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Continuous cardiorespiratory physiological monitoring is a cornerstone of care in hospitalized children. The data generated by
monitoring devices coupled with machine learning could transform the way we provide care. This scoping review summarizes
existing evidence on novel approaches to continuous cardiorespiratory monitoring in hospitalized children. We aimed to identify
opportunities for the development of monitoring technology and the use of machine learning to analyze continuous physiological
data to improve the outcomes of hospitalized children. We included original research articles published on or after January 1, 2001,
involving novel approaches to collect and use continuous cardiorespiratory physiological data in hospitalized children. OVID
Medline, PubMed, and Embase databases were searched. We screened 2909 articles and performed full-text extraction of 105
articles. We identified 58 articles describing novel devices or approaches, which were generally small and single-center. In addition,
we identified 47 articles that described the use of continuous physiological data in prediction models, but only 7 integrated
multidimensional data (e.g., demographics, laboratory results). We identified three areas for development: (1) further validation of
promising novel devices; (2) more studies of models integrating multidimensional data with continuous cardiorespiratory data; and
(3) further dissemination, implementation, and validation of prediction models using continuous cardiorespiratory data.
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IMPACT:

● We performed a comprehensive scoping review of novel approaches to capture and use continuous cardiorespiratory
physiological data for monitoring, diagnosis, providing care, and predicting events in hospitalized infants and children, from
novel devices to machine learning-based prediction models.

● We identified three key areas for future development: (1) further validation of promising novel devices; (2) more studies of
models integrating multidimensional data with continuous cardiorespiratory data; and (3) further dissemination,
implementation, and validation of prediction models using cardiorespiratory data.

INTRODUCTION
Continuous cardiorespiratory monitoring using bedside devices
and sensor-based technology is pervasive in modern healthcare
and a cornerstone of care in hospitalized children. Though in
widespread use, the current state-of-the-art bedside monitoring
would benefit from novel wireless, noninvasive, and non-contact
sensing methods that could protect fragile skin, reduce inter-
ference in care, and promote caregiver-child interactions.1,2 In
addition, the wealth of data generated by these devices needs to
be saved and utilized in prediction models or clinical decision
support tools, rather than automatically deleted from vendor
servers soon after patient discharge. Preliminary data indicate that
these continuous physiological cardiorespiratory data coupled
with machine learning techniques could fundamentally transform
the way we provide care.3 Machine learning models using
continuous physiological data in children already show promise
in early identification of sepsis,4–10 cardiac arrest,11,12 and risk of
readmission.13 As we look to the future of continuous

cardiorespiratory monitoring, we must improve monitoring
technology, identify those patients who would benefit from
beat-to-beat and breath-to-breath bedside monitoring data, and
find new ways to use these data to improve the care and
outcomes of hospitalized children.
In this scoping review, we summarize existing evidence on (1)

the use of novel approaches to capture continuous cardiorespira-
tory physiological data in hospitalized children in order to identify
key opportunities for the development of continuous cardior-
espiratory monitoring technology; and (2) the use of machine
learning to analyze continuous cardiorespiratory physiological
data to improve the care of hospitalized children.

METHODS
We conducted a scoping review of original research articles
published on or after January 1, 2001, involving novel approaches
to the capture and use of continuous cardiovascular and/or
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respiratory data in hospitalized neonates, children, and adoles-
cents. “Novel” devices were defined as those not currently part of
the standard of care. “Continuous” devices were those which
acquired data in an automated way at a frequency of greater than
one sample per minute for a duration of at least 5 min.
“Physiological” data were defined as an observed variable
measuring functioning of the human body. We excluded studies
focused on: continuous biochemical information (e.g., glucose),
intermittently collected imaging devices (e.g., ultrasound), alarm
fatigue, drug monitoring, measurement accuracy in previously
validated devices, and normal reference range definitions.
OVID Medline, PubMed, and Embase databases were searched.

Abstract and full-text screening was completed in Covidence
(Veritas Health Innovation Ltd, Melbourne, Australia) by six
investigators (S.B.W., M.S.C., K.S.H., C.M.B., D.E.W.-M., L.N.S.-P.), with
two reviewers required per article. Further details can be found in
the Supplementary materials.

