was often a dilemma with biopsies to balance between
specimen yield and quality and discomfort or potential complica-
tions such as hemorrhage.25,26 Moreover, bone marrow patholo-
gical examinations are often relatively time-consuming, and
diagnosis based on morphology can be inconclusive or incon-
sistent depending on the personal experience of pathologists. In
contrast, DNA methylation analysis requires only a small amount
of tissue to obtain adequate DNA, thus potentially allowing the
use of lower quality biopsies. The ability to identify histologic
subtypes for these cancers within the bone marrow has important
implications because different cancers confer different prognoses

and require distinct treatment plans; diagnostic failure or
uncertainty may lead to less favorable outcomes and survival.
It may not be surprising that DNA methylation patterns have

such differentiating abilities in distinguishing between the blood
of subtypes of leukemia and normal blood. It is known that many
genes involved in the methylation machinery are mutated in
leukemia (TET2, TPMT, and DNMT3A),27–31 therefore leading to
significant alteration in methylation patterns.
Recently, a number of prognostic factors have been proposed

for AML and ALL, such as clinical features, immunophenotype, and
cytogenetic and molecular characteristics.19,32–34 The identifica-
tion of prognostic factors, an improved stratification of risk groups
and survival analyses have made it possible to identify the
presence of the disease and evaluate treatment outcomes.35,36

However, the clinical utilities of gene mutation analysis, gene
expression profiling, and microRNA analysis remain uncertain at
this time. Flow cytometry also provides a direct assessment of
surface antigen expression profiles on leukemic cells,37 facilitating

Fig. 2 Methylation profile can differentiate ALL blood and normal blood using 7 markers. a Unsupervised hierarchical clustering and the
heat maps associated with the methylation profile (according to the color scale shown) in ALL blood versus normal blood samples. b The
accuracy of predicting ALL as assessed by the ROC curve.
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the rational and individualized selection of targeted immunother-
apy strategies. Several advances in flow cytometry, including the
availability of new monoclonal antibodies, improved gating
strategies, and multiparameter analytic techniques, have all
dramatically improved its utility in the diagnosis and classification
of leukemia. However, morphologic and differentiation-based
classifications of leukemia are limited by their prognostic value, as
well as the available monoclonal antibodies.
In this study, we also applied methylation profiling and machine

learning analysis to the survival data of ALL and AML patients.
Interestingly, we were able to separate each leukemic type we
examined into distinct groups with better or worse survival
outcomes. These results also support the idea that methylation
patterns may offer a more accurate picture of the biological state
of a cancer than histology and IHC alone or even somatic
mutation analysis. However, we expect that a combination of all of
these methods is most likely to offer the most complete and
useful information for treating patients with leukemia. One known
prognostic factor is the origin from which progenitor leukemic
cancer cells are derived from during hematopoiesis, as leukemic
cells from more differentiated progenitors carry a better

prognosis. Therefore, it would be interesting to see if leukemic
patients with better prognosis/survival based on a methylation
signature have the characteristics of a more differentiated disease.
Additionally, the blood can be taken from the patients at any

time during the course of therapy, which facilitates the use of the
methylation profile for dynamic monitoring of the epigenetic
changes of leukemic cells instead of repetitive bone marrow
biopsies. It also allows for the detection of minimal residual
disease and the prediction of the risk of relapse.
In summary, we identified a CpG methylation panel for the

diagnosis and prognosis of common leukemia with high
sensitivity and specificity. Our results support the potential clinical
utility of DNA methylation signatures to distinguish leukemia
types and to predict prognosis and outcomes.

Key points
ALL and AML have specific DNA methylation signatures that are
associated with cancer-related gene expression regulation.
DNA methylation markers can differentiate AML from ALL.
DNA methylation markers can provide prognosis and survival

assessment for AML and ALL patients.

Fig. 3 Methylation profile can differentiate subtypes of leukemia using 5 markers. a Unsupervised hierarchical clustering and the heatmap
with the methylation profile (according to the color scale shown) in ALL versus AML samples. b The accuracy of predicting AML and ALL as
assessed by the ROC curve.
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METHODS
Patient data
Patient data of the AML training and validation cohorts were
obtained from The Cancer Genome Atlas (TCGA). Patient
characteristics are summarized in Table 1. Complete clinical,
molecular, and histopathological data sets are available at the
TCGA website: https://tcga-data.nci.nih.gov/tcga/. Individual insti-
tutions that contributed samples coordinated the consent process
and obtained informed written consent from each patient in
accordance with their respective institutional review boards.
The second independent (Chinese) ALL cohort consisted of

patients from Guangzhou Women and Children’s Medical Center,
China, and patient characteristics are summarized in Table 1. This
project was approved by the IRB of Guangzhou Women and
Children’s Medical Center. Informed consent was obtained from all
patients. Tumor and normal tissues were obtained as clinically
indicated for patient care and were retained for this study with
patients’ informed consent.

