Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cancer-derived UTX TPR mutations G137V and D336G impair interaction with MLL3/4 complexes and affect UTX subcellular localization

Abstract

The ubiquitously transcribed tetratricopeptide repeat on X chromosome (UTX) is a major histone H3 lysine 27 (H3K27) demethylase and the mixed-lineage leukemia (MLL) proteins are the H3K4 methyltransferases. UTX is one of the major components of MLL3- and MLL4-containing (MlLL3/4) complexes and likely has functions within the complexes. Although UTX is frequently mutated in various types of cancer and is thought to play a crucial role as a tumor suppressor, the importance of UTX interaction with MLL3/4 complexes in cancer formation is poorly understood. Here, we analyzed the ability of cancer-derived UTX mutant proteins to interact with ASH2L, which is a common core component of all the MLL complexes, and MLL3/4-specific components PTIP and PA1, and found that several single-amino acid substitution mutations in the tetratricopeptide repeat (TPR) affect UTX interaction with these components. Interaction-compromised mutants G137V and D336G and a TPR-deleted mutant Δ80-397 were preferentially localized to the cytoplasm, suggesting that UTX is retained in the nucleus by MLL3/4 complexes through their interaction with the TPR. Intriguingly, WT UTX suppressed colony formation in soft agar, whereas G137V failed. This suggests that interaction of UTX with MLL3/4 complex plays a crucial role in their tumor suppressor function. Preferential cytoplasmic localization was also observed for endogenous proteins of G137V and another mutant G137VΔ138 in HCT116 created by CRISPR-Cas9 gene editing. Interestingly, expression levels of these mutants were low and MG312 stabilized both endogenous as well as exogenous G137V proteins. These results reveal a novel mechanism of UTX regulation and reinforce the importance of UTX interaction with MLL3/4 complexes in cancer formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: UTX TPR sequence and structure.
Fig. 2: Interaction of cancer-derived UTX missense mutants with ASH2L.
Fig. 3: Subcellular localization of mutant UTX proteins.
Fig. 4: Analysis of endogenous UTX proteins carrying G137V or G137V with a small deletion constructed by CRISPR gene editing.
Fig. 5: Analysis of G137V and G137VΔ138 interaction with endogenous PTIP.
Fig. 6: Stabilization of G137V and G137VΔ138 by MG132.
Fig. 7: Impairment of WT UTX functions by TPR mutations.

Similar content being viewed by others

References

  1. Agger K, Cloos PA, Christensen J, Pasini D, Rose S, Rappsilber J, et al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature. 2007;449:731–4.

    CAS  PubMed  Google Scholar 

  2. Hong S, Cho YW, Yu LR, Yu H, Veenstra TD, Ge K. Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc Natl Acad Sci USA. 2007;104:18439–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lan F, Bayliss PE, Rinn JL, Whetstine JR, Wang JK, Chen S, et al. A histone H3 lysine 27 demethylase regulates animal posterior development. Nature. 2007;449:689–94.

    CAS  PubMed  Google Scholar 

  4. Lee MG, Villa R, Trojer P, Norman J, Yan KP, Reinberg D, et al. Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science. 2007;318:447–50.

    CAS  PubMed  Google Scholar 

  5. Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science. 2002;298:1039–43.

    CAS  PubMed  Google Scholar 

  6. Ler LD, Ghosh S, Chai X, Thike AA, Heng HL, Siew EY, et al. Loss of tumour suppressor KDM6A amplifies PRC2-regulated transcriptional repression in bladder cancer and can be targeted through inhibition of EZH2. Sci Transl Med. 2017;9:eaai8312.

    PubMed  Google Scholar 

  7. Blatch GL, Lässle M. The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. Bioessays. 1999;21:932–9.

    CAS  PubMed  Google Scholar 

  8. Cho YW, Hong T, Hong S, Guo H, Yu H, Kim D, et al. PTIP associates with MLL3- and MLL4-containing histone H3 lysine 4 methyltransferase complex. J Biol Chem. 2007;282:20395–406.

    CAS  PubMed  Google Scholar 

  9. Issaeva I, Zonis Y, Rozovskaia T, Orlovsky K, Croce CM, Nakamura T, et al. Knockdown of ALR (MLL2) reveals ALR target genes and leads to alterations in cell adhesion and growth. Mol Cell Biol. 2007;27:1889–903.

