Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Risk of incident benign prostatic hyperplasia in patients with gout: a retrospective cohort study

Abstract

Background

This retrospective cohort study evaluated the association between gout and the risk of benign prostatic hyperplasia among men by using data from Taiwan’s National Health Insurance Research Database.

Methods

Population-based representative insurance (outpatient and inpatient) claims data of 29,269 patients with gout and 29,269 matched patients without gout (1:1 ratio) for the period of 1997–2010 in Taiwan were identified. The association between gout and benign prostatic hyperplasia was evaluated using the Cox proportional hazards model. The associations of age by gout and gout phenotypes with benign prostatic hyperplasia risk were estimated.

Results

Patients with gout had a higher incidence rate of benign prostatic hyperplasia than those in the matched gout-free group (19.62 vs. 10.11 events per 1000 person-years). Compared with the gout-free group, the adjusted hazard ratios (HRs) (95% confidence intervals (CIs)) for benign prostatic hyperplasia were 1.30 (1.24–1.36). The gout-to-benign prostatic hyperplasia association was modified by age (Pinteraction < 0.0001) in gout patients the age groups of 20–40 years (adjusted HR 2.74, P < 0.0001) and 41–60 years (adjusted HR 1.39, P < 0.0001) but not in the age group of >60 years (adjusted HR 1.07, P = 0.063). Compared with gouty tophi, a higher risk of benign prostatic hyperplasia was noted in gouty nephropathy (adjusted HR 1.30, 95% CI 1.12–1.50).

Conclusions

Our results suggest that male gout is positively related to benign prostatic hyperplasia, particularly in young gout patients and those with gouty nephropathy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wei JT, Calhoun E, Jacobsen SJ. Urologic diseases in america project: benign prostatic hyperplasia. J Urol. 2008;179:S75–80.

    PubMed  Google Scholar 

  2. Thorpe A, Neal D. Benign prostatic hyperplasia. Lancet. 2003;361:1359–67.

    Article  CAS  Google Scholar 

  3. Lee SWH,Chan EMC,Lai YK, The global burden of lower urinary tract symptoms suggestive of benign prostatic hyperplasia: a systematic review and meta-analysis. Sci Rep. 2017;7:7984.

    Article  Google Scholar 

  4. Unnikrishnan R, Almassi N, Fareed K. Benign prostatic hyperplasia: evaluation and medical management in primary care. Cleve Clin J Med. 2017;84:53–64.

    Article  Google Scholar 

  5. Zhu Y, Pandya BJ, Choi HK. Prevalence of gout and hyperuricemia in the US general population: the National Health and Nutrition Examination Survey 2007–8. Arthritis Rheum. 2011;63:3136–41.

    Article  Google Scholar 

  6. Kuo CF, Grainge MJ, See LC, Yu KH, Luo SF, Zhang W, et al. Epidemiology and management of gout in Taiwan: a nationwide population study. Arthritis Res Ther. 2015;17:13.

    Article  Google Scholar 

  7. Dalbeth N, Merriman TR, Stamp LK. Gout. Lancet. 2016;388:2039–52.

    Article  CAS  Google Scholar 

  8. Doherty M, Jansen TL, Nuki G, Pascual E, Perez-Ruiz F, Punzi L, et al. Gout: why is this curable disease so seldom cured? Ann Rheum Dis. 2012;71:1765–70.

    Article  Google Scholar 

  9. Iseki K, Ikemiya Y, Inoue T, Iseki C, Kinjo K, Takishita S. Significance of hyperuricemia as a risk factor for developing ESRD in a screened cohort. Am J Kidney Dis. 2004;44:642–50.

    Article  Google Scholar 

  10. Tsai CW, Lin SY, Kuo CC, Huang CC. Serum uric acid and progression of kidney disease: a longitudinal analysis and mini-review. PLoS ONE. 2017;12:e0170393.

    Article  Google Scholar 

  11. Chou YH, Li WM, Li CC, Huang SP, Liu CC, Wu WJ, et al. Clinical study of uric acid urolithiasis. Kaohsiung J Med Sci. 2007;23:298–301.

    Article  CAS  Google Scholar 

  12. Li WM, Chou YH, Li CC, Liu CC, Huang SP, Wu WJ, et al. Local factors compared with systemic factors in the formation of bladder uric acid stones. Urol Int. 2009;82:48–52.

    Article  Google Scholar 

  13. Holmang S, Marin P, Lindstedt G, Hedelin H. Effect of long-term oral testosterone undecanoate treatment on prostate volume and serum prostate-specific antigen concentration in eugonadal middle-aged men. Prostate. 1993;23:99–106.