Data sources
DNA methylation data were obtained from both the TCGA analysis
of 485,000 sites generated using the Infinium 450K Methylation
Array and the following GSE data set: GSE40279. Methylation
profiles for AML cancer types and their corresponding normal
blood were analyzed. IDAT format files of the methylation data
were generated containing the ratio values of each scanned bead.
Using the minfi package from Bioconductor, these data files were
converted into a score, referred to as a beta value. Methylation
data of the Chinese cohort were obtained by padlock-based
bisulfate sequencing of a pancancer marker set and were analyzed
as described below.

Generating methylation markers enriched in cancer
We selected 729 previously reported CpG markers that showed
differential methylation values in many cancer types when
compared to the corresponding normal tissues.18

Classifying samples
For classifying the ALL, AML, and normal blood samples, we
applied a supervised learning technique, the “nearest shrunken
centroids” procedure of Tibshirani et al.38, which is implemented
in the package PAM.39 Specifically, we first mixed the TCGA AML
samples, Chinese ALL samples and normal blood samples. Seventy

percent of these combined samples were put into the training set,
and thirty percent were put into the validation set. We then
performed the PAM procedure with 10-fold cross-validation on
the training data set and obtained robust classifiers for each AML-
normal, ALL-normal, and AML-ALL comparison. These classifiers
were then used to classify the validation data. This leave-group-
out cross-validation was repeated 20 times.
To predict survival in each leukemia subtype (AML and ALL), we

applied a semisupervised method proposed by Bair and
Tibshirani.20 Specifically, the patient cohorts were randomly
divided into a training set (n= 125 for AML and n= 102 for
ALL) and a validation set (n= 55 for AML and n= 34 for ALL). For
each CpG site, we fit a univariate Cox proportional hazard
regression model with survival outcome and methylation value as
predictors using the training data set. These CpG sites were then
ranked based on their Cox scores. For a given Cox score cutoff, we
obtained a list of CpG sites whose Cox scores exceed the cutoff.
Then, we performed 2-means clustering on the training patients
and obtained two subgroups for each leukemia subtype. We then
conducted log-rank tests on the survival of these two subgroups
for each leukemia subtype and applied the nearest shrunken
centroids model with cross validation to train a classification
model. We examined 100 equally spaced Cox scores between the
90th percentiles of the Cox scores and the maximum of the Cox
scores. The optimal Cox score cutoff was chosen such that the
resulting two subgroups for each leukemia subtype differed most
significantly with respect to survival, and the resulting classifica-
tion model had the smallest cross validation error. We then used
the trained classification models, one for AML and one for ALL, to
predict the subgroup to which each patient in the AML and ALL
validation sets belonged. The 20 methylation signatures for
survival in AML and the 23 methylation signatures for survival in
ALL are listed below.
AML: cg01336231, cg01413582, cg01509330, cg02264990,

cg02329430, cg02858512, cg03297901, cg03556653, cg04596071,
cg05038216, cg06034933, cg08098128, cg13066703, cg17757602,
cg18869709, cg19966212, cg20300129, cg23193870, cg23680451,
and cg25145765.
ALL: cg01628067, cg03001333, cg04984818, cg05145233,

cg05304729, cg05956452, cg06261066, cg09157302, cg14608384,
cg15289427, cg15608301, cg15707093, cg16266227, cg18869709,
cg19470372, cg19864130, cg20686234, cg21913319, cg24720672,
cg24747122, cg24983367, cg26584619, and cg27178401.

Fig. 4 Using 11 markers, the methylation profile can differentiate the leukemia subtype and normal blood. Unsupervised hierarchical
clustering and the heatmap associated with ALL, AML, and normal blood.
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In our analysis, we observed four potential types of classification
errors.

1. False negative; e.g., ALL blood was identified as normal blood.
2. False positive; e.g., normal blood was identified as ALL or

AML blood.
3. Correct sample, incorrect leukemia type; e.g., ALL blood was

identified as AML blood.

Tumor DNA extraction
Genomic DNA extraction from normal blood or ALL bone
marrow cancer samples was performed with the QIAamp DNA
Mini Kit (Qiagen) according to the manufacturer’s recommenda-
tions. DNA was stored at −20 °C and analyzed within 1 week of
preparation.

