Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HOXC10 upregulation confers resistance to chemoradiotherapy in ESCC tumor cells and predicts poor prognosis

Abstract

Esophageal squamous cell carcinoma (ESCC) is a malignant disease and is a common cause of death in China. By performing an integrative study investigating public databases and clinical samples collected by our group, we found that HOXC10 (homeobox C10) is upregulated in ESCC tumor tissues compared with nontumor tissues and that the upregulation of HOXC10 is correlated with the poor prognosis of patients with ESCC. The enforced expression of HOXC10 promoted ESCC cell proliferation in vitro and in vivo. Our study revealed that HOXC10 could bind the promoter region of human Erb-b2 receptor tyrosine kinase 3 (ERBB3/HER3) and activate the PI3K/AKT pathway. In addition, by immunoprecipitation and mass spectrometry analysis, we found that HOXC10 could bind X-ray repair cross complementing 6 (Ku70) and accelerate the DNA repair mechanism via the nonhomologous end-joining (NHEJ) pathway. We further evaluated HOXC10 expression in ESCC patients receiving adjuvant radiotherapy or platinum-based chemotherapy. The results demonstrate that HOXC10 upregulation predicts the poor prognosis of ESCC patients receiving adjuvant radiotherapy or chemotherapy. Our study reveals that HOXC10 upregulation reflects the poor prognosis of ESCC patients and directs the selection of postoperative therapy regimens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HOXC10 is highly expressed in ESCC tumors and correlates with poor outcome of ESCC.
Fig. 2: HOXC10 promotes ESCC cell proliferation in vitro and in vivo.
Fig. 3: HOXC10 upregulates ERBB3 and activates the PI3K/AKT pathway.
Fig. 4: HOXC10 confers resistance to DNA damage in ESCC cells.
Fig. 5: HOXC10 binds Ku70 and facilitates DNA repair via the NHEJ pathway.
Fig. 6: HOXC10 upregulation is correlated with poorer prognosis in ESCC patients receiving adjuvant therapy.

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin. 2018;68:394–424.

    Google Scholar 

  2. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. CA: Cancer J Clin. 2016;66:115–32.

    Google Scholar 

  3. Lagergren J, Smyth E, Cunningham D, Lagergren P. Oesophageal cancer. Lancet. 2017;390:2383–96.

    PubMed  Google Scholar 

  4. Ohashi S, Miyamoto S, Kikuchi O, Goto T, Amanuma Y, Muto M. Recent advances from basic and clinical studies of esophageal squamous cell carcinoma. Gastroenterology. 2015;149:1700–15.

    PubMed  Google Scholar 

  5. Leng X, He W, Yang H, Chen Y, Zhu C, Fang W, et al. Prognostic impact of postoperative lymph node metastases after neoadjuvant chemoradiotherapy for locally advanced squamous cell carcinoma of esophagus: from the results of NEOCRTEC5010, a randomized multicenter study. Ann Surg. 2019;12:4932.

    Google Scholar 

  6. Bedenne L, Michel P, Bouché O, Milan C, Mariette C, Conroy T, et al. Chemoradiation followed by surgery compared with chemoradiation alone in squamous cancer of the esophagus: FFCD 9102. J Clin Oncol. 2007;25:1160–8.

    CAS  PubMed  Google Scholar 

  7. Lin DC, Wang MR, Koeffler HP. Genomic and epigenomic aberrations in esophageal squamous cell carcinoma and implications for patients. Gastroenterology. 2018;154:374–89.

    PubMed  Google Scholar 

  8. Faiella A, Zappavigna V, Mavilio F, Boncinelli E. Inhibition of retinoic acid-induced activation of 3’ human HOXB genes by antisense oligonucleotides affects sequential activation of genes located upstream in the four HOX clusters. Proc Natl Acad Sci USA. 1994;91:5335–9.

    CAS  PubMed  Google Scholar 

  9. Jain D, Nemec S, Luxey M, Gauthier Y, Bemmo A, Balsalobre A, et al. Regulatory integration of Hox factor activity with T-box factors in limb development. Development. 2018;145:159830.

    Google Scholar 

  10. Cillo C, Barba P, Freschi G, Bucciarelli G, Magli MC, Boncinelli E. HOX gene expression in normal and neoplastic human kidney. Int J Cancer. 1992;51:892–7.

    CAS  PubMed  Google Scholar 

  11. De Vita G, Barba P, Odartchenko N, Givel JC, Freschi G, Bucciarelli G, et al. Expression of homeobox-containing genes in primary and metastatic colorectal cancer. Eur J Cancer. 1993;29A:887–93.

    PubMed  Google Scholar 

  12. Cantile M, Cindolo L, Napodano G, Altieri V, Cillo C. Hyperexpression of locus C genes in the HOX network is strongly associated in vivo with human bladder transitional cell carcinomas. Oncogene. 2003;22:6462–8.

