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Double agents: genes with both oncogenic
and tumor-suppressor functions
Libing Shen1, Qili Shi1 and Wenyuan Wang1,2

Abstract
The role of genetic components in cancer development is an area of interest for cancer biologists in general.
Intriguingly, some genes have both oncogenic and tumor-suppressor functions. In this study, we systematically
identified these genes through database search and text mining. We find that most of them are transcription factors or
kinases and exhibit dual biological functions, e.g., that they both positively and negatively regulate transcription in
cells. Some cancer types such as leukemia are over-represented by them, whereas some common cancer types such
as lung cancer are under-represented by them. Across 12 major cancer types, while their genomic mutation patterns
are similar to that of oncogenes, their expression patterns are more similar to that of tumor-suppressor genes. Their
expression profile in six human organs propose that they mainly function as tumor suppressor in normal tissue. Our
network analyses further show they have higher network degrees than both oncogenes and tumor-suppressor genes
and thus tend to be the hub genes in the protein–protein interaction network. Our mutation, expression spectrum,
and network analyses might help explain why some cancer types are specifically associated with them. Finally, our
results suggest that the functionally altering mutations in “double-agent” genes and oncogenes are the main driving
force in cancer development, because non-silent mutations are biasedly distributed toward these two gene sets across
all 12 major cancer types.

Introduction
Cancer is a series of diseases featured with abnormal cell

growth and the potential of spreading to the other body
parts. Many biologists share the view that cancer is an
evolutionary legacy1. Thus, besides environmental factors,
the genetic factors shaped by evolution play a crucial role
in cancer development. The cells of the multicellular
organisms harbor both oncogenes and tumor-suppressor
genes. The former could cause normal cell to grow out of
control and become cancer, while the latter protects them
from degenerating into cancer cells. They appear to be
two antithetical gene categories in oncogenesis. However,
paradoxically, some genes exhibit both oncogenic and
tumor-suppressor functions2–5. For example, NOTCH

receptors, the vital components of the evolutionarily
conserved Notch signaling pathway, can be classified as
both oncogene and tumor-suppressor gene6. It plays an
oncogenic role in T-lineage acute lymphoblastic leukemia
while it performs tumor-suppressor function in squamous
epithelial cells7,8. These results indicate that a gene could
have dual roles in oncogenesis under different cellular
contexts.
Conceptually, cancer is a result of consecutive somatic

mutation accumulation9–11. Many studies show that both
the gain of function in oncogenes and the loss of function
in tumor-suppressor genes are required for the develop-
ment of cancer from a normal cell12–16. For a diploid
organism, gain-of-function mutations are often dominant
or semi-dominant, whereas loss-of-function mutations
are usually recessive. Two-hit hypothesis of oncogenesis
proposes that the development of cancer is initiated by
the loss of both alleles of a tumor-suppressor gene17.
Retinoblastoma is an example of two-hit cancers, in which
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both RB1 genes, a tumor-suppressor protein, are inacti-
vated18. For a gene with both oncogenic and tumor-
suppressor potentials, it is possible that one single
mutation event would unleash its oncogenic power and
abolish its tumor-suppressor function. Theoretically, one
such mutation event would be enough to trigger the
carcinogenic cascade in normal cells. Thus, it is an
important and interesting question to ask whether some
cancers need less mutation steps to develop than the
others and what kind of genes play driver roles in the
development of these “one-hit” cancers.
Given the special role of these genes in oncogenesis, it is

important for cancer biologists to learn how many of
them exist and what are their functions in order to gain a
better understanding of their contribution to oncogenesis.
Here we present a study focusing on the genes with both
oncogenic and tumor-suppressor functions. Based on the
available databases, we identified these “double-agent”
genes through text mining. We found that the propor-
tions of cancer types associated with these genes were
significantly different from global cancer statistics and
most of them were transcription factors or kinases. We
detailedly studied them as a gene set, which exhibit duality
in their biological functions. We also used the mutation
and expression data from The Cancer Genome Atlas
(TCGA) project to compare their mutation and expres-
sion pattern with oncogenes and tumor-suppressor genes.
Our results showed that, in 12 major cancer types, their
mutation patterns resembled those of oncogenes, while
their expression patterns were more similar to those of
tumor-suppressor genes. We further used the interactome
data to study their network properties and roles in
protein–protein interaction (PPI) network and found that
they tended to be the hub genes within the network.
Hopefully, our study can provide cancer biologists with
the knowledge of these genes from various perspectives.

