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The antimicrobial peptide PFR induces necroptosis mediated
by ER stress and elevated cytoplasmic calcium and
mitochondrial ROS levels: cooperation with Ara-C to act
against acute myeloid leukemia
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Dear Editor,
Antimicrobial peptides (AMPs) are an ancient class of short

polypeptides present in a large number of species in nature with a
variety of functions.1 PFR (PFWRIRIRR-NH2) is one kind of AMP
identified among the derivatives of lactoferrin.2 Our previous
results showed that PFR inhibited the proliferation of human acute
myeloid leukemia (AML) HL60 cells potentially without toxicity
against normal cells. In addition, PFR induced necrosis by
membrane disruption detected using scanning electron micro-
scopy.3 However, the underlying mechanisms of these effects are
not clearly understood.
To investigate the mechanisms involved in necrosis4 induced by

PFR in HL60 cells (Fig. S1a–d), we found that 5(6)-FAM was taken
up by HL60 cells after PFR treatment in a time-dependent manner
(Fig. 1a), indicating that PFR induced the formation of permeable
pores with open diameters of at least the molecular size of 5(6)-
FAM (≈1 nm). In addition, levels of phosphorylated RIP1, RIP3, and
MLKL were increased significantly after PFR treatment (Figs. 1b
and S1e), indicating that necroptosis had occurred. Furthermore,
necrostatin-1 (Nec-1), a specific inhibitor of necroptosis, signifi-
cantly reduced propidium iodide (PI) uptake induced by PFR
(Fig. 1c).
We further synthesized green fluorescent 5-FAM-PFR and traced

its dynamic location for up to 6 h (Fig. S2a). The dynamic
distribution of PFR on the cytomembrane (~3–10min) and
endoplasmic reticulum (ER) (after 30 min) was clearly indicated
by green and bright yellow fluorescence, respectively (Figs. 1d and
S2a). The unexpected localization of PFR on the ER prompted us to
detect whether PFR induces ER stress because of the fact that ER
stress is involved in cell death.5,6 The expression level of the classic
ER stress marker GRP78 was increased significantly after PFR
treatment (Figs. 1e and S2b).
That PFR can target the ER to induce ER stress was completely

unexpected. The ER plays an essential role in regulating Ca2+

homeostasis.7 Thus, we monitored intracellular calcium mobiliza-
tion in response to PFR treatment. PFR caused a rapid and
consistent increase in cytosolic calcium (observed by Fluo-4
staining) followed by a delayed and moderate increase in
mitochondrial calcium concentration (observed by Rhod-2 stain-
ing) in a dose-dependent manner (Figs. 1f and S3a). The calcium
chelator BAPTA; 2-APB, which inhibits the IP3R ER calcium channel;
and culture in calcium-free medium could reduce cell death
induced by PFR treatment (Fig. 1g). This effect was not observed

following treatment with DIDS, which inhibits the voltage-
dependent anion channel type 1 calcium channel on the outer
mitochondrial membrane, indicating that elevated cytoplasmic
calcium from both the influx of extracellular Ca2+ and release of
intracellular ER Ca2+ induced by ER stress, but not mitochondrial
calcium, mediates the cytotoxicity of PFR in HL60 cells. As ROS
production is the executioner and mediator of necroptosis,8

cytosolic ROS were decreased significantly (Fig. S3b), while
mitochondrial ROS were increased significantly after PFR treat-
ment (Fig. 1h). Moreover, both BAPTA and 2-APB significantly
decreased mitochondrial ROS production induced by PFR treat-
ment (Fig. 1i), indicating that elevated cytoplasmic calcium
contributes to elevated mitochondrial ROS. The mitochondrial-
targeted antioxidant MitoQ both decreased elevated mitochon-
drial ROS levels (Fig. 1i) and increased cell proliferation and
viability (Fig. 1j) in the presence of PFR, while the cytosolic
antioxidant Trolox had no obvious effect on cell proliferation and
viability in the presence of PFR (Fig. 1j). Meanwhile, the PFR-
induced increase in phosphorylated RIP1, RIP3, and MLKL levels
(Figs. 1b and S1e) was blocked by pretreatment with MitoQ (Figs.
1k and S3c), indicating that the elevation of mitochondrial ROS is a
major mechanism of necroptosis by RIP1-RIP3-MLKL activation in
response to PFR treatment.
Cytosine arabinoside (Ara-C) is a common drug used in the

treatment of AML with the drawbacks of drug resistance and
drug-related toxicity.9 Cooperation between PFR and Ara-C (Fig.
1l) increased the number of necrotic cells (Fig. S4a). Similarly, PI
uptake (Fig. S4b) and LDH release (Fig. S4c) were increased
significantly in the group treated with both PFR and Ara-C.
Combined treatment with PFR and Ara-C also significantly
inhibited the growth of tumors in the HL60 xenograft mouse
model (Figs. S5a–c and 1m). In addition, no serious side effects
and no difference in weight gain (Fig. S5d) were observed in the
combined group, and no toxicity was detected in the liver (Fig.
S5e) and kidney (Fig. S5f).
In summary, we found a novel mechanism by which PFR

induces necroptosis through ER stress, elevated cytoplasmic
calcium, and mitochondrial ROS (Fig. 1n). Furthermore, PFR can
also cooperate with Ara-C to enhance the efficacy of Ara-C in vitro
and in vivo. The novel molecular mechanisms of PFR used to treat
AML and the efficacy of cooperation between PFR and Ara-C may
provide new insights into the molecular mechanisms of AMP and
a new therapeutic option to treat human AML.
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Fig. 1 PFR induces necroptosis through ER stress and elevated cytoplasmic calcium and mitochondrial ROS levels and cooperates with Ara-C
to act against acute myeloid leukemia. Detailed explanations for all subfigures are given in the Supplementary Information
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