Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Basic Research
  • Published:

Therapeutic potential of ReACp53 targeting mutant p53 protein in CRPC

Abstract

Backgrounds

p53 is a tumor suppressor that prevents cancer onset and progression, and mutations in the p53 gene cause loss of the tumor suppressor function of the protein. The mutant p53 protein in tumor cells can form aggregates which contribute to the dominant-negative effect over the wild-type p53 protein, causing loss of p53 tumor suppression or gain of novel oncogenic functions. Mutations in p53 have been implicated in the pathogenesis of primary prostate cancer (PCa), and are often detected in recurrent and metastatic disease. Thus, targeting mutant p53 may constitute an alternative therapeutic strategy for advanced PCa for which there are no other viable options.

Methods

In this study, we used immunoprecipitation, immunofluorescence, clonogenic survival, and cell proliferation assays, flow cytometric analysis and in vivo xenograft to investigate the biological effects of ReACp53, a cell-permeable peptide inhibitor of p53 aggregation, on mutant p53-carrying PCa cells.

Results

Our results show that ReACp53 targets amyloid aggregates of mutant p53 protein and restores the p53 nuclear function as transcriptional factor, induces mitochondrial cell death and reduces DNA synthesis of mutant p53-carrying PCa cells; ReACp53 also inhibits xenograft tumor growth in vivo.

Conclusions

The data presented here suggest a therapeutic potential of targeting mutant p53 protein in advanced PCa setting, which has a clinical impact for aggressive PCa with transforming how such tumors are managed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30. https://doi.org/10.3322/caac.21332.

    Article  PubMed  Google Scholar 

  2. Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat JP, et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet. 2012;44:685–9. https://doi.org/10.1038/ng.2279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, et al. Integrative clinical genomics of advanced prostate. Cancer Cell. 2015;162:454 https://doi.org/10.1016/j.cell.2015.06.053.

    Article  CAS  Google Scholar 

  4. Vousden KH, Prives C. Blinded by the light: the growing complexity ofp53. Cell. 2009;137:413–31. https://doi.org/10.1016/j.cell.2009.04.037.

    Article  CAS  PubMed  Google Scholar 

  5. Leroy B, Fournier JL, Ishioka C, Monti P, Inga A, Fronza G, et al. The TP53 website: an integrative resource centre for the TP53 mutation database and TP53 mutant analysis. Nucleic Acids Res. 2013;41(Database issue):D962–9. https://doi.org/10.1093/nar/gks1033.

    Article  CAS  PubMed  Google Scholar 

  6. Robles AI, Harris CC. Clinical outcomes and correlates of TP53 mutations and cancer. Cold Spring Harb Perspect Biol. 2010;2:a001016 https://doi.org/10.1101/cshperspect.a001016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. He C, Li L, Guan X, Xiong L, Miao X. Mutant p53 gain of function and chemoresistance: the role of mutant p53 in response to clinical chemotherapy. Chemotherapy. 2017;62:43–53. https://doi.org/10.1159/000446361.

    Article  CAS  PubMed  Google Scholar 

  8. Okorokov AL, Sherman MB, Plisson C, Grinkevich V, Sigmundsson K, Selivanova G, et al. The structure of p53 tumour suppressor protein reveals the basis for its functional plasticity. EMBO J. 2006;25:5191–200. https://doi.org/10.1038/sj.emboj.7601382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Silva JL, De Moura Gallo CV, Costa DC, Rangel LP. Prion-like aggregation of mutant p53 in cancer. Trends Biochem Sci. 2014;39:260–7. https://doi.org/10.1016/j.tibs.2014.04.001.

    Article  CAS  PubMed  Google Scholar 

  10. Joerger AC, Fersht AR. Structural biology of the tumor suppressor p53. Annu Rev Biochem. 2008;77:557–82. https://doi.org/10.1146/annurev.biochem.77.060806.091238.

    Article  CAS  PubMed  Google Scholar 

  11. Sabapathy K. The Contrived Mutant p53 Oncogene - Beyond Loss of Functions. Front Oncol. 2015;5:276 https://doi.org/10.3389/fonc.2015.00276.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Muller PA, Vousden KH. p53 mutations in cancer. Nat Cell Biol. 2013;15:2–8. https://doi.org/10.1038/ncb2641.