Materials and methods
Gene set and cancer information gathering
Oncogenes (ONCs) were downloaded from Network of

Cancer Genes database (NCG 5.0)19. Tumor-suppressor
genes (TSGs) were downloaded from Tumor Suppressor
Gene database (TSGene 2.0)20. The genes overlapped
between two databases were viewed as the candidates for
“double-agent” genes. These candidate genes were sear-
ched in the GeneRIF database (ftp://ftp.ncbi.nih.gov/gene/
GeneRIF/) which provide the literature annotations for
our candidates. Then we manually curated these candi-
date genes according to literature evidence. Only if lit-
erature evidence reported one candidate gene as both
oncogene and tumor-suppressor gene, it would be iden-
tified as “double-agent” genes (please see supplemental
information for the more detailed workflow of our data-
base search and text mining process). Literature evidence

shows that “double-agent” genes are actually proto-
oncogenes with tumor-suppressor function. Thus, we
abbreviatively named them as POTSF genes in this study.
The cancer type information for each POTSF gene was

extracted from its literature evidence. We further gleaned
the specific cancer information for each POTSF gene
from Cancer Genetics Web (http://www.cancerindex.org/
geneweb/), which is also based on literatures and used as a
complement to our literature mining result.

Functional enrichment analysis and gene expression
information gathering
In order to investigate their biological functions, we

used DAVID (the Database for Annotation, Visualization
and Integrated Discovery) Bioinformatics Resources to
perform the gene-GO term enrichment analyses for
POTSF genes, oncogenes (ONCs), and tumor-suppressor
genes (TSGs)21. To visualize the Gene Ontology (GO)
results, we used ggplot2 package for GO result display.
The expression information for each POTSF gene in

five tissues was retrieved from Genecard database22.
Genecard database has the tissue expression values
(microarray and RNA-Seq data) for an inquiry gene. We
gleaned the expression values from top five tissues for
each POTSF gene and organized these tissue types into
five major categories: internal and musoskeletal tissue,
blood and immune tissue, secretory tissue, nervous tissue,
and reproductive tissue (please see supplemental data for
each POTSF gene's specific expression information).
Genecard database shows that some POTSF genes are
ubiquitously expressed and some of them have no
expression information.
We used the R package Venn Diagram to display

POTSF gene expression information in a Venn diagram
format23.

Somatic mutation data for 12 major cancer types
In order to explore the mutation patterns of POTSFs,

ONCs, TSGs, and non-cancer related genes (NCRGs) in
cancers, we downloaded the somatic mutation data from
one published TCGA project24. The data include 3281
cancer cases from 12 major cancer types with a total of
617,354 somatic mutations in 20,947 genes. The 12 major
cancer types are bladder urothelial carcinoma (BLCA),
breast adenocarcinoma (BRCA), colon and rectal carci-
noma (COADREAD), glioblastoma multiforme (GBM),
head and neck squamous cell carcinoma (HNSC), kidney
renal clear cell carcinoma (KIRC), acute myeloid leukemia
(LAML), lung adenocarcinoma (LUAD), lung squamous
cell carcinoma (LUSC), ovarian serous carcinoma (OV),
and uterine corpus endometrial carcinoma (UCEC).
In 617,354 somatic mutations, there are 39,869 non-

sense mutations, 134,635 silent mutations, 916 in-frame
insertions, 5134 frameshift insertions, 10,743 frameshift
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deletions, 3590 in-frame deletions, 10,190 splice site
mutations, 784 nonstop mutations, 416,847 missense
mutations, and 10,659 non-coding RNA mutations. We
filtered 134,635 silent mutations and 10,659 non-coding
RNA mutations from a total of 617,354 somatic muta-
tions, because these mutations will not alter the amino
acid sequence of a protein. We only investigated the
mutation patterns of 472,060 non-silent mutations in this
study.
The mutation rate for each gene was calculated as fol-

lows. First, we calculated the total number of mutations
(including both non-silent and silent mutations) for each
gene in each cancer type. Second, the total number of
mutations for each gene was divided by the number of
cases in each cancer type. Third, the average number of
mutations for each gene in each cancer type was divided
by the gene length and the quotient is the mutation rate
for each gene in each cancer type.

RNA-Seq data for 12 major cancer types and 6 normal
human organs
In order to explore the expression patterns of POTSFs,

ONCs, TSGs, and NCRGs in cancers, we downloaded the
RNA-Seq data of 12 major cancer types from the cBio-
Portal, a website hosting the data of TCGA project25. In
the downloaded RNA-Seq data, there are 129 samples of
BLCA, 817 samples of BRCA, 382 samples of COAD-
READ, 166 samples of GBM, 279 samples of HNSC,
469 samples of KIRC, 173 samples of LAML, 230 samples
of LUAD, 501 samples of LUSC, 307 samples of OV, and
333 samples of UCEC, respectively.
TCGA project uses the RSEM (RNA-Seq by Expecta-

tion-Maximization) value to quantify each gene’s expres-
sion level in cancer samples. To make different gene
expression levels from different samples comparable
within a cancer type, we used the normalized RSEM
values to describe the expression value for each gene. In
this study, the RSEM values are normalized to medians
instead of means. Due to the multiple samples in each
cancer type, we calculated the average RSEM value for
each gene based on the RSEM values from multiple
cancer samples.