RESULTS
We screened 2909 articles and performed full-text extraction of
105: 58 describing novel continuous cardiorespiratory monitoring
devices or measurement approaches and 47 describing prediction
or inference models using continuous cardiorespiratory physiolo-
gical data (Fig. 1).
Studies describing novel devices or measurement approaches

were primarily small (<50 patients), single-center, observational
trials or proof-of-concept studies in an intensive care unit (ICU)
setting (Table 1 and Supplementary Tables 1 and 2). Articles
describing prediction or inference models using continuous
cardiorespiratory physiological data mostly involved a single
physiological variable (31 of 47) and the majority of these studied
heart rate variability (14 of 31). Sample size for these studies varied
widely (<10 to >7000 patients). All studies took place at least
partially in the ICU and only three were randomized control trials
(Table 2 and Supplementary Tables 3 and 4).

2909 studies imported:
PubMed 1050

OVID Medline 1052
EMBASE 803

1745 title and abstract

466 full text

361 excluded:
4 published prior to 2001

40 wrong study type
30 not a study of children

41 children not hospitalized
74 no physiological data
85 not cardiorespiratory

40 not potentially continuous
14 defines normal range

20 accuracy only
8 alarms

4 drug monitoring
1 language not English

105 included

58 novel devices or
approaches

47 prediction or
inference models

1279 irrelevant

1164 duplicates

Fig. 1 PRISMA diagram. Visual summarization of fthe screening
process. Ta
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Novel devices or measurement approaches to cardiovascular
monitoring
Blood pressure (BP). Six articles described novel methods to
measure BP in hospitalized children. These aimed to provide
data that are continuous, noninvasive, and usable to reconstruct
features of arterial line waveforms (e.g., pulse pressure variation).
All were prospective observational trials of 10–35 patients, all
but one in pediatric ICU (PICU) patients, and all were compared
to gold standard invasive arterial line measurements (Table 1
and Supplementary Table 1). Three articles described different
proprietary noninvasive BP cuffs that are attached to fin-
gers.14–16 Finger BP cuff use was feasible and well tolerated
but noted erroneous values due to placement. None were
specifically tested in hemodynamically unstable children. One
method of BP prediction based on heart sounds resulted in
predictions with high standard deviation.17 The most recent
article described a noninvasive wireless skin interface sensor
that had a good correlation with invasive arterial BP including
after pharmacologic interventions known to cause hemody-
namic change.18 Finally, a study comparing pulse oximeter
waveforms to invasive arterial line waveforms in mechanically
ventilated patients found a good correlation with waveform
features.19

Heart rate (HR). Novel methods to measure HR in hospitalized
children are mostly neonatal ICU (NICU) based. These alternative
methods were developed to: (1) avoid adhesive-based sensors to
capture ECG data, which can be obtrusive and potentially harmful
to the skin of neonates1 and (2) reduce motion artifacts that can
affect sensor accuracy.20 Most of the 14 articles identified are small
proof-of-concept or prospective observational cohorts of less than
80 patients (Table 1 and Supplementary Table 1). Five studies
presented results of the use of cameras to detect HR, in some
cases using machine learning techniques to identify and suppress
artifacts.21–25 The correlation with standard measurements was
generally good, although problems with artifacts were common,
particularly during hands-on care. Two articles presented results of
HR measurements based on the detection of chest movement,
one using a radar signal26 and the other using laser Doppler.26,27

Two studies presented results from sensors embedded in the
blankets or mattress of neonates: a capacitive sensor1 and a
piezoelectric sensor.28

Four articles presented results of novel methods to reduce
artifacts in HR captured in neonates, including forehead reflec-
tance photoplethysmography,29 transesophageal measurement,30

transcutaneous diaphragm electromyography sensors,31 and
spectrogram analysis of ECG data, instead of RR detection.32

While these approaches were generally successful at reducing
artifacts, few considered implementation strategies that would
make them feasible alternatives to traditional ECG.
Finally, one study compared methods for forecasting neonatal

HR and found that an autoregressive moving average model could
predict future HR values from historical values with reasonable
accuracy.33

