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In the developing cerebral cortex: axonogenesis, synapse
formation, and synaptic plasticity are regulated by SATB2
target genes
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BACKGROUND: Special AT-rich sequence-binding protein 2 is essential for the development of cerebral cortex and key molecular
node for the establishment of proper neural circuitry and function. Mutations in the SATB2 gene lead to SATB2-associated
syndrome, which is characterized by abnormal development of skeleton and central nervous systems.
METHODS:We generated Satb2 knockout mouse model through CRISPR-Cas9 technology and performed RNA-seq and ChIP-seq of
embryonic cerebral cortex. We conducted RT-qPCR, western blot, immunofluorescence staining, luciferase reporter assay and
behavioral analysis for experimental verification.
RESULTS: We identified 1363 downstream effector genes of Satb2 and correlation analysis of Satb2-targeted genes and
neurological disease genes showed that Satb2 contribute to cognitive and mental disorders from the early developmental stage.
We found that Satb2 directly regulate the expression of Ntng1, Cdh13, Kitl, genes important for axon guidance, synaptic formation,
neuron migration, and Satb2 directly activates the expression of Mef2c. We also showed that Satb2 heterozygous knockout mice
showed impaired spatial learning and memory.
CONCLUSIONS: Taken together, our study supportsroles of Satb2 in the regulation of axonogenesis and synaptic formation at
the early developmental stage and provides new insights into the complicated regulatory mechanism of Satb2 and new evidence
to elucidate the pathogen of SATB2-associated syndrome.
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IMPACT:

● 1363 downstream effector genes of Satb2 were classified into 5 clusters with different temporal expression patterns.
● We identified Plxnd1, Ntng1, Efnb2, Ephb1, Plxna2, Epha3, Plxna4, Unc5c, and Flrt2 as axon guidance molecules to regulate

axonogenesis.
● 168 targeted genes of Satb2 were found to regulate synaptic formation in the early development of the cerebral cortex.
● Transcription factor Mef2c is positively regulated by Satb2, and 28 Mef2c-targeted genes can be directly regulated by Satb2.
● In the Morris water maze test, Satb2+/− mice showed impaired spatial learning and memory, further strengthening that Satb2

can regulate synaptic functions.

INTRODUCTION
Special AT-rich sequence-binding protein 2(SATB2) is a transcrip-
tion factor that plays essential roles in chromatin remodeling and
regulation of gene expression in a nuclear-matrix-attachment
regions (MARs) dependent manner.1 Satb2 has been demon-
strated to function in multiple biological processes, including
craniofacial patterning, bone formation, cortical regionalization,
development of corpus callosum and neuron projection in the
neocortex.2–4 Satb2 is also important as a regulator of synaptic
plasticity in the hippocampus that underlies memory functions.5 In

humans, microdeletions or mutations of the SATB2 gene lead to
SATB2-associated syndromes (SAS) or Glass syndrome (OMIM
612,313), which are clinically manifested as craniofacial malforma-
tion, teeth anomalies, developmental delay, poor speech devel-
opment, hyperactivity, intellectual disability, seizures, and
symptoms of autism.6,7

In developing mouse brain, Satb2 expressing neurons extend
axons across the corpus callosum. While in Satb2 knockout mice,
axons cannot pass through the corpus callosum instead descend
along the corticospinal tract and neurons failed to reach their
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targeted regions.3 Satb2 was reported to regulate the differentia-
tion of both callosal and subcerebral projection neurons in the
developing cerebral cortex.8 Generation and outgrowth of axons,
termed as axonogenesis, are critical for establishing and main-
taining the polarized structure of the neurons.9 Proper axon
guidance is essential in neuron migration and projection to their
targets.10,11 Satb2 was known to regulate genes involved in
axonogenesis, such as Ctip2, Unc5c, and Epha7.12–14 The cerebral
cortex plays a central role in high-level cognitive functions such as
learning, memory, thinking and decision-making.15 Synaptic
transmission between neurons, commonly termed synaptic
plasticity, are key for primarily learning and memory.16 Many
researches demonstrate functions of Satb2 in neuronal projection,
axonogenesis and synaptic functions in the cerebral cortex, but
molecular mechanisms of Satb2 underlining these functions
are still not fully understood.
In this study, to further understand molecular mechanisms of

Satb2 in the early development of cerebral cortex, we generated
Satb2 knockout mice, and performed RNA-seq and Chromatin
Immunoprecipitation sequence (ChIP-seq) and functional study to
understand functions of Satb2 in the development of the cortical
cortex.