The RNA-Seq data of six human organs (brain, cere-
bellum, heart, kidney, liver, and testis) were downloaded
from the supplementary information of Brawand et al.26.
We calculated the RPKM (Reads Per Kilobase per Million
mapped reads) value for each gene based on the down-
loaded data (unique read coverage per exon). Due to the
uneven number of samples in some organs, we used the
mean RPKM value if multiple RPKM values were available
for each human organ. We transformed the RPKM values
into the log2(RPKM) values and then calculated the Z-
score for every log2(RPKM) value within each organ in
order to render the gene expression values comparable
among different organs.

Network analysis
We downloaded the interactome data from mentha

database (http://mentha.uniroma2.it/) and used them to
perform the network analysis for POTSFs, ONCs, TSGs,
and NCRGs27. For each gene with PPI information, we
calculated its degree k and clustering coefficient C(k)
(please see supplemental information for the more
detailed description of our network analysis).
We used Cytoscape 3.4.0 to generate the undirected PPI

network for POTSFs and their interaction proteins28.
MCODE, a Cytoscape plugin, was used to extract the
highly interconnected regions in this network with default
parameters29.

Statistical analysis
The R package (version 3.2.4) was used to perform

statistical analyses and P-value smaller than 0.05 was
viewed as statistically significant in this study. Chi-square
test was employed to compare the percentages of top 10
cancer types associated with POTSFs and the percentages
of these cancer types in 2012 global cancer statistics30.
Two-sided Kolmogorov–Smirnov test was employed to
compare the mutation patterns of 472,060 non-silent
mutations from POTSFs, ONCs, TSGs, and NCRGs in 12
cancer types. Wilcoxon test was employed to compare the
expression levels of POTSFs, ONCs, TSGs, and NCRGs in
12 cancer types and in 6 normal human organs.

Table 1 The classification of proto-oncogenes with tumor-suppressor function (POTSF)

Classification POTSF genes

Transcription factors BRCA1, CAMTA1, CBFA2T3, CDX2, CREB3L1, CREBBP, DDB2, DNMT1, DNMT3A, ETV6, EZH2, FOXA1, FOXL2, FOXO1, FOXO3, FOXO4,

FOXP1, FUS, IRF4, KLF4, KLF5, NCOA4, NOTCH1, NOTCH2, NOTCH3, NPM1, NR4A3, PAX5, PML, PPARG, RB1, RUNX1, SMAD4, STAT3,

TCF3, TCF7L2, TP53, TP63, TRIM24, WT, ZBTB16

Kinases BCR, CHEK2, EPHA1, EPHA3, EPHB4, FLT3, MAP2K4, MAP3K4, MST1R, NTRK3, PRKAR1A, PRKCB, SYK

Others ARHGEF12, BCL10, BRCA2, CBL, CDC73, CDH11, CDKN1B, DCC, DDX3 × , DICER1, FAS, FAT1, GPC3, IDH1, IKZF2, LIFR, NF2, NUP98, PHF6,

PTPN1, PTPN11, RHOA, RHOB, SH2B3, SLC9A3R1, SOCS1, SPOP, SUZ12, WHSC1L1
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Results
Number, classification, and biological function of proto-
oncogenes with tumor-suppressor function
Through database search and literature annotation, we

identified 83 POTSF genes, 1320 ONCs, and 952 TSGs in
this study. According to literature annotation, we find that
many POTSF genes are either transcription factors or
kinases. Thus, we classified POTSF genes into three
categories: transcription factors, kinases, and others
(Table 1). About half of POTSF genes are transcription
factors (41/83) and about one-sixth of them are kinases
(13/83). Compared with POTSF genes, the percentage of
transcription factors and kinases are much lower in ONCs
and TSGs (Figure S2a, S2c and S2e).
In order to investigate their functions as a gene set, we

performed the gene-GO term enrichment analyses for
POTSFs, ONCs, and TSGs. The DAVID GO term results
are shown in Fig. 1. For POTSFs, the DAVID results
intriguingly show that their biological process exhibits a
contradicting regulation of transcription—they both
positively and negatively regulate transcription (Fig. 1a).
GO keywords clearly show that they are both proto-
oncogene and tumor suppressors. For ONCs, the DAVID
results show that they mostly involve positive regulation
of a variety of biological processes and GO keywords
identify them as proto-oncogenes (Fig. 1b). For TSGs, the
DAVID results show that they mainly participate in the
inhibition of cell proliferation and the promotion of cell
apoptosis (Fig. 1c). GO keywords identify them as tumor
suppressors. The KEGG (Kyoto Encyclopedia of Genes
and Genomes) pathways and PIR (Protein Information
Resource) keywords of POTSFs are partly overlapped with

