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BACKGROUND: Digital health technologies (DHTs) can collect gait and physical activity in adults, but limited studies have validated
these in children. This study compared gait and physical activity metrics collected using DHTs to those collected by reference
comparators during in-clinic sessions, to collect a normative accelerometry dataset, and to evaluate participants’ comfort and their
compliance in wearing the DHTs at-home.
METHODS: The MAGIC (Monitoring Activity and Gait in Children) study was an analytical validation study which enrolled 40,
generally healthy participants aged 3–17 years. Gait and physical activity were collected using DHTs in a clinical setting and
continuously at-home.
RESULTS: Overall good to excellent agreement was observed between gait metrics extracted with a gait algorithm from a lumbar-
worn DHT compared to ground truth reference systems. Majority of participants either “agreed” or “strongly agreed” that wrist and
lumbar DHTs were comfortable to wear at home, respectively, with 86% (wrist-worn DHT) and 68% (lumbar-worn DHT) wear-time
compliance. Significant differences across age groups were observed in multiple gait and activity metrics obtained at home.
CONCLUSIONS: Our findings suggest that gait and physical activity data can be collected from DHTs in pediatric populations with
high reliability and wear compliance, in-clinic and in home environments.
TRIAL REGISTRATION: ClinicalTrials.gov: NCT04823650
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IMPACT:

● Digital health technologies (DHTs) have been used to collect gait and physical activity in adult populations, but limited studies
have validated these metrics in children.

● The MAGIC study comprehensively validates the performance and feasibility of DHT-measured gait and physical activity in the
pediatric population.

● Our findings suggest that reliable gait and physical activity data can be collected from DHTs in pediatric populations, with both
high accuracy and wear compliance both in-clinic and in home environments.

● The identified across-age-group differences in gait and activity measurements highlighted their potential clinical value.

INTRODUCTION
Gait assessments provide key insights for clinicians to assist in
understanding an individual’s mobility and their overall health. In
recent years, instrumented gait analyses using digital health
technologies (DHTs) have been shown to be able to collect
objective data for diagnosis and/or monitoring across a wide
range of diseases and populations.1 These assessments also
provide insights into the emergence and progression of health
conditions. Gait has been studied in children across psychiatric,
neurological, and motor diseases.2–10 The European Medicines
Agency (EMA) recently accepted stride velocity 95th percentile as
a primary endpoint in Duchenne Muscular Dystrophy (DMD)
clinical trials.11

In addition to gait, physical activity is another key aspect to
monitor in developing children. The benefit of physical activity is
well defined: obesity prevention,12,13 reduction of cardiovascular
risk factors,14,15 normal growth and development,16,17 depression
prevention,18 reduction in risk of chronic diseases, health-related
quality of life.19 One recent neuroimaging study found an
association between physical activity in late childhood (ages
10–14 years) and increased volumetric changes in brain structures
such as the amygdala.20

Physical activity and gait can be measured with DHTs,
specifically wearable accelerometers, which provide continuous,
passive data collection and potentially a broader representation of
how individuals function over time.21 Studies involving DHTs in
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pediatric populations have found associations between age and
gait metrics,22–27 while other variables such as gender and sex
have not shown a strong correlation.27,28

Using DHTs to measure gait and physical activity in clinical trials
requires a body of evidence for acceptance29 and validation.30 in
the population of interest. Despite existing clinical research, there
remains a lack of standardized measures and further validation of
DHTs in developing children.27,31 The validation of such DHTs
could serve as a reference for the development of technologies
designed for children with specific conditions.7,32–34 While there is
interest in the field of expanding the use of DHTs in children, only
a few studies comprehensively assessed the feasibility of
implementation.35 Of those, the ActiGraph devices have been
investigated in several studies, involving children ages 2–18.36–41

In this paper, we share the results from the Monitoring Activity
and Gait in Children (MAGIC) study, a non-randomized low-
interventional study in generally healthy pediatric participants
between the ages of 3–17 years, as a comprehensive evaluation of
DHT-measured gait and physical activity in pediatric participants.
The main objective of the study was to validate the gait metrics
derived from the in-house built SciKit Digital Health (SKDH) Gait
Module42 using data collected from lumbar-worn DHTs (Acti-
Graph) against ground truth gait measurements (GAITRite®

walkway), in a clinical setting. In addition, wear compliance and
comfortability data were analyzed to evaluate the overall usability
of DHTs in children. The difference between gait and physical
activity measured in-clinic and at home were also compared.
Lastly, differences in gait and physical activity across the three
different age groups were evaluated.