METHODS
Experimental animals
All animal research was approved by the Children’s Hospital of Fudan
University (2014-025). All experimental mice were fed in a specific
pathogen-free room with automatically controlled temperature (16 °C),
humidity (40%), ventilation and light conditions. Satb2 knock out model
was generated through CRISPR-Cas9 technology by Biocytogen Pharma-
ceuticals (Beijing) Co., Ltd. Genotypes were determined by polymerase
chain reaction (PCR) and agarose gel electrophoresis with two pairs of
primers near the deleted sequence (Table S1).

RNA-seq analyses
RNA-seq data were processed through the Nextflow nf-core/rnaseq
pipeline (v3.4).17 Differential expression analysis was performed for
replicates using DESeq2 (v1.30)18 and genes with a false discovery rate
(FDR) < 0.1 were considered as differentially expressed genes, to be
consistent with FDR of 0.1 for cutoff in P0 RNA-seq analysis. P0 cortex data
from McKenna et al. (GSE68911)19 and adult cortex data from Cera et al.
(GSE123992)20 were re-analyzed using the same pipeline for E17.5 cortex
and the same threshold cutoffs for differential expression were applied.

ChIP-seq
ChIP reactions were used 22 μg of embryonic mouse brain tissue
chromatin and 4 μg of anti-SATB2 antibody (Novus, cat# NBP176912).
The library of Satb2+/+ ChIP DNA fraction was generated according to the
manufacture protocol (Active Motif). The 75nt single-end sequence reads
were obtained by Illumina sequencing NextSeq500. Reads were aligned to
the mouse genome (mm10) by BWA (v 0.7.17),21 and after removal of
duplicate and non-uniquely mapped reads by Picard (v2.23.1) (http://
broadinstitute.github.io/picard/). A signal map capturing fragment den-
sities along the genome was generated and visualized in the Integrated
Genome Browser (IGB). MACS2 (v2.2.7)22 was used to call narrow peaks
with FDR < 0.001. Peaks were annotated using the R package ChIPseeker
(1.31.3).23

Gene function and disease enrichment analyses
Gene ontology (GO), kyoto encyclopedia of genes and genomes (KEGG)
and human phenotype ontology (HPO) enrichment analysis was
performed using the R package clusterProfiler (v4.3.4).24 Sets with less
than 10 (5 for HPO) or more than 500 genes were omitted. p-values were
corrected using the Benjamini–Hochberg (BH) method. Gene sets with
FDR < 0.05 (FDR < 0.2 for KEGG) were considered to be significant and the
top ten sets were plotted. Ontology diagrams were visualized using
ontologyPlot (v1.6). KEGG pathways were plotted by the R package
pathview (v1.31.3).25 HPO annotations for mouse genes were acquired
from Molecular Signatures Database (MSigDB) through the R package
msigdbr (v7.4.1). 707 neurological disease genes were downloaded from

OMIM website (https://www.omim.org/) using “Head & neck, CS, Neuro-
logic” as the clinical synopsis search quires. Disease genes were mapped to
the orthologous mouse genes through annotations from the Mouse
Genome Informatics (MGI) database (http://www.informatics.jax.org/). The
list of genes encoding mouse transcription factors was downloaded from
the AnimalTFDB database.26 The p-values for the overlapping gene sets
were calculated by the Fisher exact test.

RESULTS
Generation of Satb2 knockout mouse model
Satb2 knockout mouse model was generated through CRISPR-
Cas9 technology (Fig. 1a). Real-time quantification PCR(RT-qPCR)
showed significantly decreased mRNA level of Satb2 in Satb2−/−

(p < 0.001) and Satb2+/− (p < 0.001) mice when compared with
Satb2+/+ mice (Fig. 1b). Western blot analysis of cerebral cortex
lysates showed a lower expression of SATB2 protein in Satb2+/−

mice and nearly no expression in Satb2−/− mice (Fig. 1c). Relative
quantification of bands also verified knockout effects (Fig. 1d). We
performed immunofluorescence staining of frozen sections of
mouse brain to further test the knockout efficiency of SATB2
in situ in the cerebral cortex. Consistent with previous reports,
most SATB2-positive cells reside in layers 2/3/4 and a few numbers
of SATB2-positive cells are present in layer 5 and even fewer in
deep layer 6 in wild-type mice (Fig. 1e). In contrast, SATB2 was not
obviously expressed in neocortex region of Satb2−/− mice brain.
Satb2 was reported to promote the development of callosal
neurons through repressing expression of CTIP2, which is
expressed in Layer 5/6 neurons and expanded into layer 2/3/4
in the absence of SATB2.3,12 Taken together, we successfully
generated a Satb2 knockout mouse model for further study.

