
COMMENT OPEN

Monitoring chaos at the cot-side
Michael J. Beacom1, Martin G. Frasch2, Christopher A. Lear1 and Alistair J. Gunn 1✉

© The Author(s) 2024

Pediatric Research; https://doi.org/10.1038/s41390-024-03151-1

Intraventricular hemorrhage (IVH) affects ~10–20% of preterm
infants born before 30 weeks of gestation.1 Severe IVH is
associated with an increased risk of death and life-long
neurodevelopmental disorders such as cerebral palsy2 and
cognitive, behavioral, and learning difficulties.3 Early detection is
a major challenge as more than half of IVH cases are clinically
silent, and although some cases present with seizures, many have
relatively subtle symptoms.4 Being able to identify fetuses or
neonates at risk of and determine the temporal profile of IVH in
real time would be important to understand the windows for
prevention or therapeutic intervention.
Scahill et al. in this issue investigated whether sample entropy

(SampEn), a non-linear domain measure of the irregularity in heart
rate variability (HRV), could predict intraventricular hemorrhage
(IVH) and mortality risk in preterm infants within the first 24 h of
life.5 In a cohort of 389 preterm infants, a total of 29 developed
IVH grade 3 or 4, and 31 infants died. Using the open-source
PhysioNet cardiovascular toolbox and a logistic regression
prediction model to predict links between SampEn, IVH, and
mortality, they found a significant correlation with eventual
mortality as early as 4 h of life and with severe IVH by 24 h. At
96 h, when it performed best, the combination of SE with the
clinical model yielded an area under the curve (AUC) of 0.9 and
above for all three outcome groups and performed better than
the clinical model alone.
This study examined the pragmatic discriminative value of

SampEn but did not seek to understand the physiological
meaning behind the measure. SampEn, first introduced by
Richman and Moorman (2000), is a metric of entropy in HR
signals.6 Entropy reflects the level of irregularity and complexity
based on the uncertainty within a signal. Technically, SampEn
helps to quantify the conditional probability that two sequences
of m points in an epoch of length N remain similar when one
consecutive point (m+ 1) is added within a tolerance of r.7

Complexity is related to, but distinct from the variability measured
by other (linear) HRV measures of the time and frequency
domains.8 In the context of cardiovascular regulation, the
complexity of HR times series is postulated to reflect the capability
of the cardiovascular system to adapt to transient stressors and
demands of an ever-changing environment.9

It is important to appreciate that the patterns measured by
SampEn are often not easily observable to the human eye. Thus,
there are two possible interpretations of the patterns observed in
this study. First, that breakdown of the physiological inputs that
drive HR may lead to unphysiologically regular patterns, as
observed in the first ~4–8 h of life (low SampEn) or uncorrelated,

irregular random signals, as observed between 24 and 96 h (high
SampEn). These two grades of outcomes, one regular and the
other random, are actually indicators of low complexity compared
to signals taken from a healthy system.10 Paradoxically, high
SampEn may also imply greater complexity, as complex systems
inherently exhibit some irregularity. In the future, alternative non-
linear measures like detrended fluctuation analysis (DFA) or newer
entropy measures (e.g., fuzzy entropy, entropy rate or other
measures that are time-scale-sensitive or probe different embed-
ding dimensions) might offer better differentiation of these
features.11,12 Nevertheless, these encouraging results strongly
suggest that the evolution of FHRV over time can help detect IVH.
Indeed, an important question for future studies would be
whether the early signature of SampEn suppression extends into
the intrapartum or even antenatal periods.
Other potential practical limitations should be considered.

SampEn is easily affected by signal artefacts (noise, outliers), which
can lead to significant variations in entropy values.7 While the
authors addressed noise concerns, SampEn is highly parameter-
dependent, and incorrect or inconsistent parameter selection can
lead to significant changes in the resulting calculated entropy.
Pincus and colleagues suggested the standardization of r within
the range of 0.1 to 0.25 times the standard deviation of the time-
series signal.13 Subsequent studies suggest that the r range
cannot be easily generalized across datasets.14,15 An inappropriate
choice of r can lead to the so-called ‘flip-flop’ effect, where results
differ dramatically and can be statistical unstable, due to its
inherent dependence on the Heaviside function. This two-state
signal classifier dichotomizes signal vectors into either “dissimilar”
or “similar” without any intermediary states.14 Further, the present
study employed linear regression to prevent overfitting.5 While
this is a valid approach, it assumes a linear relationship between
predictors and HRV, which is not always true for complex
physiological systems like HRV.
These observations suggest that future studies should include

additional measures as well as SampEn to help predict IVH. More
recent methods of measuring entropy have tried to address the
technical limitations of SampEn, including so called Fuzzy entropy,
Permutation entropy, Distribution entropy and Bubble
entropy.11,12 Although they sound esoteric, all are readily available
through open-source toolboxes.16 Alternatively, there is growing
evidence that HR patterns measured by the highly comparative
time series analysis (HCTSA)17 can predict sepsis18 and cerebral
palsy19 in preterm and term neonatal populations; this approach
includes multiple time, frequency, and non-linear domain
measures.
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Overall, this study indicates great potential of open-source
software to measure HRV as a screening tool for detecting and
tracking the evolution of IVH. Further studies are now needed to
better understand the optimal approach.
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