Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Clinical
  • Published:

Single-nucleotide polymorphisms in DNMT3B gene and DNMT3B mRNA expression in association with prostate cancer mortality

Abstract

Background

Germline variants in DNA methyltransferase 3B (DNMT3B) may influence DNMT3B enzymatic activity, which, in turn, may affect cancer aggressiveness by altering DNA methylation.

Methods

The study involves two Italian cohorts (NTAT cohort, n = 157, and 1980s biopsy cohort, n = 182) and two U.S. cohorts (Health Professionals Follow-Up Study, n = 214, and Physicians’ Health Study, n = 298) of prostate cancer (PCa) patients, and a case–control study of lethal (n = 113) vs indolent (n = 290) PCa with DNMT3B mRNA expression data nested in the U.S. cohorts. We evaluated the association between: three selected DNMT3B variants and global DNA methylation using linear regression in the NTAT cohort, the three DNMT3B variants and PCa mortality using Cox proportional hazards regression in all cohorts, and DNMT3B expression and lethal PCa using logistic regression, with replication in publicly available databases (TCGA, n = 492 and MSKCC, n = 140).

Results

The TT genotype of rs1569686 was associated with LINE-1 hypomethylation in tumor tissue (β = −2.71, 95% CI: −5.41, −0.05). There was no evidence of association between DNMT3B variants and PCa mortality. DNMT3B expression was consistently associated with lethal PCa in the two U.S. cohorts (3rd vs 1st tertile, combined cohorts: OR = 2.04, 95% CI: 1.13, 3.76); the association was replicated in TCGA and MSKCC data (3rd vs 1st tertile, TCGA: HR = 3.00, 95% CI: 1.78, 5.06; MSKCC: HR = 2.22, 95% CI: 1.01, 4.86).

Conclusions

Although there was no consistent evidence of an association between DNMT3B variants and PCa mortality, the TT genotype of rs1569686 was associated with LINE-1 hypomethylation in tumor tissue and DNMT3B mRNA expression was associated with an increased risk of lethal PCa.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Das PM, Singal R. DNA methylation and cancer. J Clin Oncol. 2004;22:4632–42.

    Article  CAS  Google Scholar 

  2. Zelic R, Fiano V, Zugna D, Grasso C, Delsedime L, Daniele L, et al. Global hypomethylation (LINE-1) and gene-specific hypermethylation (GSTP1) on initial negative prostate biopsy as markers of prostate cancer on a rebiopsy. Clin Cancer Res. 2016;22:984–92.

    Article  CAS  Google Scholar 

  3. Zelic R, Fiano V, Grasso C, Zugna D, Pettersson A, Gillio-Tos A, et al. Global DNA hypomethylation in prostate cancer development and progression: a systematic review. Prostate Cancer Prostatic Dis. 2015;18:1–12.

    Article  CAS  Google Scholar 

  4. Massie CE, Mills IG, Lynch AG. The importance of DNA methylation in prostate cancer development. J Steroid Biochem Mol Biol. 2017;166:1–15.

    Article  CAS  Google Scholar 

  5. Chao C, Chi M, Preciado M, Black MH. Methylation markers for prostate cancer prognosis: a systematic review. Cancer Causes Control. 2013;24:1615–41.

    Article  Google Scholar 

  6. Richiardi L, Fiano V, Vizzini L, De Marco L, Delsedime L, Akre O, et al. Promoter methylation in APC, RUNX3, and GSTP1 and mortality in prostate cancer patients. J Clin Oncol. 2009;27:3161–8.

    Article  CAS  Google Scholar 

  7. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33:Suppl:245–54.

    Article  Google Scholar 

  8. Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99:247–57.

    Article  CAS  Google Scholar 

  9. Kobayashi Y, Absher DM, Gulzar ZG, Young SR, McKenney JK, Peehl DM, et al. DNA methylation profiling reveals novel biomarkers and important roles for DNA methyltransferases in prostate cancer. Genome Res. 2011;21:1017–27.

    Article  CAS  Google Scholar 

  10. Hoffmann MJ, Engers R, Florl AR, Otte AP, Muller M, Schulz WA. Expression changes in EZH2, but not in BMI-1, SIRT1, DNMT1 or DNMT3B are associated with DNA methylation changes in prostate cancer. Cancer Biol Ther. 2007;6:1403–12.

    CAS  PubMed  Google Scholar 

  11. Gravina GL, Ranieri G, Muzi P, Marampon F, Mancini A, Di Pasquale B, et al. Increased levels of DNA methyltransferases are associated with the tumorigenic capacity of prostate cancer cells. Oncol Rep. 2013;29:1189–95.