Heart rate variability (HRV). HRV is defined as the fluctuation in
time between consecutive heartbeats and may be altered when
there is an imbalance in autonomic nervous system inputs to the
heart.34 There are a variety of ways to look at these fluctuations,
but most require complex waveform analysis.35 Many measures
have shown promise in clinical prediction or inference models as
described later, but none have been compared to other
measurements of autonomic dysfunction (and thus are not
included in Table 1). A simplified proxy of HRV using the standard
deviation of HR, termed integer HRV (HRVi), has also shown
promise in prediction models, although it has not been directly
compared to traditional methods for deriving HRV. One article,
however, did show that HRVi estimated using the pulse rate fromTa
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photoplethysmography correlated well with HRVi calculated from
ECG (Table 1 and Supplementary Table 1).36

Cardiac output (CO). We found ten articles describing the
estimation of CO using five different strategies (Table 1 and
Supplementary Table 1). Four studies of <25 patients each studied
the pulse index continuous cardiac output (PiCCO) device. PiCCO
uses pulse contour analysis calibrated by thermodilution in order
to estimate CO as well as ten additional proprietary measure-
ments.37 The first article published showed poor agreement
between markers of clinical assessment and measurements of
hemodynamic status.38 However, it is unclear how much of this
discrepancy results from variability in clinical assessment, as
subsequent articles have shown estimates of PiCCO to have good
agreement with thermodilution39 and transthoracic ultrasound
measurements of cardiac index,40 as well as global perfusion.41

Two additional articles explored uncalibrated pulse contour
analysis using the pressure recording analytical method (PRAM)
with the Mostcare® device and compared it to transthoracic
echocardiogram (TTE)42 or transpulmonary ultrasound dilution
using COstatus®.43 PRAM had an excellent agreement with TTE
measurements but lower agreement with COstatus® measure-
ments. Given COstatus® has not been validated in hospitalized
children, more studies are necessary to determine the usefulness
of PRAM in this population.
Three articles described the use of two forms of bioimpedance

to estimate CO. One study described the use of electrical
cardiometry bioimpedance in two children with hypoplastic left
heart syndrome, showing some correlation between estimated CO
and clinical change.44 Two studies described the use of electrical
velocimetry bioimpedance in critically ill children (pediatric,
cardiac, and neonatal) using the AESCULON®.45,46 Generally, the
AESCULON® had a good correlation with CO based on TTE but was
associated with a large margin of error. Bioreactance, the most
recently developed form of bioimpedance, has not been
compared to a gold standard but has been used in a prediction
model as described later.47

Finally, one article studied CO estimations using partial
rebreathing of carbon dioxide measured via the noninvasive
cardiac output (NICO) device (Novametrix Medical Systems Inc.,
Wallingford, CT) on hemodynamically stable, mechanically venti-
lated patients >15 kg and was found to have good agreement
with TTE.48

Systemic vascular resistance (SVR). No novel device or approach
was specifically targeted toward measuring SVR alone; however,
four of the five strategies used to measure CO also provide
measurements of SVR (NICO cannot; AESCULON® requires a
central venous pressure estimate). Despite the ability to measure
SVR, measurements of SVR were only reported in three articles, all
using thermodilution via the PiCCO device. These three articles
found no association when comparing PiCCO-measured SVR to
clinician assessment38 or markers of oxygen balance;41 but did
demonstrate significantly higher SVR between low and normal-to-
high cardiac index states.49 No article compared these novel SVR
continuous measurements to a gold standard.

Perfusion. We found five articles describing the use of near-
infrared spectroscopy (NIRS), a common noninvasive continuous
monitoring device that estimates regional tissue saturation. In
critically ill children, NIRS showed a good correlation with
peripheral and central measurements of venous oxygenation
saturation (SvO2),

50 as well as weak but statistically significant
correlations with BP.51 Among post-operative cardiac ICU (CICU)
patients, NIRS demonstrated not only significant correlations with
central SvO2 but also highly correlated with adverse events after
Norwood procedure.52 NIRS has also been used as a proxy for
intestinal perfusion in neonates at high risk for intestinal failure

(Table 1 and Supplementary Table 1).53

Despite its promise in healthy newborn54 and adult popula-
tions,55 we did not find any articles comparing perfusion index, a
measurement of the ratio of pulsatile flow to non-pulsatile flow
derived from pulse oximeters, to a gold standard of perfusion. We
did find one clinical prediction or inference model that will be
described later.