    Article  CAS  Google Scholar 

  14. Pejcic T, Tosti T, Tesic Z, Milkovic B, Dragicevic D, Kozomara M, et al. Testosterone and dihydrotestosterone levels in the transition zone correlate with prostate volume. Prostate. 2017;77:1082–92.

    Article  CAS  Google Scholar 

  15. Pui K, Waddell C, Dalbeth N. Early onset of hyperuricaemia and gout following treatment for female to male gender reassignment. Rheumatology. 2008;47:1840–1.

    Article  CAS  Google Scholar 

  16. Marinello E, Riario-Sforza G, Marcolongo R. Plasma follicle-stimulating hormone, luteinizing hormone, and sex hormones in patients with gout. Arthritis Rheum. 1985;28:127–31.

    Article  CAS  Google Scholar 

  17. Quan H, Sundararajan V, Halfon P, Fong A, Burnand B, Luthi JC, et al. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care. 2005;43:1130–9.

    Article  Google Scholar 

  18. Vignozzi L, Gacci M, Maggi M. Lower urinary tract symptoms, benign prostatic hyperplasia and metabolic syndrome. Nat Rev Urol. 2016;13:108–19.

    Article  CAS  Google Scholar 

  19. Shih HJ, Huang CJ, Lin JA, Kao MC, Fan YC, Tsai PS. Hyperlipidemia is associated with an increased risk of clinical benign prostatic hyperplasia. Prostate. 2018;78:113–20.

    Article  CAS  Google Scholar 

  20. Emmerson B. Hyperlipidaemia in hyperuricaemia and gout. Ann Rheum Dis. 1998;57:509–10.

    Article  CAS  Google Scholar 

  21. Choi HK, Mount DB, Reginato AM. American college of P, American Physiological S. Pathogenesis of gout. Ann Intern Med. 2005;143:499–516.

    Article  CAS  Google Scholar 

  22. Richette P, Perez-Ruiz F, Doherty M, Jansen TL, Nuki G, Pascual E, et al. Improving cardiovascular and renal outcomes in gout: what should we target? Nat Rev Rheumatol. 2014;10:654–61.

    Article  CAS  Google Scholar 

  23. Zhu Y, Pandya BJ, Choi HK. Comorbidities of gout and hyperuricemia in the US general population: NHANES 2007–8. Am J Med. 2012;125:679–87 e671.

    Article  Google Scholar 

  24. Lusco MA, Fogo AB, Najafian B, Alpers CE. AJKD atlas of renal pathology: gouty nephropathy. Am J Kidney Dis. 2017;69:e5–6.

    Article  Google Scholar 

  25. Abou-Elela A. Epidemiology, pathophysiology, and management of uric acid urolithiasis: a narrative review. J Adv Res. 2017;8:513–27.

    Article  CAS  Google Scholar 

  26. Sangkop F, Singh G, Rodrigues E, Gold E, Bahn A. Uric acid: a modulator of prostate cells and activin sensitivity. Mol Cell Biochem. 2016;414:187–99.

    Article  CAS  Google Scholar 

  27. Vodo S, Bechi N, Petroni A, Muscoli C, Aloisi AM. Testosterone-induced effects on lipids and inflammation. Mediat Inflamm. 2013;2013:183041.

    Article  Google Scholar 

  28. Kelly DM, Jones TH. Testosterone: a vascular hormone in health and disease. J Endocrinol. 2013;217:R47–71.

    Article  CAS  Google Scholar 

  29. Coletta RD, Reynolds MA, Martelli-Junior H, Graner E, Almeida OP, Sauk JJ. Testosterone stimulates proliferation and inhibits interleukin-6 production of normal and hereditary gingival fibromatosis fibroblasts. Oral Microbiol Immunol. 2002;17:186–92.

    Article  CAS  Google Scholar 

  30. Veldhuis J, Yang R, Roelfsema F, Takahashi P. Proinflammatory cytokine infusion attenuates LH’s feedforward on testosterone secretion: modulation by age. J Clin Endocrinol Metab. 2016;101:539–49.

    Article  Google Scholar 

  31. Kurahashi H, Watanabe M, Sugimoto M, Ariyoshi Y, Mahmood S, Araki M, et al. Testosterone replacement elevates the serum uric acid levels in patients with female to male gender identity disorder. Endocr J. 2013;60:1321–7.

    Article  CAS  Google Scholar 

  32. Tung YC, Lee SS, Tsai WC, Lin GT, Chang HW, Tu HP. Association between gout and incident type 2 diabetes mellitus: a retrospective cohort study. Am J Med. 2016;129:1219 e1217–25.