ONCs, while their cellular components and molecular
functions are partly or completely overlapped with TSGs.
Interestingly, ONCs is the only gene set that positively
regulates nitrogen and metabolic process among three
gene categories.

Cancer types associated with POTSFs and the expression
spectrum of POTSFs
Based on database and literature searches, we also

identified the cancer types specifically associated with
each “double-agent” gene (supplemental data). The
majority of them are associated with at least two types of
cancer (Fig. 2). TP53 and FAS are top two POTSF genes in
terms of the number of associated cancer types, which are
associated with 34 and 15 cancer types, respectively. The
number of associated cancer types shows that most
POTSF genes are not disease specific.
We further investigated what types of cancer were

specifically associated with POTSF genes. Our result
shows that leukemia, breast cancer, and lung cancer are
three most common cancer types associated with POTSF
genes (Fig. 3a). We also compared our result with 2012
global cancer statistics (Fig. 3b). Chi-square test shows
that there is a detectable statistical difference between the
percentages of top 10 cancer types associated with
POTSFs and 2012 global cancer statistics (P-value=
0.01674, leukemia: 13 vs. 2.5%, breast: 10.6 vs. 11.9%, lung:
6.2 vs. 12.9%, prostate: 5.1 vs. 7.9%, sarcoma: 4.7 vs. 1%,
Hodgkin lymphoma: 4.7 vs. 0.5%, colorectal: 4.5 vs. 9.7%,
ovarian: 4 vs. 1.3%, bladder: 3.6 vs. 3.1%, and stomach: 3.6
vs. 6.8%). Leukemia, Hodgkin lymphoma, sarcoma, and
ovarian cancer are over-represented by “double-agent”

Fig. 1 GO term enrichment analyses of proto-oncogenes with tumor-suppressor function (POTSFs), oncogenes (ONCs), and tumor-
suppressor genes (TSGs). a GO term enrichment results for POTSFs. b GO term enrichment results for ONCs. c GO term enrichment results for TSGs
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genes, while more common cancers such as lung, pros-
tate, colorectal, and stomach cancers are under-
represented.
To investigate whether their expression spectrum might

be related to their associated cancer types, we extracted
the expression information for POTSFs from Genecard

database. We used five major tissue types for displaying
the expression spectrum of POTSFs (Fig. 4). They are
blood and immune, internal and musculoskeletal, secre-
tory, nervous, and reproductive systems. Figure 4 shows
that more than one-third of POTSFs (37/83) are ubiqui-
tously expressed in five tissue types and only 19 of them
are tissue specific. Among tissue-specific genes, there are
more POTSFs expressed in blood and immune system
than other tissues (8 out of 19). This result is consistent
with our observation that different types of leukemia are
the most common cancer type associated with POTSFs.

Distribution of non-silent mutations in POTSFs, ONCs,
TSGs, and NCRGs and their mutation rates across 12 cancer
types
To investigate the non-silent mutation distribution in

four gene sets across different cancer types, we used the
cancer somatic mutation data in 12 major cancer types.
We extracted the non-silent mutation information for
each gene in four gene sets if the information was
available.
In Fig. 5, the first panel shows the general non-silent

mutation profiles of POTSFs, ONCs, TSGs, and NCRGs
in all 12 major cancer types. POTSFs and ONCs averagely
have 70 and 58 non-silent mutations per gene (median 39
and 36 per gene), while TSGs and NCRGs averagely have
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24 and 23 non-silent mutations per gene (median 19 and
16 per gene). Kolmogorov–Smirnov tests show that
POTSFs and ONCs harbor the significantly higher num-
ber of non-silent mutations than TSGs and NCRGs (P-
values < 7 × 10−19, 4 × 10−13, 2 × 10−16, and 2 × 10−16).
There is no statistical difference detected in the number
of non-silent mutations between POTSFs and ONCs (P-
values= 0.66), whereas TSGs harbor significantly more
non-silent mutations than NCRGs (P-values= 0.00408).
Then we examined non-silent mutation patterns of four