Identification of dysregulated Satb2-targeted genes in the
developing cerebral cortex
To decipher mechanisms of Satb2 in callosal projection and
neuronal development, we performed RNA-seq of cerebral cortex
samples from wild-type and homozygous mutant mice at E17.5.
Compared with Satb2+/+ mice, 144 genes were significantly
upregulated and 168 genes were downregulated in Satb2−/− mice
(Fig. S1A and Table S5). GO of these differentially expressed genes
mainly enriched on axonogenesis, axon guidance, neuron
differentiation, neuron projection extension, synapse function,
dendrite development, cell adhesion and cognition (Fig. S1B).
Satb2 has been reported to promote the development of callosal
and subcerebral neurons in a cell context-dependent manner. We
analyzed the expression of genes important for the development
of callosal projection neurons(CPN) and subcerebral projection
neurons(ScPN) (Fig. S1C, D). Most CPN marker genes, such as Cux1/
2 and Pou3f2/3, were significantly decreased, while most ScPN
marker genes, such as Ctip2 and Sox5, were significantly increased,
which means the transcriptome characteristics of cerebral cortex
were transformed from CPN to ScPN in Satb2−/− mouse.
ChIP-seq of fresh cortices dissected from E17.5 embryos helped

us identify 8719 genomic regions (also referred to as peaks)
enriched in SATB2-precipitated DNA, which mapped to a total of
4834 gene loci in the Satb2+/+ group (Fig. S2A). All peak regions
distributed ±3 kb upstream of transcription start sites (TSS)
(Fig. S2B). The detailed location of peaks relative to genomic
annotations was presented in a pie chart (Fig. S2C).
To identify Satb2-targeted genes in the 4834 candidate genes,

we integrated our E17.5 RNA-seq data and P0 RNA-seq data
published by Mckenna et al.19 Re-analysis of P0 RNA-seq data with
identical bioinformatics procedures applied in the above E17.5
RNA-seq dataset helped us identify 4209 differentially expressed
genes (DEGs) in either E17.5 or P0 Satb2-mutant cortices. 1363
genes overlapped between DEGs and ChIP peaks associated
genes, suggesting these genes could be Satb2-targeted genes
(Fig. 2a and Table S6). According to the GO and KEGG pathway
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analysis, there is a significant enrichment for genes with roles in
synapse organization, axonogenesis, cell junction assembly,
cognition, learning or memory and cell adhesion, indicating that
Satb2 regulates various aspects of axongenesis and synaptic
function in cerebral cortex (Fig. 2b, c). Next, we want to know
whether these Satb2-targeted genes contribute to SAS, so we
downloaded neurological disease genes from OMIM website, and
performed correlation analysis with Satb2-targeted genes. We
found Satb2 targets were enriched for 178 transcription factor
(p= 1.269e-12) and 73 neurological disease genes (p= 0.0007568)
(Fig. 2d).

Developmental expression pattern of Satb2-targeted genes
To explore the developmental functions of the Satb2-targeted
genes, we investigated their developmental expression trajec-
tories in the wild-type cerebral cortex based on previous
published RNA-seq data.27 The expression profile of the 1363
gene showd noticeable temporal changes and can be grouped
into five clusters using soft-clustering method28 (Fig. 3a, b). The
five cluster genes regulated by Satb2 were further classified into
three groups with different biological functions that were C1 and
C2 genes that regulate neurodevelopment, C3 genes that regulate
cell adhesion, C4 and C5 genes that regulate synaptic related
functions. Functional differences in the three groups are
consistent with the role of Satb2 as a cell fate and neuron
projection determinant at neonatal stage and regulator of
synaptic plasticity/physiology at the adult stage.20 GO analysis of
each cluster is consistent with differences in biological processes
of Satb2 in different developmental stages (Fig. 3c).
Kitl encodes KITL (stem cell factor, SCF), a ligand growth factor

for c-kit, and functions in neuronal migration and survival, so we
choose Kitl as a representative of C3 genes to verify whether they
are directly regulated by Satb2.29,30 Both RNA-seq data and RT-
qPCR results showed significantly increased expression of Kitl in
Satb2−/− mouse cerebral cortex (Fig. 3d, p-value < 0.01). ChIP-seq
analysis identified a strong and specific binding of SATB2 to intron