METHODS
Protocol and study design
The MAGIC study was a non-randomized, low-interventional analytical
validation study to evaluate gait and physical activity measured by DHTs,
specifically wearable accelerometers. A total of 40 healthy ambulatory
participants aged between 3 and 17 years were enrolled in the study, to
ensure enough statistical power to estimate the agreement between DHT-
measured gait and reference. The participants were divided into three
independent age groups as follows: 3–5 years (n= 13), 6–11 years (n= 14),
and 12–17 years (n= 13). Informed consent was obtained from the
parents/legally acceptable representatives of all participants. Participants
provided their assent consistent with their age (verbally for children aged
3–5 years, written for children aged 6–17 years). The study was conducted
at the Pfizer Innovation Research Lab (PfIRe Lab) in Cambridge,
Massachusetts from 2021 to 2022. Participants were recruited through
paper and electronic flyers, internet postings, and advertisements at
community centers. Ethics approval of the protocol was obtained from
Advarra Institutional Review Board (protocol number: Pro00047861). The
study was registered at ClinicalTrials.gov under the identifier
NCT04823650.
The MAGIC study included two components, in-clinic with multiple

controlled walking tasks and simulated activities, and ~2 weeks of
continuous at-home monitoring. Only study procedures relevant to this
work were presented here. During the in-clinic portion, participants were
asked to perform staged walking tasks on an instrumented walkway
(GAITRite®, CIR systems Inc., Franklin, New Jersey) at natural, fast, and slow
speeds, each repeated three times. The natural walk was described as
regular, normal speed. This was also used to explain to the children later to
increase their speed for the fast walk and decrease for the slow walk.
Children were asked not to jump or skip while walking and the site staff
demonstrated the differences. Gamification was implemented for younger
children with the incorporation of games such as “the floor is lava” to
encourage walking only on the mat, and “red light green light” along with
toys and wall decals which were used to denote where to start and stop
walking the full length of the mat. For all tasks, the main DHTs used were
two ActiGraph Centrepoint Insight Watches (CPIW) (ActiGraph; Pensacola,
Florida; dimensions: 5 × 3.43 × 1.04 cm; weight: 19 g), one worn on the
lower back (lumbar region), and the other on the non-dominant wrist; both
were configured to collect data at a sample rate of 64 Hz. Participants were
also asked to respond to a comfort and wearability questionnaire for the

devices used at the end of the clinic visit. For children 3–11 years old, the
parents answered the questions, and children 12 years and older answered
the questions themselves. The comfort and wearability questionnaire
contained ten questions such as whether the specific DHT was overall
comfortable, the DHT was easy to put on or take off, and the participants’
willingness to wear the DHTs continuously etc. For each question,
participants chose from “strongly disagree”, “disagree”, “neutral”, “agree”,
and “strongly agree”. Details of the questionnaire can be found in
supplementary material (Supplementary Tables 1, 2).
During the at-home portion, participants wore two ActiGraph CPIWs,

one on the non-dominant wrist and one on the lumbar region, for
~2 weeks. In-person verbal instructions were provided to each participant
prior to leaving the clinic. Specifically, they were instructed to wear the
wrist DHTs continuously, and to put on the lumbar DHTs when they woke
up in the morning/got up from bed and to remove it when they went to
sleep at night or napped during the day. At the end of the at-home period,
a follow-up phone call was conducted for the participant to respond to a
comfort and wearability questionnaire (same as above) for the DHTs. The
DHTs were mailed back to site by participants/parents/caregivers at the
end of the study.

Gait and physical activity algorithms
The gait algorithm module from SKDH Python package42 (version 0.11.1)
was used to extract gait metrics. First, wavelet transforms were used to
detect initial and final contact events for each foot from the vertical
acceleration signal,43 followed by the computation of all temporal
metrics (e.g., stride time, double support, etc.) Then, an inverted
pendulum model of gait was used to extract bilateral spatial gait
characteristics from the acceleration data.43–46 For spatial metrics such
as stride length and gait speed, the inverted pendulum model was used
with participants’ heights as an input. For free-living accelerometry data,
i.e., when the time periods of gait were unknown, a gradient boosted
tree classifier was applied first to detect the gait bouts before the
derivation of gait characteristics.
The physical activity metrics were derived using the Crouter algorithm

implemented in the ActiGraph CentrePoint Version 3 API (https://
github.com/actigraph/CentrePoint3APIDocumentation).47,48 The Crouter
algorithm uses regression analyses to develop prediction equations for
energy expenditure (metabolic equivalent of task) and cut points for
computing activity metrics such as time spent in sedentary behaviors,
light, moderate, and vigorous physical activity.