gene sets in each cancer type (Fig. 5). Interestingly, their
mutation patterns show variations among different cancer
types. In LAML, POTSFs averagely have the biggest
number of average non-silent mutations among four gene
sets (POSTFs: mean 3.3 per gene vs. ONCs: mean 0.27 per
gene, TSGs: mean 0.08 per gene, NCRGs: mean 0.07 per
gene, respectively), although Kolmogorov–Smirnov test
shows that there is no detectable statistical difference
between POSTFs and ONCs (P-values= 0.2034). In
LUAD and LUSC, ONCs averagely have more non-silent
mutations than POTSFs (mean 9.7 per gene vs. 7.9 per
gene in LUAD and mean 6.7 per gene vs. 6.1 per gene in
LUSC), although there is no statistical significance
detected (P-values= 0.28 and 0.22). In COADREAD,
NCRGs averagely have more non-silent mutations than

TSGs (mean 3.1 per gene vs. 3.5 per gene, P-values=
0.000553), while in HNSC and UCEC, TSGs averagely
have more non-silent mutations than NCRGs (mean 2.3
per gene vs. 2 per gene and mean 7.3 per gene vs. 6.7 per
gene, P-values= 0.0097 and 0.0019), which are not
observed in the other cancer types. In the case of
COADREAD, although our result shows that NCRGs
have the smaller number of non-silent mutations per gene
than TSGs (mean 3.1 per gene vs. 3.5 per gene), one of
NCRGs, APC, has 257 non-silent mutations, which sig-
nificantly shifts the mutation distribution towards NCRGs
in COADREAD. It is why Kolmogorov–Smirnov test
shows that NCRGs have significantly more non-silent
mutations than TSGs in COADREAD.
The mutation rates of POTSFs, ONCs, and TSGs show

a slightly different pattern from their non-silent mutation
distributions across 12 cancer types (Fig. 6). First, in all 12
cancer types combined, there is no statistical difference
detected among three cancer-related gene sets (POTSFs,
ONCs, and TSGs) in terms of the mutation rate, although
ONCs and TSGs show higher mutation rates than NCRGs
(P-values= 0.01407, P-values= 0.03656, the first panel of
Fig. 6). In BRCA, GBM, HNSC, KIRC, LAML, and OV,
POTSFs and ONCs exhibit higher mutation rates than
TSGs and NCRGs, which is very similar to their non-
silent mutation distribution patterns in these six cancer
types. In BLCA, COADREAD, and LUAD, ONCs exhibit
higher mutation rates than TSGs and NCRGs, while
POTSFs only exhibit higher mutation rates than TSGs.
The mutation rates of POTSFs, ONCs, and TSGs in LUSC
and UCEC are quite different from their non-silent
mutation distribution patterns in these two cancer types.
In LUSC, ONCs have the highest mutation rate among
four gene sets and there is no mutation rate difference
detected between POTSFs and TSGs or NCRGs. In
UCEC, ONCs and NCRGs have higher mutation rates
than POTSFs and TSGs. We notice that there is a
mutation rate discrepancy between TSGs and NCRGs.
TSGs have higher mutation rate than NCRGs in all 12
cancer types combined, whereas NCRGs have higher
mutation rate than TSGs in each individual cancer type.
We found that this discrepancy was due to too many
outliers in TSGs if we calculated their mutation rates in all
12 cancer types combined. There are much less outliers in
TSG gene set in each individual cancer type.
Both the non-silent mutation distributions and muta-

tion rates in four gene sets propose that different types of
cancers underwent different mutation processes and
potential cancerous mutations are more prone to happen
in POTSFs and/or ONCs. We also examined the dis-
tribution of potential gain-of-function mutations and
potential loss-of-function mutations in POTSFs, ONCs,
TSGs, NCRGs, and their non-silent and silent mutation
rate across 12 cancer types in this study (Figure S4, S5, S6

Fig. 4 Expression spectrum of POTSFs in five tissues. Internal and
musoskeletal tissue includes lung, kidney, liver, colon, heart, muscle,
etc. Blood and immune tissue includes thymus, bone marrow,
peripheral blood, lymph node, etc. Secretory tissue includes skin,
prostate, placenta, pancreas, etc. Nervous tissue includes forebrain,
retina, cerebellum, etc. Reproductive tissue includes testis and ovary.
Please see supplemental data for each POTSF-specific expression
information
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and S7). Please see supplemental information for more
details.