    CAS  PubMed  Google Scholar 

  10. Patel SR, Kim D, Levitan I, Dressler GR. The BRCT-domain containing protein PTIP links PAX2 to a histone H3, lysine 4 methyltransferase complex. Dev Cell. 2007;13:580–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet. 2012;13:343–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang JK, Tsai MC, Poulin G, Adler AS, Chen S, Liu H. The histone demethylase UTX enables RB-dependent cell fate control. Genes Dev. 2010;24:327–32.

    PubMed  PubMed Central  Google Scholar 

  13. Wang SP, Tang Z, Chen CW, Shimada M, Koche RP, Wang LH, et al. A UTX-MLL4-p300 transcriptional regulatory network coordinately shapes active enhancer landscapes for eliciting transcription. Mol Cell. 2017;67:308–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. van der Meulen J, Speleman F, van Vlierberghe P. The H3K27me3 demethylase UTX in normal development and disease. Epigenetics. 2014;9:658–68.

    PubMed  PubMed Central  Google Scholar 

  15. Dalgliesh GL, Furge K, Greenman C, Chen L, Bignell G, Butler A, et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature. 2010;463:360–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. van Haaften G, Dalgliesh GL, Davies H, Chen L, Bignell G, Greenman C, et al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat Genet. 2009;41:521–3.

    PubMed  PubMed Central  Google Scholar 

  17. Jones DT, Jäger N, Kool M, Zichner T, Hutter B, Sultan M, et al. Dissecting the genomic complexity underlying medulloblastoma. Nature. 2012;488:100–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Robinson G, Parker M, Kranenburg TA, Lu C, Chen X, Ding L, et al. Novel mutations target distinct subgroups of medulloblastoma. Nature. 2012;488:43–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Jankowska AM, Makishima H, Tiu RV, Szpurka H, Huang Y, Traina F, et al. Mutational spectrum analysis of chronic myelomonocytic leukemia includes genes associated with epigenetic regulation: UTX, EZH2, and DNMT3A. Blood. 2011;118:3932–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Mar BG, Bullinger L, Basu E, Schlis K, Silverman LB, Döhner K, et al. Sequencing histone-modifying enzymes identifies UTX mutations in acute lymphoblastic leukemia. Leukemia. 2012;26:1881–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gui Y, Guo G, Huang Y, Hu X, Tang A, Gao S, et al. Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nat Genet. 2011;43:875–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 2014;507:315–22.

    Google Scholar 

  23. Niikawa N, Matsuura N, Fukushima Y, Ohsawa T, Kajii T. Kabuki make-up syndrome: a syndrome of mental retardation, unusual facies, large and protruding ears, and postnatal growth deficiency. J Pediatr. 1981;99:565–9.

    CAS  PubMed  Google Scholar 

  24. Niikawa N, Kuroki Y, Kajii T, Matsuura N, Ishikiriyama S, Tonoki H, et al. Kabuki make-up (Niikawa-Kuroki) syndrome: a study of 62 patients. Am J Med Genet. 1988;31:565–89.

    CAS  PubMed  Google Scholar 

  25. Lederer D, Grisart B, Digilio MC, Benoit V, Crespin M, Ghariani SC, et al. Deletion of KDM6A, a histone demethylase interacting with MLL2, in three patients with Kabuki syndrome. Am J Hum Genet. 2012;90:119–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Miyake N, Koshimizu E, Okamoto N, Mizuno S, Ogata T, Nagai T, et al. MLL2 and KDM6A mutations in patients with Kabuki syndrome. Am J Med Genet A. 2013;161A:2234–43.

    PubMed  Google Scholar 

  27. Ng SB, Bigham AW, Buckingham KJ, Hannibal MC, McMillin MJ, Gildersleeve HI, et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet. 2010;42:790–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hannibal MC, Buckingham KJ, Ng SB, Ming JE, Beck AE, McMillin MJ, et al. Spectrum of MLL2 (ALR) mutations in 110 cases of Kabuki syndrome. Am J Med Genet A. 2011;155A:1511–6.

    PubMed  Google Scholar 

  29. Micale L, Augello B, Maffeo C, Selicorni A, Zucchetti F, Fusco C, et al. Molecular analysis, pathogenic mechanisms, and readthrough therapy on a large cohort of Kabuki syndrome patients. Hum Mutat. 2014;35:841–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Banka S, Lederer D, Benoit V, Jenkins E, Howard E, Bunstone S, et al. Novel KDM6A (UTX) mutations and a clinical and molecular review of the X-linked Kabuki syndrome (KS2). Clin Genet. 2015;87:252–8.