Statistical analysis
For the validation analyses, we focused on key gait metrics including stride
duration, stride length, cadence, and gait speed, as well as key physical
activity metrics including, moderate to vigorous physical activity (MVPA),
sedentary behavior, and total vector magnitude.
For in-clinic walking tasks at different speeds, gait metrics derived from

SKDH-gait using lumbar-worn ActiGraph data were compared to GAITRite®,
as reference, using intraclass correlation coefficients (ICC) and Pearson
correlation coefficients. Specifically, ICC2,1 (two-way random effects,
absolute agreement, with respect to single measurement) were used
according to the following benchmarks: ICC ≤ 0.4 indicates “poor”, 0.4–0.59
“moderate”, 0.6–0.74 “good”, and 0.75–1 “excellent’ agreement”.49

Wearability and comfort questionnaires from wrist and lumbar-worn
DHTs were summarized for in-clinic and at-home portions, separately. Total
scores were calculated for both the wrist and lumbar-worn DHTs for in-
clinic and at-home portions to represent the overall comfort and
wearability score. The total score ranged between 0 to 40 where 0 means
worst comfortability while 40 means the best comfortability. Details of the
scoring methods can be found in Supplementary Tables 1, 2. A higher
score indicates higher overall comfortability and user acceptability. Scores
from wrist- and lumbar-DHTs were compared using Paired Wilcoxon
Signed Rank to determine the preferred location for device placement.
Furthermore, wear time and compliance for both the wrist and lumbar-
worn DHTs were summarized. Wear time was derived using the Choi
algorithm.50 During the at-home portion, compliance for lumbar-worn
DHTs was defined as wearing for at least 10 h a day. Compliance for wrist-
worn DHTs was defined as wearing for at least 18 h a day. Percent of
compliance was calculated as compliant days divided by the total number
days during the at-home portion.
For the gait data collected at-home using lumbar-worn DHTs, only days

with at least 10 h of wear time were included in the analyses. To account
for outliers, which are upper and lower extremes in bout length, bouts that
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lasted <10 s or >3000 s were excluded from the analysis.51 Moreover, only
bouts with at least four detected gait cycles were included in the analyses
to ensure robust gait metrics estimation.51 For each participant, the
median per walking bout was taken for each gait metric, followed by the
mean across all walking bouts within each day of measurements. In
addition, 95th percentile gait speed, which has been shown recently to
have the potential to be used as a primary endpoint in clinical trials,52 was
also computed across all walking bouts within each day of measurements.
For the physical activity data collected using wrist-worn DHTs, only days
with at least 18 h of wear time were included in the analyses. For the
following analyses, participants with four or more valid compliant days
were included. No missing imputation was considered. Mixed model with
repeated measurements (MMRM) was used to evaluate the difference
between in-clinic measurements and at-home measurements of gait,
where each gait measurement was fitted as outcome, and in-clinic vs. at-
home as the main factor, while adjusting for age groups. For such
comparisons, the gait estimated from the natural walking task were used
to represent the in-clinic measurements. Analysis of variance (ANOVA) was
used to evaluate the effects of age groups on gait and physical activity
data collected at-home with pair-wise comparison included between age
groups.

RESULTS
Population and recruitment
82 individuals were contacted to participate in the study and 40
were enrolled. All participants completed the study with no

discontinuation, and with 13 participants in the 3–5 years age
group, 14 in the 6–11 years age group, and 13 in the 12–17 years
age group. Details of the demographic characteristics can be
found in Table 1. There were 22 females and 18 males, with a BMI
of 18.86 ± 3.79 and age of 9.38 ± 4.48 years. The 3–5 years age
group took the longest to recruit (232 days), and the shortest to
recruit was the 12–17 years group (77 days).