Novel devices or measurement approaches to respiratory
monitoring
Respiratory rate (RR). Similar to novel methods for HR measure-
ment previously discussed, the ten articles describing novel
methods for RR detection come from the NICU and are focused on
reducing artifacts (Table 1 and Supplementary Table 2). Seven
studies presented data of simultaneous HR and RR detection
using: chest wall movement detected via a radar signal26 or laser
Doppler27 image analysis of video signal,21,23,25 piezoelectric
sensor in the bedding of the crib,28 or leveraging transcutaneous
diaphragm electromyography sensors.31 While the correlation
with RR via airway flow or impedance was good, motion artifacts
and implementation barriers limited the feasibility of these
devices.
Two studies demonstrated the challenges of measuring RR in

neonates when compared to adults, one using a fiber-optical
monitoring device integrated into a nasal cannula56 and another
using a video-based method.57 In both cases, the performance of
the devices was suboptimal compared to adults.
Finally, a small proof-of-concept study in neonates studied the

use of infrared thermography of the nares to detect changes in
temperature related to breathing.58 While the results are
promising, implementation would have to be validated in children
with various respiratory devices and nasal pathology.

Oxygenation. Three articles described noninvasive tools to
measure oxygenation. A large PICU study used machine learning
approaches to demonstrate the potential use of noninvasive pulse
oximetry and ECG-derived HR measurements to reliably estimate
PaO2 and the oxygenation index.59 A NICU study examined
continuous positive airway pressure for respiratory distress and
demonstrated a correlation between a novel index, the saturation
oxygen pressure index, and alveolar-arteriolar oxygen difference.60

Finally, a neonatal conjunctival pulse oximetry monitor was found
to be effective, although it caused conjunctival edema in one
neonate.61

Both oxygen saturation index and ratio of SpO2 to FiO2 are well
studied, noninvasive ways to assess hypoxemia in children with
acute lung injury.62 Although not considered novel for the
purposes of this review, these methods could be transformed
into continuous, noninvasive measures.

Carbon dioxide (CO2). Twelve articles described technology to
estimate CO2 measures, primarily in observational trials of <75
PICU patients. Several studies correlated PaCO2 to end-tidal CO2

(EtCO2), transcutaneous CO2, or novel microstream capnometer
devices.63–67 Three articles focused on the use of continuous
measures of CO2 during mechanical ventilation. One study used
bedside monitor data and ventilator measurements to identify
deviations from pre-defined “trend templates” and made sugges-
tions for the management of ventilator settings.68 Another study
demonstrated strong correlations between EtCO2 and PaCO2 in a
range of dead space to tidal volume ratios with the EtCO2-PaCO2

difference increasing predictably with increasing dead space to
tidal volume ratio.69 Two studies used capnography to measure
dead space, finding success with a novel EtCO2 monitor (CO2SMO
Plus!™),70 but not with conventional time-based capnography.71

Investigators also studied measures of CO2 for applications
outside of mechanical ventilation. One study demonstrated
noninvasive EtCO2 monitoring to be a reliable tool to monitor
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acidosis in diabetic ketoacidosis.72 Another study demonstrated
that cerebral NIRS measurements were a useful indicator of
hypercapnia, though with low sensitivity.73 Finally, during apnea
testing for the determination of neurologic death, transcutaneous
CO2 monitoring demonstrated high correlation, accuracy, and
minimal bias when compared with PaCO2.

74

Regional lung ventilation measurements. Measurement of regio-
nal lung ventilation using electrical impedance tomography has
been studied in children for over two decades.75 Electrical
impedance tomography is a radiation-free functional modality
that allows for bedside imaging and real-time monitoring of lung
expansion, particularly useful for PEEP titration with avoidance of
overdistension and collapse.76 Electrical impedance tomography
has proven useful in both PICU and NICU patients, but most
validation studies have limited sample sizes.77 Further studies are
needed to determine the usefulness and cost-effectiveness of this
method.