    Article  Google Scholar 

  33. Vargas-Santos AB, Neogi T. Management of gout and hyperuricemia in CKD. Am J Kidney Dis. 2017;70:422–39.

    Article  CAS  Google Scholar 

  34. Roughley MJ, Belcher J, Mallen CD, Roddy E. Gout and risk of chronic kidney disease and nephrolithiasis: meta-analysis of observational studies. Arthritis Res Ther. 2015;17:90.

    Article  Google Scholar 

  35. Bostanci Y, Kazzazi A, Momtahen S, Laze J, Djavan B. Correlation between benign prostatic hyperplasia and inflammation. Curr Opin Urol. 2013;23:5–10.

    Article  Google Scholar 

  36. Gandaglia G, Briganti A, Gontero P, Mondaini N, Novara G, Salonia A, et al. The role of chronic prostatic inflammation in the pathogenesis and progression of benign prostatic hyperplasia (BPH). BJU Int. 2013;112:432–41.

    Article  Google Scholar 

  37. Hung SF, Chung SD, Kuo HC. Increased serum C-reactive protein level is associated with increased storage lower urinary tract symptoms in men with benign prostatic hyperplasia. PLoS ONE. 2014;9:e85588.

    Article  Google Scholar 

  38. Kuo TM, Yeh KT, Hsu HT, Chiang SL, Chang JG, Huang CM, et al. ALPK1 affects testosterone mediated regulation of proinflammatory cytokines production. J Steroid Biochem Mol Biol. 2015;154:150–8.

    Article  CAS  Google Scholar 

  39. Merriman TR. An update on the genetic architecture of hyperuricemia and gout. Arthritis Res Ther. 2015;17:98.

    Article  Google Scholar 

  40. Yamada Y, Nishida T, Ichihara S, Kato K, Fujimaki T, Oguri M, et al. Identification of chromosome 3q28 and ALPK1 as susceptibility loci for chronic kidney disease in Japanese individuals by a genome-wide association study. J Med Genet. 2013;50:410–8.

    Article  CAS  Google Scholar 

  41. Ko AM, Tu HP, Liu TT, Chang JG, Yuo CY, Chiang SL, et al. ALPK1 genetic regulation and risk in relation to gout. Int J Epidemiol. 2013;42:466–74.

    Article  Google Scholar 

  42. Yamada Y, Matsui K, Takeuchi I, Oguri M, Fujimaki T. Association of genetic variants of the alpha-kinase 1 gene with type 2 diabetes mellitus in a longitudinal population-based genetic epidemiological study. Biomed Rep. 2015;3:347–54.

    Article  CAS  Google Scholar 

  43. Evans SA, Doblado M, Chi MM, Corbett JA, Moley KH. Facilitative glucose transporter 9 expression affects glucose sensing in pancreatic beta-cells. Endocrinology. 2009;150:5302–10.

    Article  CAS  Google Scholar 

  44. Doring A, Gieger C, Mehta D, Gohlke H, Prokisch H, Coassin S, et al. SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat Genet. 2008;40:430–6.

    Article  Google Scholar 

  45. Tu HP, Chung CM, Min-Shan Ko A, Lee SS, Lai HM, Lee CH, et al. Additive composite ABCG2, SLC2A9 and SLC22A12 scores of high-risk alleles with alcohol use modulate gout risk. J Hum Genet. 2016;61:803–10.

    Article  CAS  Google Scholar 

  46. Liu WC, Hung CC, Chen SC, Lin MY, Chen LI, Hwang DY, et al. Thers1014290 polymorphism of the SLC2A9 gene is associated with type 2 diabetes mellitus in Han Chinese. Exp Diabetes Res. 2011;2011:527520.

    Article  Google Scholar 

  47. Tu HP, Chen CJ, Tovosia S, Ko AM, Lee CH, Ou TT, et al. Associations of a non-synonymous variant in SLC2A9 with gouty arthritis and uric acid levels in Han Chinese subjects and Solomon Islanders. Ann Rheum Dis. 2010;69:887–90.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Health Insurance Administration, Ministry of Health and Welfare, Taiwan for its support. This works was supported by grants from Ministry of Science and Technology (MOST 106-2314-B-037-034 and MOST 106-2314-B-037-058), Kaohsiung Medical University Hospital (KMUH103-3T06 and KMUH104-4T03), and Kaohsiung Medical University Research Foundation (KMU-M106006 and KMU-M106032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hung-Pin Tu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

These authors contributed equally: Yi-Ching Tung, Hung-Pin Tu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, WM., Pasaribu, N., Lee, SS. et al. Risk of incident benign prostatic hyperplasia in patients with gout: a retrospective cohort study. Prostate Cancer Prostatic Dis 21, 277–286 (2018). https://doi.org/10.1038/s41391-018-0047-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41391-018-0047-8

This article is cited by

Search

Quick links