    Article  CAS  PubMed  Google Scholar 

  13. Lei J, Qi R, Wei G, Nussinov R, Ma B. Self-aggregation and coaggregation of the p53 core fragment with its aggregation gatekeeper variant. Phys Chem Chem Phys. 2016;18:8098–107. https://doi.org/10.1039/c5cp06538k.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Costa DC, de Oliveira GA, Cino EA, Soares IN, Rangel LP, Silva JL. Aggregation and prion-like properties of misfolded tumor suppressors: is cancer a prion disease? Cold Spring Harb Perspect Biol. 2016;8. https://doi.org/10.1101/cshperspect.a023614.

  15. Stindt MH, Muller PA, Ludwig RL, Kehrloesser S, Dotsch V, Vousden KH. Functional interplay between MDM2, p63/p73 and mutant p53. Oncogene. 2015;34:4300–10. https://doi.org/10.1038/onc.2014.359. Epub 2014/11/25.

    Article  CAS  PubMed  Google Scholar 

  16. Rangel LP, Costa DC, Vieira TC, Silva JL. The aggregation of mutant p53 produces prion-like properties in cancer. Prion. 2014;8:75–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stefani M. Protein misfolding and aggregation: new examples in medicine and biology of the dark side of the protein world. Biochim Biophys Acta. 2004;1739:5–25. https://doi.org/10.1016/j.bbadis.2004.08.004.

    Article  CAS  PubMed  Google Scholar 

  18. Brundin P, Melki R, Kopito R. Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat Rev Mol Cell Biol. 2010;11:301–7. https://doi.org/10.1038/nrm2873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Silva JL, Vieira TC, Gomes MP, Bom AP, Lima LM, Freitas MS, et al. Ligand binding and hydration in protein misfolding: insights from studies of prion and p53 tumor suppressor proteins. Acc Chem Res. 2010;43:271–9. https://doi.org/10.1021/ar900179t.

    Article  CAS  PubMed  Google Scholar 

  20. Ano Bom AP, Rangel LP, Costa DC, de Oliveira GA, Sanches D, Braga CA, et al. Mutant p53 aggregates into prion-like amyloid oligomers and fibrils: implications for cancer. J Biol Chem. 2012;287:28152–62. https://doi.org/10.1074/jbc.M112.340638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Levy CB, Stumbo AC, Ano Bom AP, Portari EA, Cordeiro Y, Silva JL, et al. Co-localization of mutant p53 and amyloid-like protein aggregates in breast tumors. Int J Biochem Cell Biol. 2011;43:60–4. https://doi.org/10.1016/j.biocel.2010.10.017.

    Article  CAS  PubMed  Google Scholar 

  22. Higashimoto Y, Asanomi Y, Takakusagi S, Lewis MS, Uosaki K, Durell SR, et al. Unfolding, aggregation, and amyloid formation by the tetramerization domain from mutant p53 associated with lung cancer. Biochemistry. 2006;45:1608–19. https://doi.org/10.1021/bi051192j.

    Article  CAS  PubMed  Google Scholar 

  23. Rigacci S, Bucciantini M, Relini A, Pesce A, Gliozzi A, Berti A, et al. The (1-63) region of the p53 transactivation domain aggregates in vitro into cytotoxic amyloid assemblies. Biophys J. 2008;94:3635–46. https://doi.org/10.1529/biophysj.107.122283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ishimaru D, Andrade LR, Teixeira LS, Quesado PA, Maiolino LM, Lopez PM, et al. Fibrillar aggregates of the tumor suppressor p53 core domain. Biochemistry. 2003;42:9022–7. https://doi.org/10.1021/bi034218k. PubMed PMID: 12885235

    Article  CAS  PubMed  Google Scholar 

  25. Soragni A, Janzen DM, Johnson LM, Lindgren AG, Thai-Quynh Nguyen A, Tiourin E, et al. A designed inhibitor of p53 aggregation rescues p53 tumor suppression in ovarian carcinomas. Cancer Cell. 2016;29:90–103. https://doi.org/10.1016/j.ccell.2015.12.002.