Gait measurements validation
ICCs for in-clinic gait validation analyses for instrumented walking
tasks are shown in Table 2. The four key gait metrics, i.e., cadence
(steps/minute), gait speed (meters/sec), stride duration (sec), and
stride length (meters), showed good to excellent agreement at
both natural and slow walks (ICC ranged from 0.638 to 0.99), with
the natural walk always having the best agreement between
SKDH-gait and the GAITRite®. The agreements for all four metrics
dropped for fast walk, with cadence and gait speed having only
moderate agreement (0.578 and 0.432, respectively) and stride
duration and stride length having good agreement (0.623 and
0.697 respectively). As shown in Fig. 1, for all four metrics across all
different walking speeds, gait metrics generated by SKDH-gait
showed significant linear correlation with GAITRite®. Consistent
with the ICC estimated agreement, the natural and slow walks
showed strong correlations (coefficient ranges from 0.719 to
0.992).

Table 1. Demographic characteristics.

3–5 years old (N= 13) 6–11 years old (N= 14) 12–17 years old (N= 13) Total (N= 40)

Age (Years), n (%)

n 13 14 13 40

Mean (SD) 4.38 (0.65) 9.00 (1.80) 14.77 (1.59) 9.38 (4.48)

Median (range) 4.00 (3, 5) 9.50 (6, 11) 15.00 (12, 17) 9.50 (3, 17)

(Q1, Q3) (4.00, 5.00) (7.00, 11.00) (14.00, 16.00) (5.00, 14.00)

Sex, n (%)

Male 6 (46.2) 8 (57.1) 4 (30.8) 18 (45.0)

Female 7 (53.8) 6 (42.9) 9 (69.2) 22 (55.0)

BMI (kg/m^2)

n 13 14 13 40

Mean (SD) 16.53 (1.94) 18.25 (3.81) 21.86 (3.34) 18.86 (3.79)

Median (range) 15.63 (15, 21) 16.97 (14, 26) 20.67 (17, 28) 17.99 (14, 28)

(Q1, Q3) (15.15, 17.16) (14.94, 22.23) (19.67, 25.09) (15.38, 21.50)

Race, n (%)

White 8 (61.5) 10 (71.4) 8 (61.5) 26 (65.0)

Black or African American 1 (7.7) 0 0 1 (2.5)

Asian 3 (23.1) 3 (21.4) 5 (38.5) 11 (27.5)

Multiracial 1 (7.7) 1 (7.1) 0 2 (5.0)

Ethnicity, n (%)

Hispanic or Latino 2 (15.4) 1 (7.1) 2 (15.4) 5 (12.5)

Not Hispanic or Latino 11 (84.6) 11 (78.6) 11 (84.6) 33 (82.5)

Not Reported 0 2 (14.3) 0 2 (5.0)

Table 2. ICC (together with upper and lower bounds) for in-clinic walking tasks.

Natural Walk Fast Walk Slow Walk

Cadence 0.971 (0.94, 0.99) 0.578 (0.33, 0.75) 0.914 (0.60, 0.97)

Gait Speed 0.748 (−0.14, 0.95) 0.432 (−0.13, 0.82) 0.704 (0.50, 0.83)

Stride Duration 0.99 (0.98, 1.00) 0.623 (0.35, 0.79) 0.638 (0.29, 0.81)

Stride Length 0.773 (−0.16, 0.95) 0.697 (−0.12, 0.93) 0.721 (0.08, 0.90)
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Comfort and wearability
From the in-clinic questionnaire, 85% of the participants either
“agree” or “strongly agree” that the wrist and lumbar DHTs were
comfortable to wear. There was no statistically significant
difference between the total score of wrist and lumbar DHTs
during the in-clinic portion. The at-home questionnaire revealed
that 95% of the participants either “agree” or “strongly agree” that
wrist DHTs were comfortable to wear, while only 72.5% of the

participants either “agree” or “strongly agree” that the lumbar
DHTs were comfortable to wear at home. 97.5% and 82.5% of the
participants either “agree” or “strongly agree” that they were
willing to wear the wrist and lumbar accelerometers for more than
7 days, respectively. The overall score for the wrist-worn DHTs was
significantly higher than the lumbar DHTs (the mean difference
across participants was 2.73), indicating participants’ preference
for the wrist DHTs during the at-home period. Responses from
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Fig. 1 Scatter plots to show the correlation between gait metrics generated by SKDH-gait from lumbar-worn ActiGraph and GAITRite®

during the instrumented walking tasks at multiple speeds. R is the Pearson correlation coefficient, and p is the corresponding p value.
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each of the in-clinic and at-home comfort and wearability
questionnaires can be found in the Supplementary Material
Tables 1 and 2.
Three participants developed mild-skin reactions or rash from

the DHTs; all reactions resolved during the study.