    CAS  PubMed  Google Scholar 

  31. Ijichi O, Kawakami K, Matsuda Y, Ikarimoto N, Miyata K, Takamatsu H, et al. A case of Kabuki make-up syndrome with EBV+Burkitt’s lymphoma. Acta Paediatr Jpn. 1996;38:66–68.

    CAS  PubMed  Google Scholar 

  32. Merks JH, Caron HN, Hennekam RC. High incidence of malformation syndromes in a series of 1073 children with cancer. Am J Med Genet A. 2005;134A:132–43.

    PubMed  Google Scholar 

  33. Scherer S, Theile U, Beyer V, Ferrari R, Kreck C, Rister M. Patient with Kabuki syndrome and acute leukemia. Am J Med Genet A. 2003;122A:76–9.

  34. Tumino M, Licciardello M, Sorge G, Cutrupi MC, Di Benedetto F, Amoroso L, et al. Kabuki syndrome and cancer in two patients. Am J Med Genet A. 2010;152A:1536–9.

    PubMed  Google Scholar 

  35. Greenfield A, Carrel L, Pennisi D, Philippe C, Quaderi N, Siggers P, et al. The UTX gene escapes X inactivation in mice and humans. Hum Mol Genet. 1998;7:737–42.

    CAS  PubMed  Google Scholar 

  36. Lindgren AM, Hoyos T, Talkowski ME, Hanscom C, Blumenthal I, Chiang C, et al. Haploinsufficiency of KDM6A is associated with severe psychomotor retardation, global growth restriction, seizures and cleft palate. Hum Genet. 2013;132:537–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim DE, Chivian D, Baker D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. 2004;32:W526–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang S, Chang L, Alfieri C, Zhang Z, Yang J, Maslen S, et al. Molecular mechanism of APC/C activation by mitotic phosphorylation. Nature. 2016;533:260–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang C, Lee JE, Cho YW, Xiao Y, Jin Q, Liu C, et al. UTX regulates mesoderm differentiation of embryonic stem cells independent of H3K27 demethylase activity. Proc Natl Acad Sci USA. 2012;109:15324–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hertz HM. Enhancer deregulation in cancer and other diseases. Bioessays. 2016;38:1003–15.

    Google Scholar 

  41. Kim J, Lee CG. Coinheritance of novel mutations in SCN1A causing GEFS+ and in KDM6A causing kabuki syndrome in a family. Ann Clin Lab Sci. 2017;47:229–35.

    CAS  PubMed  Google Scholar 

  42. Salceda S, Caro J. Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem. 1997;272:22642–7.

    CAS  PubMed  Google Scholar 

  43. D’Andrea LD, Regan L. TPR proteins: the versatile helix. Trends Biochem Sci. 2003;28:655–62.

    PubMed  Google Scholar 

  44. Hernández-Ramírez LC, Martucci F, Morgan RM, Trivellin G, Tilley D, Ramos-Guajardo N, et al. Rapid proteasomal degradation of mutant proteins is the primary mechanism leading to tumourigenesis in patients with missense AIP mutations. J Clin Endocrinol Metab. 2016;101:3144–54.

    PubMed  PubMed Central  Google Scholar 

  45. Leusen JH, de Klein A, Hilarius PM, Ahlin A, Palmblad J, Smith CI, et al. Disturbed interaction of p21-rac with mutated p67-phox causes chronic granulomatous disease. J Exp Med. 1996;184:1243–9.

    CAS  PubMed  Google Scholar 

  46. Bouazzi H, Lesca G, Trujillo C, Alwasiyah MK, Munnich A. Nonsyndromic X-linked intellectual deficiency in three brothers with a novel MED12 missense mutation [c.5922G_T (p.Glu1974His)]. Clin Case Rep. 2015;3:604–9.

    PubMed  PubMed Central  Google Scholar 

  47. Niranjan TS, Skinner C, May M, Turner T, Rose R, Stevenson R, et al. Affected kindred analysis of human X chromosome exomes to identify novel X-linked intellectual disability genes. PLoS ONE. 2015;10:e0116454.