Prediction and/or inference models using cardiorespiratory
physiological data
Models using HRV as a single physiological variable. Fourteen
articles used HRV as a single continuous variable physiological
variable within a clinical prediction or inference model. HRV has
been studied as a single variable to predict clinical deterioration
across a range of pathologies, most extensively in sepsis (Table 2
and Supplementary Table 3).4,7,78–81 HRV has also been used to
identify neonates at risk for bradycardia,82 predict the duration of
respiratory support,83 trace recovery during noninvasive respira-
tory support,84 and correlate with adverse outcomes at a 15-
month follow-up in neonates after hypoxic-ischemic encephalo-
pathy.85 Continuous bedside display of trended HRV and other HR
characteristics integrated into a single score (the HeRO score) was
associated with mortality reduction in a randomized trial of low
birth weight neonates,86 mostly driven by patients with late-onset
sepsis,87 and is now available as a commercial device. Subsequent
validation of this device has shown a limited ability to predict
bloodstream infections.88 The simplified proxy of HRV (HRVi) has
also shown promise in predicting new or worsening organ
dysfunction in PICU13 and oncology ward patients.36

Models using other single physiological variables. Seventeen
studies described a prediction or inference model using a single
physiological variable other than HRV, mostly pertaining to cardiac
function (Table 2 and Supplementary Table 3). Variation in stroke
volume with breathing measured through bioreactance using the
NICOM device predicted an increase in stroke volume after fluid
administration better than central venous pressure, but less
accurately than intermittent ultrasound measurement.47 CO
estimations using PRAM were associated with the duration of
mechanical ventilation, tissue perfusion, vasoactive and diuretic
drug requirements in children post-cardiac surgery.89 In PICU
patients with viral respiratory failure, management of fluid status
through PiCCO was associated with fewer ventilator days,
although without a significant change in length of stay.90 The
compensatory reserve index, a machine learning-based measure
that continuously compares the arterial line waveform to a store of
“normal” arterial line waveforms in order to predict cardiac
deterioration, was found to be feasible and safe, with early
changes in the index associated with length of stay.91 A study of
CICU patients found estimations of normal cardiac index via PiCCO
to be associated with shorter duration of mechanical ventilation
and length of stay.49 Finally, EtCO2 was studied as a proxy of CO
and CPR quality during in-hospital cardiac arrest, but was not
associated with the return of circulation or survival to hospital
discharge.92

Five articles described perfusion as a clinical predictor. One case
report described how splanchnic NIRS measurements

precipitously dropped and remained low until the time of
necrotizing enterocolitis diagnosis.93 Cardiac conditions affecting
systemic perfusion have also been discovered through NIRS
changes, including large pericardial effusion94 and hemodynami-
cally significant patent ductus arteriosus.95 These observational
studies and case reports suggest that NIRS can alert clinicians to
underlying changes in central and peripheral SvO2 and oxygen
extraction –in some cases as the first signal that the patient is
beginning to deteriorate (Table 2 and Supplementary Table 3).
Although this trend in small studies is encouraging, the quality of
evidence is low, and NIRS would benefit from larger, multicenter,
randomized control trials.96 In addition, perfusion index was
investigated in a single study of PICU patients, where it showed
high sensitivity and specificity in diagnosing shock as defined by
tachycardia with poor peripheral perfusion, but poor ability to
predict hypotension.97

Four studies investigated respiratory variables. The ventilatory
ratio, a variable dependent on CO2, body weight, and minute
ventilation, was compared to alveolar dead space fraction, and
only alveolar dead space fraction was associated with mortality.98

Various measures of time-based capnography were associated
with extubation success in infants.99 Another study created an
age-dependent index of the pulse oximeter waveform to predict
episodic clinical deterioration.100 The pulse oximeter-based index
had a number of false positives equal to the number of events, but
performed better than clinical prediction alone.100

Finally, a study of critically ill children investigated the use of
noninvasive thermal imaging to detect and/or predict shock
0–12 h before onset, and was found to have fair performance in
critically ill children.101

Models using multiple continuous physiological variables. Most
studies of prediction or inference using multivariable models only
included continuously collected physiological variables rather
than a combination of continuously collected physiological
variables with intermittently collected multidimensional variables
(e.g., electronic health record (EHR) or demographic data).
Six articles presented models to predict cardiorespiratory

deterioration or arrest. Four of these articles were in the CICU
and presented models using commonly monitored cardiorespira-
tory variables combined with novel variables, including beat-to-
beat ST segment morphology,11,102 HRV,12 and systemic vascular
resistance,103 with variable performance. Two PICU studies of
models using commonly monitored cardiorespiratory variables
alone, either from conventional means104 or through novel
wireless sensors,105 reported varying sensitivity and specificity to
predict cardiorespiratory deterioration and arrest. All models
required an hour or longer of continuous physiological input for
model training.
Four articles presented models of sepsis prediction using

multiple cardiorespiratory physiological variables. Three were
derived in NICU patients and despite slightly different features
of physiological variables used, all had similar modest predictive
value.5,9,106 Notably, two of these studies did not include HRV,9,106

one finding that HRV was not as useful for the subset of adults in
their cohort.106 A PICU article included HRV in its model but
likewise found it less important than other features.6