    Article  CAS  PubMed  Google Scholar 

  26. Gregory CW, Johnson RT Jr., Mohler JL, French FS, Wilson EM. Androgen receptor stabilization in recurrent prostate cancer is associated with hypersensitivity to low androgen. Cancer Res. 2001;61:2892–8. Epub 2001/04/18.

    CAS  PubMed  Google Scholar 

  27. Chen X, Wong JY, Wong P, Radany EH. Low-dose valproic acid enhances radiosensitivity of prostate cancer through acetylated p53-dependent modulation of mitochondrial membrane potential and apoptosis. Mol cancer Res: MCR. 2011;9:448–61. https://doi.org/10.1158/1541-7786.MCR-10-0471. Epub 2011/02/10

    Article  CAS  PubMed  Google Scholar 

  28. http://p53.free.fr/Database/Cancer_cell_lines/cell_lines_1.0.pdf.

  29. Thalmann GN, Anezinis PE, Chang SM, Zhau HE, Kim EE, Hopwood VL, et al. Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Res. 1994;54:2577–81.

    CAS  PubMed  Google Scholar 

  30. Gurova KV, Rokhlin OW, Budanov AV, Burdelya LG, Chumakov PM, Cohen MB, et al. Cooperation of two mutant p53 alleles contributes to Fas resistance of prostate carcinoma cells. Cancer Res. 2003;63:2905–12.

    CAS  PubMed  Google Scholar 

  31. van Bokhoven A, Varella-Garcia M, Korch C, Johannes WU, Smith EE, Miller HL, et al. Molecular characterization of human prostate carcinoma cell lines. Prostate. 2003;57:205–25. https://doi.org/10.1002/pros.10290.

    Article  CAS  PubMed  Google Scholar 

  32. Tai S, Sun Y, Squires JM, Zhang H, Oh WK, Liang CZ, et al. PC3 is a cell line characteristic of prostatic small cell carcinoma. Prostate. 2011;71:1668–79. https://doi.org/10.1002/pros.21383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Picksley SM, Vojtesek B, Sparks A, Lane DP. Immunochemical analysis of the interaction of p53 with MDM2;–fine mapping of the MDM2 binding site on p53 using synthetic peptides. Oncogene. 1994;9:2523–9.

    CAS  PubMed  Google Scholar 

  34. Burch LR, Midgley CA, Currie RA, Lane DP, Hupp TR. Mdm2 binding to a conformationally sensitive domain on p53 can be modulated by RNA. FEBS Lett. 2000;472:93–8.

    Article  CAS  PubMed  Google Scholar 

  35. Matsumoto M, Furihata M, Ohtsuki Y. Posttranslational phosphorylation of mutant p53 protein in tumor development. Med Mol Morphol. 2006;39:79–87. https://doi.org/10.1007/s00795-006-0320-0.

    Article  CAS  PubMed  Google Scholar 

  36. Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M, et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science. 2004;303:1010–4. https://doi.org/10.1126/science.1092734.

    Article  CAS  PubMed  Google Scholar 

  37. Beckerman R, Prives C. Transcriptional regulation byp53. Cold Spring Harb Perspect Biol. 2010;2:a000935 https://doi.org/10.1101/cshperspect.a000935.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lim S, Kaldis P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development. 2013;140:3079–93. https://doi.org/10.1242/dev.091744.