Expression patterns of POTSFs, ONCs, TSGs, and NCRGs
across 12 cancer types and 6 human normal organs
To understand their possible roles in oncogenesis from

expression perspective, we further examined the expres-
sion levels of POTSFs, ONCs, TSGs, and NCRGs across

12 cancer types. In most cancer types, ONCs averagely
have a higher expression level than TSGs (Fig. 7). In
BLCA, the average expression level from high to low is
ONCs, POTSFs, NCRGs, and TSGs; in BRCA and GBM,
the average expression level from high to low is ONCs,
NCRGs, POTSFs, and TSGs; in COADREAD and LUSC,
the average expression level from high to low is ONCs,
NCRGs, TSGs, and POTSFs; in HNSC, the average

Fig. 5 The distribution of non-silent mutations in POTSFs, ONCs, TSGs, and NCRGs across 12 cancer types. The star indicates the statistical
difference (P-value < 0.05, Kolmogorov–Smirnov test) between two gene sets. The star is placed on the statistically higher gene set and the color of
star indicates the corresponding gene set
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expression level from high to low is NCRGs, ONCs,
POTSFs, and TSGs; in KIRC, the average expression level
from high to low is NCRGs, TSGs, ONCs, and POTSFs; in
LAML, the average expression level from high to low is
POTSFs, ONCs, NCRGs, and TSGs; in LUAD, the aver-
age expression level from high to low is NCRGs, ONCs,
TSGs, and POTSFs; in OV and UCEC, the average

expression level from high to low is ONCs, NCRGs, TSGs,
and POTSFs.
The expression patterns of POTSFs, ONCs, TSGs, and

NCRGs are more diversified than their mutation patterns
in 12 cancer types. Although ONCs usually have a sig-
nificant higher expression level than TSGs in most cancer
types, NCRGs have a significant higher expression level

Fig. 6 The mutation rates of POTSFs, ONCs, TSGs, and NCRGs across 12 cancer types. The star indicates the statistical difference (P-value < 0.05,
Kolmogorov–Smirnov test) between two gene sets. The star is placed on the statistically higher gene set and the color of star indicates the
corresponding gene set
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than the other three gene sets in KIRC and there is no
statistically significant expression difference detected
among four gene sets in LAML. Thus, different cancers
have relatively diversified expression profiles. Such
expression diversity probably attributes to the specific
tissue background from where cancer cells stem. Thus, we

also examined the expression patterns of POTSFs, ONCs,
TSGs, and NCRGs in normal human brain, cerebellum,
heart, kidney, liver, and testis. Figure 8 shows the
expression patterns of POTSFs, ONCs, TSGs, and NCRGs
in these six organs. There are some differences for the
expression levels of POTSFs, ONCs, and NCRGs among

Fig. 7 The distribution of the RNA-Seq expression values of POTSFs, ONCs, TSGs, and NCRGs across 12 cancer types. The star indicates the
statistical difference (P-value < 0.05, Kolmogorov–Smirnov test) between two gene sets. The star is placed on the statistically higher gene set and the
color of star indicates the corresponding gene set
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six organs, but TSGs always have significantly higher
expression levels than ONCs and NCRGs in all six organs
we examined. Although our expression analysis shows
that TSGs have the similar expression level as ONCs in
kidney cancer (KIRC), they do exhibit a significantly
higher expression level than ONCs in normal kidney.
Thus, from the expression perspective, KIRC and LAML
could be a consequence of the down-regulation of TSGs
instead of the up-regulation of ONCs, while the other 10
cancers are a result of both the down-regulation of TSGs
and the up-regulation of ONCs.
In our expression analyses, we notice one phenomenon

that the expression level of POTSFs is more akin to TSGs
in both 12 cancer types and 6 human organs. No statis-
tical expression difference is detected between POTSFs
and TSGs in six human organs, while the expression
difference is detected between POTSFs and ONCs in
BRCA, HNSC, LUSC, OV, UCEC, heart, and testis.

Network analysis for POTSFs, ONCs, TSGs, and NCRGs
A coding gene usually exerts its function through

interacting with other molecular entities, which is often
another protein. In order to get a comprehensive view of
their roles in oncogenesis, we used the PPI information to
examine the network properties of POTSFs, ONCs, TSGs,
and NCRGs. First, we investigated the network degree for
each POTSF, ONC, TSG, or NCRG gene. Degree is a
measure of the number of interacting neighbors for a
node (gene). Figure 9a shows that POTSFs have the
highest degree among four gene sets with significant
statistical differences. Averagely, a POTSF has 104 inter-
acting neighbors, whereas an ONC or a TSG has only 50
and a NCRG has 25. This result proposes that POTSFs are
more likely to be the hub genes in PPI network. Second,
we calculated the clustering coefficient for four gene sets.
Clustering coefficient measures a node’s modularity in a
network, i.e., the degree to which nodes in a network tend
to cluster together. In PPI network, modularity often