Two studies presented models predicting unplanned intubation
in the NICU. The first found good prediction of urgent unplanned
intubation, notably performing only slightly better than the HRV-
based HeRO score alone.107 The second noted similar signatures
of deterioration in urgent intubation and sepsis, although their
model performed best when predicting urgent intubations.106

Models using continuous physiological variables and non-continuous
clinical variables. It is likely that a multidimensional approach to
modeling disease that includes continuous physiological variables,
intermittently collected clinical variables (e.g., lab values,
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medication administrations), and patient factors (e.g., age,
comorbidities) will result in better performing models through a
more complete picture of an individual patient. However, we
found only seven studies that integrated intermittently collected
clinical variables or patient-level characteristics into continuous
cardiorespiratory physiology-based models. Only one of those
studies incorporated all three types of data, demonstrating that
two machine learning models of sepsis prediction in a large PICU
achieved good performance.8 Integrated laboratory results with
the HRV-based HeRO score demonstrated an improved perfor-
mance predicting sepsis in neonates when compared to HeRO
score alone.10 A comparison of three machine learning models
integrating continuous cardiorespiratory variables with respiratory
support and medication data automatically generated asthma
scores that were noninferior to expert-derived manual scores.108 A
comparison of models to predict at least four mechanical
ventilation days in PICU patients found that a model containing
both patient-level factors and continuous data performed better
than those containing continuous or patient-level factors alone.109

Three machine learning models with continuous versus non-
continuous data in a small CICU population found that the best
strategy for non-continuous, continuous, combination models had
an equivalent performance.110 Finally, two studies investigated the
commercially available oxygen delivery index (IDO2; Etiometry,
Boston, MA), an index containing both continuous and non-
continuous clinical variables (but not demographic data), finding
IDO2 to be associated with failed vasoactive wean in CICU
patients111 and improved specificity of clinical concern for cardiac
arrest in PICU patients.112

DISCUSSION
In this comprehensive scoping review we have summarized the
existing evidence on novel approaches to the capture and use of
continuous cardiorespiratory physiological data in hospitalized
children. We identified 58 articles describing novel devices or
measurement approaches and these were found to be primarily
small, single-center, observational trials. Only three of these novel
devices or measurement approaches were further explored in
prediction or inference models in hospitalized children. We also
identified 47 articles of prediction or inference modeling using
continuous cardiorespiratory variables and these varied greatly in
sample size. Most multivariable models did not incorporate
multidimensional data (i.e., intermittently collected clinical vari-
ables or patient-level factors). Only two studies were randomized
control trials in which a cardiorespiratory physiological variable-
based model was implemented and tested in hospitalized children
(in both cases neonates).67,86 Finally, no study in either section
took place entirely outside of an ICU. Based on these findings, we
identified three key areas for future development: (1) further
external validation of promising novel devices and approaches to
measure continuous cardiorespiratory physiological variables; (2)
more studies of models integrating multidimensional data; and (3)
further dissemination, implementation, and prospective validation
of prediction models using continuous cardiorespiratory
physiological data.
Though novel cardiorespiratory monitoring devices and

approaches have been an important pediatric research focus for
the last two decades, the majority of studies are small and single-
center. It is difficult to assess the value of these novel devices
without further study and external validation. Furthermore, we
found only three devices (PiCCO, NICOM, PRAM) that were used in
prediction or inference models in hospitalized children.47,89,90 All
three systems showed clinical utility but all require proprietary
devices and specialized training, and only NICOM is noninvasive.
As such, despite availability for over 15 years, none have become
routinely incorporated into standard of care. Most of the other
novel devices described in this review were developed for

neonates where a major motivator is to avoid wire-based sensors,
which can be obtrusive and potentially harmful to delicate skin.1,2

It is unclear what the utility of these types of devices will have
outside of the NICU, but they may gain more prominence as there
is a movement toward higher patient mobility and fewer wires.2