1 of Kitl gene (Fig. 3e). To test whether SATB2 can directly regulate
the expression of Kitl, we performed luciferase reporter assay.
When co-transfected with SATB2, luciferase activity significantly
decreased in Kitl-S-pEZX group compared with the empty pEZX
group (Fig. 3f). We found a de novo SATB2 c.715 C > T (p.R239X)
mutation in a 3-year-old boy who was diagnosed with SAS. The
mutation had been reported in literatures and was thought of as a
hot spot mutation. Individuals with the R239X mutation usually
exhibited craniofacial dysmorphism, generalized osteoporosis,
profound mental retardation and epilepsy.31 When co-
transfected mutant SATB2 R239X with Kitl-S-pEZX, the activity of
luciferase increased compared with SATB2 and Kitl-S-pEZX group,
suggesting that mutant SATB2 R239X weakened the repression
activity of SATB2 for Kitl. The results indicated that SATB2 could
negatively regulate the expression of Kitl in the developing
cerebral cortex through a conserved regulatory element in intron
1 of Kitl.

Satb2-targeted genes may be involved in axonogenesis in the
developing cerebral cortex
We used the R package “ontologyPlot” to generate the ontology
diagram of the enriched descendant GO terms to “axonogenesis”.
Satb2-targeted axonogenesis genes mainly enriched on axon
extension and axon guidance processes (Fig. 4a). We detected
several axon guidance molecules dysregulated in Satb2−/− mice
compared with Satb2+/+ group (Fig. 4b) and mRNA level changes
of these axon guidance molecules were verified by RT-qPCR
(Fig. 4c). Expression of Plxnd1, Ntng1, Efnb2, and Ephb1 were
significantly increased, while expression of Plxna2, Epha3, Plxna4,
Unc5c, and Flrt2 were significantly decreased. Proper axon
guidance is essential in neuron migration and projection to their
targets. Disrupted axon guidance cues might lead to attractive or
repulsive environmental disorganized, which growth cone of
axons can sense, thus causing misprojection of neurons, so we
inferred that Satb2-targeted axonogenesis genes may have
influences on axon growth.
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Among the upregulated axon guidance genes, we identified a
new Satb2 target, Ntng1, encoding Netrin-G1 (Fig. 4d, p-value <
0.01). Netrin-G1 is a vertebrate-specific guidance molecule,
mediating several aspects of neural-circuit formation, such as
neurite elongation and laminar organization of dendrites in
mice.32 ChIP-seq analysis identified a strong and specific binding
of SATB2 to highly conserved intron 4 of the Ntng1 gene (Fig. 4e).
Luciferase activity significantly decreased when co-transfected
SATB2 with Ntng1-S-pEZX (Fig. 4f). When co-transfected mutant
SATB2 R239X with Ntng1-S-pEZX, the activity of luciferase
increased compared with wild-type SATB2 group. The result
indicates that Satb2 can directly and negatively regulate the
expression of Ntng1 in the developing cerebral cortex through a
conserved regulatory element in intron 1 of Ntng1.

Satb2-targeted genes may be involved in synapse formation
in the developing cerebral cortex
To further understand synaptic functions of Satb2 in cerebral
development, we next focus on synaptic genes from Synapto-
meDB.33 Comparing DEGs at E17.5 and P0 stages with ChIP-
targeted genes, we found 168 targeted synaptic genes of Satb2
(Fig. 5a and Table S7). GO analysis showed the 168 synaptic genes

were enriched in synapse organization, regulation of synaptic
structure or activity or membrane, synaptic vesicle and synaptic
transmission (Fig. 5b). Over-represented KEGG pathways included
glutamatergic synapse, synaptic vesicle cycle and arginine
biosynthesis.
To find out whether Satb2 regulates different groups of synaptic

genes during developmental stages, we re-analyzed RNA-seq data
of Satb2-mutant cortices from adult mice published previously.20