    Article  CAS  Google Scholar 

  12. Shen H, Wang L, Spitz MR, Hong WK, Mao L, Wei Q. A novel polymorphism in human cytosine DNA-methyltransferase-3B promoter is associated with an increased risk of lung cancer. Cancer Res. 2002;62:4992–5.

    CAS  PubMed  Google Scholar 

  13. Zhang Y, Xu H, Shen Y, Gong Z, Xiao T. Association of DNMT3B -283 T > C and -579 G > T polymorphisms with decreased cancer risk: evidence from a meta-analysis. Int J Clin Exp Med. 2015;8:13028–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhu J, Du S, Zhang J, Wang Y, Wu Q, Ni J. Polymorphism of DNA methyltransferase 3B -149C/T and cancer risk: a meta-analysis. Med Oncol. 2015;32:399.

    Article  Google Scholar 

  15. Duan F, Cui S, Song C, Dai L, Zhao X, Zhang X. Systematic evaluation of cancer risk associated with DNMT3B polymorphisms. J Cancer Res Clin Oncol. 2015;141:1205–20.

    Article  CAS  Google Scholar 

  16. Montgomery KG, Liu MC, Eccles DM, Campbell IG. The DNMT3B C-- > T promoter polymorphism and risk of breast cancer in a British population: a case-control study. Breast Cancer Res. 2004;6:R390–4.

    Article  CAS  Google Scholar 

  17. Gillio-Tos A, Fiano V, Zugna D, Vizzini L, Pearce N, Delsedime L, et al. DNA methyltransferase 3b (DNMT3b), tumor tissue DNA methylation, Gleason score, and prostate cancer mortality: investigating causal relationships. Cancer Causes Control 2012;23:1549-55.

    Article  Google Scholar 

  18. Singal R, Das PM, Manoharan M, Reis IM, Schlesselman JJ. Polymorphisms in the DNA methyltransferase 3b gene and prostate cancer risk. Oncol Rep. 2005;14:569–73.

    CAS  PubMed  Google Scholar 

  19. Richiardi L, Fiano V, Grasso C, Zugna D, Delsedime L, Gillio-Tos A, et al. Methylation of APC and GSTP1 in non-neoplastic tissue adjacent to prostate tumour and mortality from prostate cancer. PLoS ONE 2013;8:e68162.

    Article  CAS  Google Scholar 

  20. Fiano V, Zugna D, Grasso C, Trevisan M, Delsedime L, Molinaro L, et al. LINE-1 methylation status in prostate cancer and non-neoplastic tissue adjacent to tumor in association with mortality. Epigenetics. 2017;12:11–8.

    Article  Google Scholar 

  21. Giovannucci E, Ascherio A, Rimm EB, Stampfer MJ, Colditz GA, Willett WC. Intake of carotenoids and retinol in relation to risk of prostate cancer. J Natl Cancer Inst. 1995;87:1767–76.

    Article  CAS  Google Scholar 

  22. Hennekens CH, Eberlein K. A randomized trial of aspirin and beta-carotene among U.S. physicians. Prev Med. 1985;14:165–8.

    Article  CAS  Google Scholar 

  23. Christen WG, Gaziano JM, Hennekens CH. Design of Physicians’ Health Study II--a randomized trial of beta-carotene, vitamins E and C, and multivitamins, in prevention of cancer, cardiovascular disease, and eye disease, and review of results of completed trials. Ann Epidemiol. 2000;10:125–34.

    Article  CAS  Google Scholar 

  24. Schumacher FR, Berndt SI, Siddiq A, Jacobs KB, Wang Z, Lindstrom S, et al. Genome-wide association study identifies new prostate cancer susceptibility loci. Hum Mol Genet. 2011;20:3867–75.

    Article  CAS  Google Scholar 

  25. Shui IM, Lindstrom S, Kibel AS, Berndt SI, Campa D, Gerke T, et al. Prostate cancer (PCa) risk variants and risk of fatal PCa in the National Cancer Institute Breast and Prostate Cancer Cohort Consortium. Eur Urol. 2014;65:1069–75.

    Article  Google Scholar 

  26. Li Y, Willer C, Sanna S, Abecasis G. Genotype imputation. Annu Rev Genom Hum Genet. 2009;10:387–406.

    Article  CAS  Google Scholar 

  27. International HapMap C, Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, et al. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449:851–61.

    Article  Google Scholar 

  28. Sboner A, Demichelis F, Calza S, Pawitan Y, Setlur SR, Hoshida Y, et al. Molecular sampling of prostate cancer: a dilemma for predicting disease progression. BMC Med Genom. 2010;3:8.

    Article  Google Scholar 

  29. Penney KL, Sinnott JA, Tyekucheva S, Gerke T, Shui IM, Kraft P, et al. Association of prostate cancer risk variants with gene expression in normal and tumor tissue. Cancer Epidemiol Biomark Prev. 2015;24:255–60.