Fig. 8 The distribution of the RNA-Seq expression values of POTSFs, ONCs, TSGs, and NCRGs in six normal human organs. The star indicates
the statistical difference (P-value < 0.05, Kolmogorov–Smirnov test) between two gene sets. The star is placed on the statistically higher gene set and
the color of star indicates the corresponding gene set
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implies certain biological function. Figure 9b shows that
there is no statistical difference in term of the clustering
coefficients among POTSFs, ONCs and TSGs, but they
have significantly higher clustering coefficients than
NCRGs. It proposes that POTSFs, ONCs, and TSGs are
more likely to form a biological module through PPI,
while NCRGs are less likely. Third, we checked the evo-
lutionary pressure on POTSFs, ONCs, TSGs, and NCRGs.
If a gene played an important role in a biological network,
it usually would have experienced greater evolutionary
pressure and thus had a lower nonsynonymous to
synonymous substitution ratio (dN/dS values, please see
supplemental information for how we calculated dN/dS
values for four gene sets). Figure 9c shows that POTSFs
have the lowest dN/dS values and NCRGs have the high-
est. The dN/dS values of ONCs and TSGs are between that
of POTSFs and NCRGs. Thus, the dN/dS values indicate
that POTSFs perform more important biological roles
than the other three gene sets in PPI network.
For a clearer view of the network property analyses

above, we generated an undirected PPI network which
includes all POTSFs and their interacting proteins from
the other three gene sets (Fig. 10). In this PPI network,
there are a total of 4250 nodes (genes) and 8629 edges
(interactions). Among the 4250 nodes, 83 of them are
POTSFs, 469 are ONCs, 420 are TSGs, and 3278 are
NCRGs. Figure 10a shows that most of POTSFs locate in
the central region of network, while the other three gene
sets usually surround them, which is consistent with the
result shown in Fig. 9a. Their positions within the PPI
network clearly show that they are the hub genes in this
complicated PPI network. It is expected that hub genes
have lower dN/dS values because they are functionally
more important than their surrounding neighbors. We
further extracted the five most interconnected regions in

this network. These regions represent the important sub-
networks (modules) within this network. Figure 10b
shows the most interconnected module. We can see that
TP53 and CREBBP are in the center of this module. They
are both POTSFs. In the other modules, POTSFs such as
BRCA1 and CHEK2 also serve as the hub genes for the
sub-networks and some typical oncogenes such as JUN
and MYC are often present in these modules (Figure 13S,
14S, 15S, and 16S).
We also mapped breast cancer, leukemia, and lym-

phoma drug targets in this PPI network (drug target
network is shown in supplemental information, Figure
12S). We found that the drug target genes are scattered in
the network instead of congregating in a module or a
certain region of the network. The sub-network analyses
of drug targets further show that a lot of disease genes are
not targeted by any drug (Figure 17S, 18S, and 19S).

Discussion
Cancer is a disease driven by accumulated somatic

mutations which lead to abnormal cell proliferation9–11.
During the oncogenic transformation process, oncogene
and tumor-suppressor genes play contrasting roles in
cells. Intriguingly, some genes have both oncogenic and
tumor-suppressor functions. In our study, we system-
atically identified these genes through database search and
literature annotation. Our GO analyses show that half of
them are transcription factors and can both positively and
negatively regulate transcription in cells. Certainly, not all
POTSF genes are transcription factors. About one-sixth of
them are kinases which catalyze the other protein through
phosphorylation. They can increase or decrease a pro-
tein’s activity, stabilize or destruct it, and initiate or dis-
rupt its interaction with other proteins31. For POTSFs,
these contrasting regulatory functions are the functional

Fig. 9 The network property and evolutionary pressure analyses for POTSFs, ONCs, TSGs, and NCRGs. a The network degrees of four gene
sets. b The clustering coefficients of four gene sets. c The dN/dS values of four gene sets
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bases which support their dual roles in cancer develop-
ment. Furthermore, like ONCs, POTSFs participate in
pathways in cancer and chromosomal rearrangement
while TSGs do not; like TSGs, POTSFs mainly locate in
nucleus while ONCs are enriched in plasma membrane.
POTSFs share similarity and dissimilarity with ONCs and
TSGs at the same time, which makes them potentially
high-value targets for cancer biologists, because selec-
tively tuning their functions is a feasible measure for
cancer treatment.
Unsurprisingly, most POTSFs are associated with mul-