Compliance
Participants wore the wrist DHTs for 21.62 (±2.18) hours per day
and wore the lumbar DHTs for 11.36 (±5.04) hours when they were
awake. Based on the prespecified wearing compliance criteria,
compliance was at 86.01% for the wrist DHTs and 67.65% for the
lumbar DHTs at-home. Of note, the 6–11 and 12–17 age groups
had 79.35% and 81.23% compliance for the lumbar DHTs, which
was much higher than the 3–5 age group (41.47%).

Difference in gait between in-clinic and at-home
measurements
Mean differences between in-clinic and at-home measurements of
gait estimated from MMRMs are shown in Table 3 (the difference
was calculated as in-clinic measurement minus at-home measure-
ment). We observed statistically significant differences between
in-clinic and at-home measurements. In particular, cadence was
significantly higher, stride length longer and gait speed higher in-
clinic compared to at-home. Meanwhile the stride duration was
significantly longer and the 95th percentile of gait speed
significantly larger at home when compared to the in-clinic
during the natural walking tasks.

Age effects on gait and physical activity
For measurements of gait during at-home monitoring, stride
length, mean gait speed, and 95th percentile gait speed increased
with age as shown in panel (a) of Fig. 2. The oldest age group
(12–17) had reduced cadence, and increased stride duration
compared to the younger age groups (3–5, and 6–11).
As shown in panel (b) in Fig. 2), there was a trend of decreased

physical activity (measured by MVPA and total vector magnitude)
and increased sedentary behavior with age. Specifically, the
differences in sedentary behavior across all age groups were
significant. For MVPA and total vector magnitude, with a
decreasing trend, there was no statistically significant difference
between 3–5 and 6–11 age groups.

DISCUSSION
To the best of our knowledge, the MAGIC study was one of the
first pediatric studies that consisted of thorough validation of a
wearable sensor-based gait characterization algorithm, i.e., SKDH-
gait, for multiple in-clinic tasks, evaluation of acceptability and at-
home wear compliance of DHTs, and exploration of gait and
physical activity data collected in free-living environments. It may
serve as a reference for future use of wrist- and lumbar-worn DHTs
in pediatric clinical studies.
Excellent agreements and strong correlations were observed

between SKDH-gait and GAITRite® for natural and slow walks,

which demonstrated good performance in SKDH-gait’s capability
to characterize gait related features during these two speeds. For
fast walks, the agreements between SKDH-gait and GAITRite® were
not as high compared to natural and slow walks. Particularly for
cadence and stride duration, it was observed that the algorithm
cannot provide reliable estimation for some participant-tasks,
likely due to static physiological thresholds that attempt to
determine unnatural or impossible steps. These thresholds were
kept consistent across walking tasks to maintain generalizability,
but this may adversely impact fast and slow walks. Future work
may explore relaxing or making these thresholds more dynamic.
For gait speed and stride length, the lower agreement is primarily
due to systematic biases. Characterizing fast walk is known to be
technically challenging. For example, a previous study observed
higher measurement errors for fast walking in children when using
an ankle sensor compared to GAITRite®.53 However, there are still
significant linear correlations between SKDH-gait and GAITRite®

for the fast walk.
The study also showed excellent compliance in terms of wear-

time by pediatric participants for wrist-worn DHTs across age
groups. The compliance for the youngest cohort (3–5 years old)
for lumbar-worn DHTs was particularly low. However, this may be
partially due to the longer and more frequent sleep periods, since
participants were instructed to remove the DHTs before sleep
periods. Most participants reported that they would be willing to
wear the DHTs for longer than 7 days, indicating that it is feasible
to continuously collect DHT data in pediatric populations.
However, other research has observed novelty effects where at
first, participants were excited to wear the DHTs frequently, but
lost interest after 2–4 weeks, which resulted in a decrease in
overall wear-time.54 This indicates that further studies should
investigate the long-term acceptability and feasibility of wearable
DHTs in pediatric populations. In addition to willingness from
children to participate in research, parental acceptance is critical
for the success of pediatric clinical trials, beginning with the initial
study design,55 even in digital health research.56 The physical size
of the DHT and whether it is age appropriate should be
considered before implementation in clinical care and trials.57