    Article  CAS  PubMed  Google Scholar 

  39. Alimirah F, Panchanathan R, Chen J, Zhang X, Ho SM, Choubey D. Expression of androgen receptor is negatively regulated byp53. Neoplasia. 2007;9:1152–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr., Kinzler KW. Cancer genome landscapes. Science. 2013;339:1546–58. https://doi.org/10.1126/science.1235122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bielas JH, Loeb KR, Rubin BP, True LD, Loeb LA. Human cancers express a mutator phenotype. Proc Natl Acad Sci USA. 2006;103:18238–42. https://doi.org/10.1073/pnas.0607057103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hieronymus H, Schultz N, Gopalan A, Carver BS, Chang MT, Xiao Y, et al. Copy number alteration burden predicts prostate cancer relapse. Proc Natl Acad Sci USA. 2014;111:11139–44. https://doi.org/10.1073/pnas.1411446111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Soundararajan R, Aparicio AM, Logothetis CJ, Mani SA, Maity SN. Function of Tumor Suppressors in Resistance to Antiandrogen Therapy and Luminal Epithelial Plasticity of Aggressive Variant Neuroendocrine Prostate Cancers. Front Oncol. 2018;8:69 https://doi.org/10.3389/fonc.2018.00069.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tsai HK, Lehrer J, Alshalalfa M, Erho N, Davicioni E, Lotan TL. Gene expression signatures of neuroendocrine prostate cancer and primary small cell prostatic carcinoma. BMC Cancer. 2017;17:759 https://doi.org/10.1186/s12885-017-3729-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Khemlina G, Ikeda S, Kurzrock R. Molecular landscape of prostate cancer: implications for current clinical trials. Cancer Treat Rev. 2015;41:761–6. https://doi.org/10.1016/j.ctrv.2015.07.001.

    Article  CAS  PubMed  Google Scholar 

  46. Kluth M, Harasimowicz S, Burkhardt L, Grupp K, Krohn A, Prien K, et al. Clinical significance of different types of p53 gene alteration in surgically treated prostate cancer. Int J Cancer. 2014;135:1369–80. https://doi.org/10.1002/ijc.28784.

    Article  CAS  PubMed  Google Scholar 

  47. Chen H, Sun Y, Wu C, Magyar CE, Li X, Cheng L, et al. Pathogenesis of prostatic small cell carcinoma involves the inactivation of the P53 pathway. Endocr Relat Cancer. 2012;19:321–31. https://doi.org/10.1530/ERC-11-0368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Guseva NV, Rokhlin OW, Bair TB, Glover RB, Cohen MB. Inhibition of p53 expression modifies the specificity of chromatin binding by the androgen receptor. Oncotarget. 2012;3:183–94. https://doi.org/10.18632/oncotarget.449.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhang Y, Hu Y, Wang JL, Yao H, Wang H, Liang L, et al. Proteomic identification of ERP29 as a key chemoresistant factor activated by the aggregating p53 mutant Arg282Trp. Oncogene. 2017;36:5473–83. https://doi.org/10.1038/onc.2017.152.

    Article  CAS  PubMed  Google Scholar 

  50. Wang G, Fersht AR. Multisite aggregation of p53 and implications for drug rescue. Proc Natl Acad Sci USA. 2017;114:E2634–E43. https://doi.org/10.1073/pnas.1700308114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. David Eisenberg and Dr. Alice Soragni from David Geffen School of Medicine, UCLA for providing ReACp53 and its scramble control, and for their helpful comments and advice on experimental design.

Funding

This work is supported by Stand Up to Cancer–Prostate Cancer Foundation–Prostate Dream Team Translational Cancer Research Grant (SU2C-AACR-DT0812). This research grant was made possible by the generous support of the Movember Foundation. Stand Up To Cancer is a program of the Entertainment Industry Foundation administered by the American Association for Cancer Research. Jiaoti Huang is supported by grants from the National Institutes of Health (1R01CA181242, 1R01CA172603, 1R01CA205001, 1U54CA217297, 1R01CA212403, 1R01CA200853), Department of Defense Prostate Cancer Research Program (PC150382), and Prostate Cancer Foundation (Joyce and Larry Stupski Prostate Cancer Precision Oncology Special Challenge award). Lingfan Xu is supported by grants from National Natural Science Foundation (81902611), Youth Culturing Plan of National Natural Science Foundation (2018Kj16) and Anhui Natural Science Foundation (1908085QH337). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chaozhao Liang or Jiaoti Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Xu, L., Chang, Y. et al. Therapeutic potential of ReACp53 targeting mutant p53 protein in CRPC. Prostate Cancer Prostatic Dis 23, 160–171 (2020). https://doi.org/10.1038/s41391-019-0172-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41391-019-0172-z

This article is cited by

Search

Quick links