    Article  CAS  Google Scholar 

  30. Tyekucheva S, Martin NE, Stack EC, Wei W, Vathipadiekal V, Waldron L, et al. Comparing platforms for messenger RNA expression profiling of archival formalin-fixed, paraffin-embedded tissues. J Mol Diagn. 2015;17:374–81.

    Article  CAS  Google Scholar 

  31. Cleves MA. Exploratory analysis of single nucleotide polymorphism (SNP) for quantitative traits. Stata J. 2005;5:141–53.

    Article  Google Scholar 

  32. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–4.

    Article  Google Scholar 

  33. Farias LC, Fraga CA, De Oliveira MV, Silva TF, Marques-Silva L, Moreira PR, et al. Effect of age on the association between p16CDKN2A methylation and DNMT3B polymorphism in head and neck carcinoma and patient survival. Int J Oncol. 2010;37:167–76.

    CAS  PubMed  Google Scholar 

  34. Wang L, Rodriguez M, Kim ES, Xu Y, Bekele N, El-Naggar AK, et al. A novel C/T polymorphism in the core promoter of human de novo cytosine DNA methyltransferase 3B6 is associated with prognosis in head and neck cancer. Int J Oncol. 2004;25:993–9.

    CAS  PubMed  Google Scholar 

  35. Succi M, de Castro TB, Galbiatti AL, Arantes LM, da Silva JN, Maniglia JV, et al. DNMT3B C46359T and SHMT1 C1420T polymorphisms in the folate pathway in carcinogenesis of head and neck. Mol Biol Rep. 2014;41:581–9.

    Article  CAS  Google Scholar 

  36. Wang C, Jia ZF, Cao DH, You LL, Jin MS, Wu X, et al. Polymorphism of DNA Methyltransferase 3b and association with development and prognosis in gastric cancer. PLoS ONE 2015;10:e0134059.

    Article  Google Scholar 

  37. Zhang JJ, Zhu Y, Zhu Y, Wu JL, Liang WB, Zhu R, et al. Association of increased DNA methyltransferase expression with carcinogenesis and poor prognosis in pancreatic ductal adenocarcinoma. Clin Transl Oncol. 2012;14:116–24.

    Article  CAS  Google Scholar 

  38. Oh BK, Kim H, Park HJ, Shim YH, Choi J, Park C, et al. DNA methyltransferase expression and DNA methylation in human hepatocellular carcinoma and their clinicopathological correlation. Int J Mol Med. 2007;20:65–73.

    CAS  PubMed  Google Scholar 

  39. Arai E, Nakagawa T, Wakai-Ushijima S, Fujimoto H, Kanai Y. DNA methyltransferase 3B expression is associated with poor outcome of stage I testicular seminoma. Histopathology. 2012;60:E12–8.

    Article  Google Scholar 

  40. Niederwieser C, Kohlschmidt J, Volinia S, Whitman SP, Metzeler KH, Eisfeld AK, et al. Prognostic and biologic significance of DNMT3B expression in older patients with cytogenetically normal primary acute myeloid leukemia. Leukemia. 2015;29:567–75.

    Article  CAS  Google Scholar 

  41. Patra SK, Patra A, Zhao H, Dahiya R. DNA methyltransferase and demethylase in human prostate cancer. Mol Carcinog. 2002;33:163–71.

    Article  CAS  Google Scholar 

  42. Roll JD, Rivenbark AG, Jones WD, Coleman WB. DNMT3b overexpression contributes to a hypermethylator phenotype in human breast cancer cell lines. Mol Cancer. 2008;7:15.

    Article  Google Scholar 

  43. Ramakrishnan SR, Vogel C, Prince JT, Li Z, Penalva LO, Myers M, et al. Integrating shotgun proteomics and mRNA expression data to improve protein identification. Bioinformatics. 2009;25:1397–403.

    Article  CAS  Google Scholar 

  44. Nosho K, Shima K, Irahara N, Kure S, Baba Y, Kirkner GJ, et al. DNMT3B expression might contribute to CpG island methylator phenotype in colorectal cancer. Clin Cancer Res. 2009;15:3663–71.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was partially funded by the Italian Association for Cancer Research (AIRC); LR was partially supported by a Fulbright Research Scholar fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata Zelic.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelic, R., Fiano, V., Ebot, E.M. et al. Single-nucleotide polymorphisms in DNMT3B gene and DNMT3B mRNA expression in association with prostate cancer mortality. Prostate Cancer Prostatic Dis 22, 284–291 (2019). https://doi.org/10.1038/s41391-018-0102-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41391-018-0102-5

Search

Quick links