It should also be acknowledged that traditional outcome
assessments are not always appropriate for use in younger
children in interventional trials. Examples such as the 6-min walk
test are not advised in children younger than 5 years old due to
lack of concentration for the period required and varied
results,58–60 as well as manual muscle testing, which cannot be
reliably assessed in children younger than 5 years old who are not
able to cooperate or understand.61 There remains an existing need
for endpoints in pediatrics that are clinically meaningful,
responsive to treatment or disease progression, reproducible,
and reliable.62 Published studies in healthy children as young as 2
years old, have found value in physical activity measures obtained
from wearable DHTs as potential endpoints for pediatric use, with
the opportunity to use these technologies for remote monitor-
ing.63,64 The results of this study pave the path for future work to
validate these endpoints in younger patient populations. To date,
attitudes on the acceptability and feasibility of wearable DHTs
among pediatric populations and their caregivers have been
positive.7,65 However, improvements to DHTs such as battery life.7

and waterproofness,34 and development of algorithms tailored to
children with certain conditions are needed.33 Moreover, patient-
centricity is key for trial-based drug development and must be
considered. The use of DHTs such as wearable accelerometry
provides opportunities for trial sponsors to consider decentralized
clinical trials which can reduce patients’ burden and increase
patients’ diversity.66

Age is a key risk factor for a wide variety of diseases and health
conditions.67 The MAGIC study intentionally enrolled the 3
different age groups, i.e., 3–5, 6–11, 12–17, to explore the
difference in gait and physical activity between age groups of

Table 3. Mean difference between in-clinic and at-home gait
measurements estimated by MMRM.

Mean Difference and
95% CI

P value

Cadence 2.63 (0.97, 4.29) 0.002

Stride Duration −0.032 (−0.047, −0.016) <0.001

Stride Length 0.049 (0.030, 0.067) <0.001

Gait Speed 0.071 (0.045, 0.096) <0.001

Gait Speed 95th
Percentile

−0.20 (−0.24, −0.17) <0.001
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actively developing children. By exploring data collected from the
free-living environment, significant between-age-group differ-
ences were observed for gait and physical activity metrics.
Particularly, the older group (12–17) showed statistically signifi-
cant differences in characteristics of gait and physical activity as
compared to the two younger age groups, which potentially
demonstrated crucial developmental changes. No statistically
significant differences between 3–5 and 6–11 years of age for
stride duration and cadence were observed. One hypothesis is
that the youngest population takes shorter strides, and their fast
steps could not be captured by temporal gait measurements.
Therefore, measurements like gait speed can potentially be used
as a more meaningful clinical endpoint in this population. Overall,
decreased physical activity and increased sedentary behaviors
were observed with age. This is consistent with previous findings
from a large national cohort study which showed that from
childhood to adolescence, physical activity is sharply lower until
age 19.68 This study corroborates evidence from previous research
that childhood and adolescence represent a high-risk time period
for physical inactivity,69,70 which is associated with multiple
chronic diseases and comorbidities.
There are several limitations to this work. The gait validation

tasks were performed in-clinic in a supervised environment. There
are still challenges in acquiring and interpreting accelerometry-
derived gait measurements in a free-living environment, as there
will be other intercurrent events such as hospitalization that may
affect gait and physical activity measurements. The validation was
conducted only in healthy children and youth. This type of
normative dataset can be leveraged for understanding differences
in pediatric populations with specific conditions. Further valida-
tion studies should focus on generalizing the algorithms to
pathological pediatric cohorts with gait and mobility disorders. We
have also collected gait and physical activity measurements in
children with achondroplasia enrolled in an observational trial
(NCT03794609) and those with DMD undergoing treatment
(NCT03362502), where healthy children in MAGIC can be used
for comparison analyses and to establish construct validity for
validation of these measures. The age effects observed in this
study were based on the cross-sectional design of the MAGIC
study. Longitudinal studies are needed to confirm these findings.
However, in the rapid growing pediatric participants, our
observations are still informative to provide clinical insights.
Future work should focus on incorporating pathological partici-
pants who may have different patterns of physical activity and
gait. Lastly, although our study was properly designed to ensure
statistical power for validating the gait metrics, it still has a small
sample size to be used as a reference dataset, particularly for
specific age groups. Further efforts should focus on applying our
methods to larger observational studies to build a more robust
reference for gait and physical activity in pediatric populations.

CONCLUSION
The use of wearable DHTs is acceptable to the pediatric
population and can provide reliable measurement of gait for the
pediatric population. DHT-measured gait and physical activity in
free-living environments is well positioned to be used as an
innovative and patient-centric approach to provide novel digital
endpoints for pediatric clinical trials.
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