Comparing of DEGs detected from E17.5, P0 and adult samples
revealed that only 72 synaptic genes overlapped between the early
developmental stage and the adult stage while most differential
expressed synaptic genes were stage specific (Fig. S3). Most of the
synaptic genes were differentially expressed in P0 stage, and only
a small number of genes were simultaneously upregulated or
downregulated in Satb2 knockout mouse at E17.5, P0 and adult
stages (genes linked by pink or blue lines in different develop-
mental stages) (Fig. 5c). The patterns were similar among
presynaptic, postsynaptic, preactivezone and vesicles genes.
When considering Satb2 ChIP-targeted synaptic genes, we found
25 are consistently regulated among different stages and 143
genes are E17.5/P0 specific (Fig. 5d), including Cdh10, Cdh13,
Cacna2d1, Cntnap2, Epha4 and Gabra1 (Labeled in Fig. 3b). E17.5/
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P0-specific Satb2-targeted synaptic genes mainly enriched on
calmodulin binding, cell adhesion molecule binding and actin
filament binding (Fig. 5e), which were essential for initiation of
synaptic formation.34 Adult-specific synaptic genes mainly
enriched on enzyme activator and postsynaptic neurotransmitter
receptor activity and these processes were important for synapse
specification and synaptic plasticity. These results demonstrated
that Satb2 can also regulate synaptic formation at early develop-
mental stage by targeting different sets of genes compared to
adult stage.
Cadherin-13 (CDH13) is critical in the regulation of cell

migration,35 neurite outgrowth and synapse formation in neurons
with monoaminergic or GABAergic specification.36–38 Cdh13 was
an E17.5/P0-specific Satb2-targeted synaptic gene and showed
increased expression in Satb2−/− mouse cerebral cortex compared
with Satb2+/+ group from RNA-seq and RT-qPCR (Fig. 5f, p-
value < 0.01). ChIP-seq analysis identified a strong and specific
binding of SATB2 to the highly conserved promoter region of the
Cdh13 gene (Fig. 5g). Luciferase activity significantly decreased
when co-transfected SATB2 with Cdh13-S-pEZX (Fig. 5h). However,
when co-transfected mutant SATB2 R239X with Cdh13-S-pEZX,
activity of luciferase increased compared with SATB2 and Cdh13-S-
pEZX group. These results showed that Satb2 can directly and

negatively regulate expression of Cdh13 in the developing
cerebral cortex through the conserved element in Cdh13 promoter
region.

Satb2 positively regulates Mef2c expression
To further investigate mechanisms of Satb2 in the regulation of
synaptic function in the early developmental stage, we analyzed
transcription factors among E17.5 DEG genes, Satb2-targeted
genes and neurological disease genes. We found 4 transcription
factors overlapping among the three dataset, that is Satb2, Mef2c,
Zbtb18 and Zeb2 (labeled by red color in Fig. S1A). Mef2c has been
demonstrated to be essential for synaptic function and regulate
excitatory/inhibitory synapse density predominantly as a cell-
autonomous, transcriptional repressor.39 We identified decreased
expression of Mef2c in Satb2−/− mouse cerebral cortex from RNA-
seq data and verified by RT-qPCR (Fig. 6a, p-value < 0.01). Western
blot and relative quantification of bands also help us verified
decreased expression of MEF2C at protein level in Satb2−/− mouse
cerebral cortex (Fig. 6b, c). Immunofluorescence staining of SATB2
and MEF2C showed that MEF2C had a high expression in the
cerebral cortex especially in layer 2/3/4 in wild-type mouse brain
and expression level of MEF2C was reduced significantly in the
cerebral cortex of Satb2−/− mouse (Fig. 6d). Co-staining of SATB2
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and MEF2C also showed both SATB2 and MEF2C localized in
nucleus, and there were cells showed co-localization of SATB2 and
MEF2C in layer 2/3 in E17.5 Satb2+/+ cerebral cortex (Fig. S4).
These results showed that knockout of Satb2 resulted in reduced
expression of MEF2C.
ChIP-seq analysis identified strong and specific bindings of