tiple cancer types. TP53 alone is implicated in 34 different
cancer types. It is worth investigating whether they per-
form oncogenic or tumor-suppressor function in each
associated cancer type through carefully designed
experiments, although it is beyond our capability. The
proportions of the cancer types associated with POTSFs
significantly vary from the proportions of the common
cancer types in the 2012 global cancer statistics. Some less
common cancer types such as leukemia are over-
represented by POTSFs, while some most common can-
cer types such as lung cancer are under-represented by
them. Leukemia, sarcoma, Hodgkin lymphoma, and
ovarian cancer are more commonly associated with
POTSFs. These cancer types are often epidemically linked
to younger populations32–35. For example, leukemia is the
most common pediatric cancer36. Since the number of
mutations is positively correlated with age, the younger a
cancer patient is, the less mutations his or her cancer has.
POTSFs are oncogene and tumor-suppressor gene
incorporated into one, and a single mutation event in
these genes could theoretically promote its oncogenic

function and inhibit its tumor-suppressor function at the
same time. Thus, a very few mutations in POTSFs could
be sufficient to trigger the cellular cascade of cancerous
transformation in vivo.
Our analyses of the non-silent mutation patterns for

POTSFs, ONCs, TSGs, and NCRGs show that POTSFs
and ONCs accumulate more mutations than TSGs and
NCRGs in all 12 cancer types examined in this study. This
pattern is also observed in the distribution of potential
gain-of-function mutations and potential loss-of-function
mutations across 12 cancer types (Figure S4 and S5). One
thing we want to mention is that in this study non-silent
mutations far outnumber silent mutations by the ratio of
3 to 1 (472,060 vs. 145,294), which propose that these 12
cancers are mainly driven by functionally altering muta-
tions in POTSFs and ONCs. The mutation rate analysis
further supported the statement above. In most cancer
types examined in this study, POTSFs and/or ONCs have
higher mutation rates than TSGs and/or NCTGs. Con-
sidering that POTSFs and ONCs averagely have longer
gene length than TSGs and NCTGs (Figure S3b), it is
unlikely that the mutation bias in POTSFs and ONCs is
an artifact of our analysis. Among 12 cancer types, LAML
has the lowest number of average non-silent mutations in
four gene sets and POTSFs accumulate the highest aver-
age number of mutations in this cancer type compared
with the other three gene sets. This result is consistent
with our observation that some cancer types are specifi-
cally associated with POTSFs.
The expression patterns of POTSFs, ONCs, TSGs, and

NCRGs are more diversified than their mutation patterns
in 12 cancer types. Due to the lack of the expression data

Fig. 10 The protein-protein interaction network graph for POTSFs and its most interconnected module. a Protein–protein interaction
network of POTSFs, ONCs, TSGs, and NCRGs. b The most interconnected region of the network. POTSFs are represented by red color. ONCs are
represented by yellow color. TSGs are represented by green color. NCRGs are represented by blue color
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from paracancerous tissues, we are unable to confirm
whether the expression diversity in 12 cancer types is
from their tissue background or the cancer tissue itself.
However, through examining their expression level in 6
normal human organs, we find that the down-regulation
of TSG expression seem to be the common theme across
12 cancer types. The question is how gain-of-function
mutation events could down-regulate the expression of
TSGs in cancer cells. One possible scenario is that the
gain-of-function mutations in POTSFs promote their
oncogenic functions and then the mutated POTSFs
negatively regulate TSG expression during cancer devel-
opment. Interestingly, there is no statistically significant
expression difference detected between POTSFs and
TSGs in six organs. Moreover, except cerebellum, the
median expression level of POTSFs is always higher than
that of ONCs. Their expression profile in normal organs
suggests that POTSFs function as tumor-suppressor
genes rather than oncogenes in normal tissues.
Our network analyses of POTSFs further revealed their

possible roles in oncogenesis. Their higher network
degree and their position in the PPI network show that
POTSFs are more likely to be hub genes in complicated
biological networks which have greater influence on cel-
lular functions than non-hub genes. The most inter-
connected region in our PPI network is centered around
TP53 and CREBBP genes. It is no wonder that TP53 is the
POTSF associated with the largest number of cancer types
in our study. TP53 plays an essential role in controlling
cell cycle and its mutations have been proved to be
associated with many cancer types37. Our results again
confirmed TP53 as a super cancer gene from a network
perspective. Other well-known cancer genes such as
BRCA1, CHEK2, JUN, and MYC could also be found in
the highly interconnected regions of the PPI network
(Figs. 7S, 8S, 9S, and 10S). Actually, like real estate, its
position in a network graph can tell a gene’s value in
oncogenesis.
Based on next-generation sequencing data, TCGA

project has shown that each cancer case has its own
unique mutation profile38. Thus, the roles of POTSFs in
cancer development must vary from case to case. Our
study mainly demonstrates that POTSFs are a group of
genes with functional duality and prominent PPI network
locations. More effort is needed to elucidate their real
functions in different cancer types and individual cancer
cases, which is also a major research direction in our
future study.
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