Machine learning-based prediction models that use continuous
cardiorespiratory physiological data are steadily emerging in the
literature, with the majority of studies published after 2018. In
general, we found that the integration of continuous cardior-
espiratory physiological data with non-continuous clinical vari-
ables is associated with improved performance in various clinical
deterioration models. Of the seven prediction models that
performed this integration, all but one found that continuous
physiological data improved model performance8,10,108,109,111,112

(and the outlier showed non-inferiority110). These types of
integrated, dynamic physiological-clinical models will likely serve
as a foundation for personalized medicine in the acute care
setting.113 Machine learning will be an important tool in this
endeavor, as more traditional statistical methods typically require
data reduction steps that may discard useful information.
However, for these models to be successful, we first need to: (1)
identify which patients will benefit most from cardiorespiratory
monitoring and the prediction models based on physiological
data; (2) share data, resources, and methods to develop more
accurate models; and (3) develop strategies to disseminate,
implement, and prospectively validate these models.
Identifying the patients who will most benefit from continuous

cardiorespiratory monitoring will be an essential step in the
successful development and implementation of integrated,
dynamic physiological-clinical models. All children with an acute
illness may not need continuous cardiorespiratory monitoring. A
recent multicenter RCT comparing intermittent versus continuous
pulse oximetry in the first episode of bronchiolitis in stable
children found no difference in clinical outcomes.114 Clinicians
may not, however, be as good at predicting clinical deterioration
as we would like–a recent study of emergent PICU transfers due to
clinical deterioration found only 35% of patients were on
continuous cardiorespiratory monitoring prior to the event
requiring transfer.115 Perhaps we should first focus on assessing
the pre-test probability of a patient benefitting from continuous
cardiorespiratory monitoring to identify the “best” populations of
hospitalized children to either escalate to continuous monitoring
(with or without associated prediction models) or de-escalate to
intermittent monitoring. These strategies may eventually apply to
patients who would benefit from remote patient monitoring after
discharge from the hospital13 or those who may avoid an
admission altogether by being discharged from the emergency
department with a wearable device.2

Advances in this field will hinge on our ability to share data,
models, resources, and methods. Clinical data science has
advanced considerably in the last few years thanks to EHR data-
sharing initiatives that leverage common data models, standard
terminologies, and data exchange resources.116,117 Indeed, auto-
mated sepsis alerts, clinical decision support tools, and real-time
continuous vital sign visualization tools have already impacted the
way we provide care. However, physiological data from monitor-
ing devices have not seen this same level of sharing and
collaboration, with few exceptions (e.g., the MIMIC dataset).118

This lack of collaboration is in large part due to three technical
reasons: (1) physiological monitoring data is rarely stored by
hospital systems beyond a few days; (2) there is a lack of standards
to make physiological data more interoperable across institutions;
and (3) the complexity and volume of physiological data makes
sharing these data more complicated than other types of clinical
data.119 The first problem is the most critical and urgent: we owe it
to our patients to store any physiological data we collect to learn
how to improve the care of future patients. The other two
problems are more easily surmountable through the development
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of new standards and data collaboration approaches (e.g.,
federated learning).120

The final hurdle that we must overcome to take full advantage
of continuous physiological data and machine learning models is
the so-called last mile of artificial intelligence: dissemination,
implementation, and prospective validation.121 We identified very
few examples of successful implementation and prospective
validation of models based on cardiorespiratory physiological
data in children, including only two RCTs.67,86 A recent systematic
review of real-time clinical analytics implementations found only
14 studies and identified 37 implementation challenges across
people, processes, information, and technology.122 A few key
steps may improve implementation success: (1) making the
models informative, actionable, timely, and interpretable; (2)
tailoring each intervention to the particular hospital environment
in which the model will be implemented, both with buy-in and
education; (3) integrating into routine clinical care without
significantly impacting workflows; and (4) providing support and
ongoing monitoring of performance after implementation.123–125

CONCLUSION
In this scoping review we have summarized the existing evidence
on novel approaches to the capture and use of continuous
cardiorespiratory physiological data in hospitalized children. We
identified three key areas for future development: (1) further
validation of promising novel devices; (2) more studies of models
integrating multidimensional data with continuous cardiorespira-
tory data; and (3) further dissemination, implementation, and
validation of prediction models using continuous
cardiorespiratory data.
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