    PubMed  PubMed Central  Google Scholar 

  48. Willems AP, Gundogdu M, Kempers MJE, Giltay JC, Pfundt R, Elferink M, et al. Mutations in N-acetylglucosamine (O-GlcNAc) transferase in patients with X-linked intellectual disability. J Biol Chem. 2017;292:12621–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Walport LJ, Hopkinson RJ, Vollmar M, Madden SK, Gileadi C, Oppermann U, et al. Human UTY(KDM6C) is a male-specific Nϵ-methyl lysyl demethylase. J Biol Chem. 2014;289:18302–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Shpargel KB, Sengoku T, Yokoyama S, Magnuson T. UTX and UTY demonstrate histone demethylase-independent function in mouse embryonic development. PLoS Genet. 2012;8:e1002964.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Vandamme J, Lettier G, Sidoli S, Di Schiavi E, Nørregaard Jensen O, Salcini AE. The C. elegans H3K27 demethylase UTX-1 is essential for normal development, independent of its enzymatic activity. PLoS Genet. 2012;8:e1002647.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ahn J, Kim KH, Park S, Ahn YH, Kim HY, Yoon H, et al. Target sequencing and CRISPR/Cas editing reveal simultaneous loss of UTX and UTY in urothelial bladder cancer. Oncotarget. 2016;7:63252–60.

    PubMed  PubMed Central  Google Scholar 

  53. Andricovich J, Perkail S, Kai Y, Casasanta N, Peng W, Tzatsos A. Loss of KDM6A Activates Super-Enhancers to Induce Gender-Specific Squamous-like Pancreatic Cancer and Confers Sensitivity to BET Inhibitors. Cancer Cell. 2018;33:512–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Su IH, Dobenecker MW, Dickinson E, Oser M, Basavaraj A, Marqueron R, et al. Polycomb group protein Ezh2 Controls actin polymerization and cell signaling. Cell. 2005;121:425–36.

    CAS  PubMed  Google Scholar 

  55. Shpargel KB, Starmer J, Wang C, Ge K, Magnuson T. UTX-guided neural crest function underlies craniofacial features of Kabuki syndrome. Proc Natl Acad Sci USA. 2017;114:E9046–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Dou Y, Milne TA, Tachett AJ, Smith ER, Fukuda A, Wysocka J, et al. Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell. 2005;121:873–85.

    CAS  PubMed  Google Scholar 

  57. Sun W, Kato H, Kitajima S, Lee KL, Gradin K, Okamoto T, et al. Interaction between von Hippel-Lindau protein and fatty acid synthase modulates hypoxia target gene expression. Sci Rep. 2017;7:7190.

    PubMed  PubMed Central  Google Scholar 

  58. Kitajima S, Lee KL, Hikasa H, Sun W, RYJ Huang, Yang H, et al. Hypoxia-inducible factor-1α promotes cell survival during ammonia stress response in ovarian cancer stem-like cells. Oncotarget. 2017;8:114481–94.

    PubMed  PubMed Central  Google Scholar 

  59. Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods. 2014;11:783–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281–308.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Bowie JU, Lüthy R, Eisenberg D. A method to identify protein sequences that fold into a known three-dimensional structure. Science. 1991;253:164–70.

    CAS  PubMed  Google Scholar 

  62. Lüthy R, Bowie JU, Eisenberg D. Assessment of protein models with three-dimensional profiles. Nature. 1992;356:83–5.

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the LP lab members for technical assistance. This work was supported by grants from the Singapore National Research Foundation (R-713-005-014-271 and R-713-000-162-511), the Singapore Ministry of Education under the Research Centres of Excellence Programme, and the Singapore Ministry of Health’s National Medical Research Council (Clinician Scientist Individual Research Grant, NMRC/CIRG/1389/2014) to LP, and Japan Society for the Promotion of Science KAKENHI (17K08638) to KA and (Scientific Research A, 23247031 and 26251004) to HM, and the Takeda Science Foundation to HM. In the midst of this project, Prof. Lorenz Poellinger passed away, to whom we dedicate this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Kato.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kato, H., Asamitsu, K., Sun, W. et al. Cancer-derived UTX TPR mutations G137V and D336G impair interaction with MLL3/4 complexes and affect UTX subcellular localization. Oncogene 39, 3322–3335 (2020). https://doi.org/10.1038/s41388-020-1218-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1218-3

This article is cited by

Search

Quick links