    CAS  PubMed  Google Scholar 

  13. Waltregny D, Alami Y, Clausse N, de Leval J, Castronovo V. Overexpression of the homeobox gene HOXC8 in human prostate cancer correlates with loss of tumor differentiation. Prostate. 2002;50:162–9.

    CAS  PubMed  Google Scholar 

  14. Chu MC, Selam FB, Taylor HS. therapy. HOXA10 regulates p53 expression and matrigel invasion in human breast cancer cells. Cancer Biol. 2004;3:568–72.

    CAS  Google Scholar 

  15. Shah N, Sukumar S. The Hox genes and their roles in oncogenesis. Nat Rev Cancer. 2010;10:361–71.

    CAS  PubMed  Google Scholar 

  16. Akbas GE, Taylor HS. HOXC and HOXD gene expression in human endometrium: lack of redundancy with HOXA paralogs. Biol Reprod. 2004;70:39–45.

    CAS  PubMed  Google Scholar 

  17. Miwa T, Kanda M, Umeda S, Tanaka H, Tanaka C, Kobayashi D, et al. Homeobox C10 influences on the malignant phenotype of gastric cancer cell lines and its elevated expression positively correlates with recurrence and poor survival. Ann Surg. Oncol. 2019;26:1535–43.

    PubMed  Google Scholar 

  18. Cao M, Cai J, Yuan Y, Shi Y, Wu H, Liu Q, et al. A four-gene signature-derived risk score for glioblastoma: prospects for prognostic and response predictive analyses. Cancer Biol Med. 2019;16:595–605.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Tang XL, Ding BX, Hua Y, Chen H, Wu T, Chen ZQ, et al. HOXC10 promotes the metastasis of human lung adenocarcinoma and indicates poor survival outcome. Front Physiol. 2017;8:557.

    PubMed  PubMed Central  Google Scholar 

  20. Feng X, Li T, Liu Z, Shi Y, Peng Y. HOXC10 up-regulation contributes to human thyroid cancer and indicates poor survival outcome. Mol Biosyst. 2015;11:2946–54.

    CAS  PubMed  Google Scholar 

  21. Takahashi O, Hamada J, Abe M, Hata S, Asano T, Takahashi Y, et al. Dysregulated expression of HOX and ParaHOX genes in human esophageal squamous cell carcinoma. Oncol Rep. 2007;17:753–60.

    CAS  PubMed  Google Scholar 

  22. Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47(W1):W556–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Yao S, He L, Zhang Y, Ye L, Lai Y, Huang L, et al. HOXC10 promotes gastric cancer cell invasion and migration via regulation of the NF-kappaB pathway. Biochem Biophys Res Commun. 2018;501:628–35.

    CAS  PubMed  Google Scholar 

  24. Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi BVSK, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia. 2017;19:649–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Tan Z, Chen K, Wu W, Zhou Y, Zhu J, Wu G, et al. Overexpression of HOXC10 promotes angiogenesis in human glioma via interaction with PRMT5 and upregulation of VEGFA expression. Theranostics. 2018;8:5143–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Sadik H, Korangath P, Nguyen NK, Gyorffy B, Kumar R, Hedayati M, et al. HOXC10 expression supports the development of chemotherapy resistance by fine tuning DNA repair in breast cancer cells. Cancer Res. 2016;76:4443–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Koyama FC, Lopes Ramos CM, Ledesma F, Alves VAF, Fernandes JM, Vailati BB. et al.Effect of Akt activation and experimental pharmacological inhibition on responses to neoadjuvant chemoradiotherapy in rectal cancer.Br J Surg. 2018;105:e192–203.

    CAS  PubMed  Google Scholar 

  28. Wang C, Lees-Miller SP. Detection and repair of ionizing radiation-induced DNA double strand breaks: new developments in nonhomologous end joining. Int J Radiat Oncol Biol Phys. 2013;86:440–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang L, Li W, Lyu X, Song Y, Mao Y, Wang S, et al. Adjuvant chemotherapy with paclitaxel and cisplatin in lymph node-positive thoracic esophageal squamous cell carcinoma. Chin J Cancer Res. 2017;29:149–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang H, Liu H, Chen Y, Zhu C, Fang W, Yu Z, et al. Neoadjuvant chemoradiotherapy followed by surgery versus surgery alone for locally advanced squamous cell carcinoma of the esophagus (NEOCRTEC5010): a Phase III Multicenter, Randomized, Open-Label Clinical Trial. J Clin Oncol. 2018;36:2796–803.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 2010;79:181–211.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Nemoz C, Ropars V, Frit P, Gontier A, Drevet P, Yu J, et al. XLF and APLF bind Ku80 at two remote sites to ensure DNA repair by non-homologous end joining. Nat Struct Mol Biol. 2018;25:971–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hostikka SL, Gong J, Carpenter EM. Axial and appendicular skeletal transformations, ligament alterations, and motor neuron loss in Hoxc10 mutants. Int J Biol Sci. 2009;5:397–410.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ma M, Wang C, Ao Y, He N, Hao F, Liang H, et al. HOXC10 promotes proliferation and attenuates lipid accumulation of sheep bone marrow mesenchymal stem cells. Mol Cell Probes. 2019;1:101491.