SATB2 to highly conserved intron 2 regions of the Mef2c gene.
Two sequences (Mef2c-S1 and Mef2c-S2) were inserted into the
luciferase reporter plasmid to test whether Satb2 directly regulates
the detected regions of Mef2c (Fig. 6e). Co-transfection of SATB2
or SATB2 R239X with empty pEZX-FR01 plasmids slightly increased
luciferase activity. However, luciferase activity significantly
increased when co-transfection SATB2 with Mef2c-S1-pEZX or
Mef2c-S2-pEZX (Fig. 6f). Moreover, the activity of luciferase didn’t
increase when co-transfection mutant SATB2 R239X with Mef2c-
S1-pEZX or Mef2c-S2-pEZX. The result indicated that mutant
SATB2 R239X lead to a weakened regulatory activity. We also
observed similar pattern of luciferase activity in Mef2c-S2- pEZX
group (Fig. 6f). These results suggested that Satb2 can regulate the
conserved intron regions of Mef2c and Satb2 likely directly
regulate the expression of Mef2c in the developing cerebral cortex.
To find out whether Satb2 can regulate the expression of

synaptic function-related genes through Mef2c, we compared
Satb2-targeted genes and Mef2c-targeted genes from the study of
Allaway et al.40 We found 28 genes overlap between Satb2-
targeted genes and Mef2c_direct genes in the early develop-
mental stage, indicating that expression of the 28 genes can be
regulated by Satb2 directly or by Mef2c which is regulated by
Satb2 (Fig. 6g). Among the 28 genes, Arhgef28, Dtna, Cdh7,
Cacna2d1 and Caln1 have been reported to be associated with
synaptic functions.41–45 Additionally, we found 332 genes over-
lapping between Satb2-targeted genes and Mef2c_2nd genes. We
inferred that these genes were regulated by Satb2 directly or by
other transcription factors that Mef2c regulates. By integrating of
Satb2 ChIP-seq data and RNA-seq data of adult Satb2 and Mef2c

knockout cortical cortex,20,39 we identified 206 genes were directly
regulated by Satb2 or Mef2c in the adult stage (Fig. S5A). The 206
genes are enriched mainly on synapse organization, synapse
assembly, forebrain development and cell junction assembly
(Fig. S5B). These results suggested that the numbers of synaptic
genes regulated by Satb2 or Mef2c increased when synapse and
cognitive function getting more important and complex from
early developmental stage to adult stage.

Impaired spatial learning and memory in Satb2+/− mice
Since Satb2−/− mice die immediately after birth,2 we performed
behavioral tests with Satb2+/+ and Satb2+/− mice. We recorded the
weights of Satb2+/+ and Satb2+/− mice after birth and found
Satb2+/−micewere significantly lighter than Satb2+/+mice since D12
(Fig. S6A). Open field test, passive avoidance test, elevated plus-maze
test and novel object recognition test showed no differences
between Satb2+/+ and Satb2+/− mice (data not shown). In the Morris
water maze test (MWM), Satb2+/− mice exhibited a longer latency in
finding the platform than Satb2+/+ mice during the learning phase
(Fig. S6B). The result indicated that the Satb2+/− mice may have
impaired learning capacity during the consecutive 4-days training
phase of the MWM task than Satb2+/+mice. During the memory test,
the number of platform crossings was lower in the Satb2+/− mice
compared to Satb2+/+ mice (Fig. S6C). The distance or time to the
platform showed no obvious difference between Satb2+/+ and
Satb2+/− mice (Fig. S6D, E). Thus, we thought Satb2+/− mice showed
impaired spatial learning and memory, further strengthening that
Satb2 regulates functions of synapse.

DISCUSSION
Here, we identified downstream targeted genes of Satb2 and
showed that Satb2 directly regulated genes important in
axonogenesis, synaptic organization and cell adhesion during
the early development of the cerebral cortex.
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Satb2 has been demonstrated to regulate many biological
processes as a transcription factor. Integration of RNA-seq and
ChIP-seq data helped us identified 1363 targeted genes of Satb2
with different temporal expression patterns (Fig. 2). Interestingly,
73 Satb2-targeted genes are associated with neurological disease,
which could explain the mental abnormalities in SAS patients.6