Bisulfite conversion of genomic DNA
Up to 1 µg of genomic DNA was converted to bis-DNA using an EZ
DNA Methylation-Lightning™ Kit (Zymo Research) according to the
manufacturer’s protocol. The resulting bis-DNA had a size
distribution of ~200–3000 bp, with a peak around ~500–1000 bp.
The efficiency of bisulfite conversion was >99.8%, as verified by
deep sequencing of bis-DNA and analyzing the ratio of the C to T
conversion of CH (non-CG) dinucleotides.

Determination of DNA methylation levels of the ALL cohort by
deep sequencing of bis-DNA captured with molecular-inversion
(padlock) probes
A total of 729 CpG markers whose methylation levels significantly
differed in any of the comparisons between leukemic and normal
tissue were used to design padlock probes for sequencing.
Padlock-capture of bis-DNA was based on published techniques
and protocols with modifications.17,40,41

Determination of DNA methylation levels by deep sequencing of bis-
DNA captured with molecular inversion (padlock) probes. Padlock
probes were designed to capture regions containing the CpG
markers whose methylation levels significantly differed in
comparison between leukemic and normal blood. Padlock-
capture of bis-DNA was based on published techniques and
protocols with modifications.40,41

Probe design and synthesis. Padlock probes were designed using
the ppDesigner software. The average length of the captured
region was 100 bp, with the CpG marker located in the central
portion of the captured region.

Bis-DNA capture. For this analysis, 100 ng of bisulfite-converted
DNA was annealed to padlock probes in 20 µl reactions containing
1× Ampligase buffer (Epicenter). To anneal probes to DNA, 30 s of
denaturation at 95 °C was followed by a slow cooling to 55 °C. To
fill gaps between annealed arms, the following mixture was added
to each reaction: Pfu polymerase (Agilent), 0.5 U of Ampligase
(Epicenter) and 250 pmol of each dNTP in 1× Ampligase buffer.
After 5 h of incubation at 55 °C, the reactions were denatured for
2 min at 94 °C and snap-cooled on ice. Exonuclease mix (20 U of
ExoI and 100 U of ExoIII, both from Epicenter) was added, and
single-stranded DNA degradation was carried out at 37 °C for 2 h,
followed by enzyme inactivation for 2 min at 94 °C.
Circular products of the above CpG site-specific capture were

amplified by PCR with concomitant barcoding of separate
samples. Amplification was carried out using primers specific to
linker DNA within the padlock probes, one of which contained
specific 6 bp barcodes. Both primers contained Illumina next-
generation sequencing adapter sequences. PCR of the captured
DNA was performed using Phusion Flash Master Mix (Thermo) and
a 200 nM final concentration of primers under the following cycle
conditions: 10 s @ 98 °C; 8 cycles of 1 s @ 98 °C, 5 s @ 58 °C, and

High risk
Low risk

Logrank test p=0.0017

Logrank test p=0.0007

Logrank test p<0.0001

Logrank test p=0.039

A

B

C

D

Fig. 5 Methylation markers can predict the five-year overall survival of patients. a AML training set (n= 125); b AML validation set (n= 55);
c ALL training set (n= 55); and d ALL validation set (n= 34).
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10 s @ 72 °C; 25 cycles of 1 s @ 98 °C and 15 s @ 72 °C; and 60 s @
72 °C. PCRs were mixed, and the resulting library was size selected
to include effective captures (~230 bp) and exclude “empty”
captures (~150 bp) using Agencourt AMPure XP beads (Beckman
Coulter). The purity of the libraries was verified by PCR using
Illumina flowcell adapter primers (P5 and P7), and the concentra-
tions were determined using the Qubit dsDNA HS assay (Thermo
Fisher). Libraries we sequenced using the MiSeq and
HiSeq2500 systems (Illumina).

Sequencing data analysis. The sequencing reads were mapped
using the software tool bisReadMapper with some modifications.
First, UMI were extracted from each sequencing read and
appended to read headers within the FASTQ files using a custom
script generously provided by D.D. Reads were on-the-fly
converted as if all Cs were nonmethylated and mapped to in-
silico converted DNA strands of the human genome, also as if all
Cs were nonmethylated, using Bowtie 2.42 Original reads were
merged and filtered for single UMI, i.e., reads carrying the same
UMI were discarded, leaving a single one. Methylation frequencies
were extracted for all CpG markers for which padlock probes were
designed. Markers with less than 20 reads in any sample were
excluded from analysis. This resulted in ~600 CpG markers for
which the methylation level was determined with an accuracy of
5% or more.
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