    Google Scholar 

  35. Li J, Tong G, Huang C, Luo Y, Wang S, Zhang Y, et al. HOXC10 promotes cell migration, invasion, and tumor growth in gastric carcinoma cells through upregulating proinflammatory cytokines. J Cell Physiol. 2019;9:1–13.

    Google Scholar 

  36. Dai BW, Yang ZM, Deng P, Chen YR, He ZJ, Yang X, et al. HOXC10 promotes migration and invasion via the WNT-EMT signaling pathway in oral squamous cell carcinoma. J Cancer. 2019;10:4540–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hafner A, Bulyk ML, Jambhekar A, Lahav G. The multiple mechanisms that regulate p53 activity and cell fate. Nat Rev Mol cell Biol. 2019;20:199–210.

    CAS  PubMed  Google Scholar 

  38. de Stanchina E, Gabellini D, Norio P, Giacca M, Peverali FA, Riva S, et al. Selection of homeotic proteins for binding to a human DNA replication origin. J Mol Biol. 2000;299:667–80.

    PubMed  Google Scholar 

  39. Ma J, Lyu H, Huang J, Liu B. Targeting of erbB3 receptor to overcome resistance in cancer treatment. Mol Cancer. 2014;13:105.

    PubMed  PubMed Central  Google Scholar 

  40. Ponz-Sarvise M, Corbo V, Tiriac H, Engle DD, Frese KK, Oni TE, et al. Identification of resistance pathways specific to malignancy using organoid models of pancreatic cancer. Clin Cancer Res. 2019;25:11.

    Google Scholar 

  41. Finn RS, Liu Y, Zhu Z, Martín M, Rugo HS, Diéras V, et al. Biomarker analyses of response to cyclin dependent kinase 4/6 inhibition and endocrine therapy in women with treatment-naïve metastatic breast cancer. Clin Cancer Res. 2019;19:0751.

    Google Scholar 

  42. Soltoff SP, Carraway KL, Prigent SA, Gullick WG, Cantley LC. ErbB3 is involved in activation of phosphatidylinositol 3-kinase by epidermal growth factor. Mol Cell Biol. 1994;14:3550–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Li S, Shi J, Gao H, Yuan Y, Chen Q, Zhao Z, et al. Identification of a gene signature associated with radiotherapy and prognosis in gliomas. Oncotarget. 2017;8:88974–87.

    PubMed  PubMed Central  Google Scholar 

  44. Damia G, Broggini M. Platinum resistance in ovarian cancer: role of DNA repair. Cancers. 2019;11:119.

    CAS  PubMed Central  Google Scholar 

  45. Yan T, Cui H, Zhou Y, Yang B, Kong P, Zhang Y, et al. Multi-region sequencing unveils novel actionable targets and spatial heterogeneity in esophageal squamous cell carcinoma. Nat Commun. 2019;10:1670.

    PubMed  PubMed Central  Google Scholar 

  46. Wang XC, Yue X, Zhang RX, Liu TY, Pan ZZ, Yang MJ, et al. Genome-wide RNAi screening identifies RFC4 as a factor that mediates radioresistance in colorectal cancer by facilitating nonhomologous end joining repair. Clin Cancer Res. 2019;25:4567–79.

    CAS  PubMed  Google Scholar 

  47. Yang G, Liu C, Chen SH, Kassab MA, Hoff JD, Walter NG, et al. Super-resolution imaging identifies PARP1 and the Ku complex acting as DNA double-strand break sensors. Nucleic Acids Res. 2018;46:3446–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Pennathur A, Gibson MK, Jobe BA, Luketich JD. Oesophageal carcinoma. Lancet. 2013;381:400–12.

    PubMed  Google Scholar 

  49. Li Y, Chen L, Nie CJ, Zeng TT, Liu H, Mao X, et al. Downregulation of RBMS3 is associated with poor prognosis in esophageal squamous cell carcinoma. Cancer Res. 2011;71:6106–15.

    CAS  PubMed  Google Scholar 

  50. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (2017YFC1309000), NSFC (81672357, 81871903, and 81772554), and Open funds of State Key Laboratory of Oncology in South China (HN2019-06).

Author information

Authors and Affiliations

Authors

Contributions

DS, XG and YL designed experiments. DS., LL, QC, TZ performed experiments. ZW, RL and JY provided crucial samples and technical support. DS and YL wrote the manuscript. XG and YL revised the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Xin-Yuan Guan or Yan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suo, D., Wang, Z., Li, L. et al. HOXC10 upregulation confers resistance to chemoradiotherapy in ESCC tumor cells and predicts poor prognosis. Oncogene 39, 5441–5454 (2020). https://doi.org/10.1038/s41388-020-1375-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1375-4

This article is cited by

Search

Quick links