The growth of axons towards their targets is critical during the
establishment of neuronal connections under the regulation of
axon guidance ligands and receptors.46 Satb2 and Ctip2 directly
repress the expression of two Netrin1 receptors- DCC and Unc5C to
control the interhemispherical projection in a subset of early born,
deep layer callosal neurons.13 Satb2 also has been reported to
regulate EphA7 to control soma spacing and self-avoidance of
cortical pyramidal neurons.14 In this study, we found eight additional
downstream axon guidance genes regulated by Satb2, that is Plxna2,
Plxna4, Plxnd1, Ntng1, Epha3, Ephb1, Efnb2, and Flrt2 (Fig. 4c). Plxna2,
Plxna4 and Plxnd1 code cell surface receptors for class 3 semaphorins
(SEMA3A/3C/3E), SEMA4A and SEMA6A, and have been demon-
strated to regulate neuronal migration or ensure specificity of
synapse formation.47–49 PLXNA2 has recently been shown as a
candidate gene in autism spectrum disorder and intellectual
disability.50,51 Epha3, Ephb1, Efnb2 code ligand or receptors of the
ephrins family, which inhibit axon growth bymediating growth cone
collapse through regulation of Ras and Rho GTPases.52 Epha3 also
promotes axon growth through RhoA signaling and NMIIA in
developing neurons.53 We provided experimental evidence of Ntng1
to be a new axon guidance molecule regulated by Satb2 (Fig. 4d–f).
Therefore, these evidences provided new insights into the complex-
ity of Satb2 in regulating axonogenesis.
During neuronal development, axons and dendrites establish

initial synaptic contacts mostly during development and the early
postnatal period, although synapse formation continues through-
out life at a lower rate.34 It has been revealed that Satb2 has
different roles as a cell fate and neuron projection determinant at
the neonatal stage while a regulator of synaptic plasticity/
physiology at the adult stage.20 Our study identified 168 Satb2-
targeted synaptic genes and 143 early-stage-specific Satb2-
targeted synaptic genes, suggesting that Satb2 can also regulate
synaptic formation at the early developmental stage (Fig. 5).
168 synaptic genes enriched on synapse organization, regulation
of synaptic structure or activity or membrane, synaptic vesicle and
synaptic transmission. Cdh13, one of the 143 early-stage-specific
Satb2-targeted synaptic genes, had an increased expression in the
absence of Satb2. Several studies revealed Cdh13 variants
associated with memory impairment54 and hyperactivity/impul-
sivity, specifically during childhood and adolescents.55 Luciferase
reporter assay provides evidence that Satb2 can directly regulate
the expression of Cdh13 (Fig. 5h). Satb2 was thought as a cell fate
and neuron projection determinant at neonatal stage and
regulator of synaptic plasticity/physiology at the adult stage. Our
study firstly demonstrated the function of Satb2 in synaptic
formation at the embryonic stage; our findings enriched the
functions of Satb2 in the early development stage.
Myocyte enhancer factor 2 C (MEF2C) is crucial for program-

ming early neuronal differentiation and regulation of dendritic
spine density, synapse development, synapse number, and AMPA-
mediated postsynaptic strength.39,56,57 We provided experimental
evidence that Mef2c was downregulated in Satb2−/− mice
(Fig. 6a–d). Our study firstly suggests Mef2c as a downstream
effector of Satb2 to regulate synaptic transmission in the
developing cerebral cortex (Fig. 6e, f). Compared analysis of
targeted genes of Satb2 and Mef2c showed that several targets of
Mef2c were regulated directly or indirectly by Satb2 (Fig. 6f),
indicating a complex regulatory network of Satb2.
Satb2 cKO mice showed hyperactivity, increased impulsivity,

abnormal social novelty, and impaired spatial learning and
memory.58 MWM test of global Satb2+/− mice showed impaired
spatial learning and memory (Fig. S6), further strengthening that

Satb2 regulates synapse functions. Considering SATB2 hetero-
zygous variations in humans cause disease and SATB2 expression
in mice and human has similar patterns during prenatal cortex
development, our results showed that Satb2 heterozygous
knockout mice had similar phenotypes and were more consistent
with human disease model.

CONCLUSION
Our study has increased the knowledge of the potential target
genes of Satb2 in the developing cerebral cortex and these target
genes may be involved in axonogenesis, synapse formation and
synaptic plasticity. We also explored the direct regulation of Satb2
in 4 downstream effectors (Kitl, Ntng1, Cdh13, and Mef2c) although
these still need further investigation. Our study demonstrates
complicated molecular regulatory mechanism of Satb2 in axono-
genesis and synaptic function in the early developmental stage
and provides new insights to elucidate the pathogen of SAS.
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